
Citation: Fleck, T.; Gohlke, S.;

Nochta, Z. A System for the Efficient

Charging of EV Fleets. World Electr.

Veh. J. 2023, 14, 335. https://

doi.org/10.3390/wevj14120335

Academic Editors: Joeri Van Mierlo

and Genevieve Cullen

Received: 18 October 2023

Revised: 17 November 2023

Accepted: 21 November 2023

Published: 2 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A System for the Efficient Charging of EV Fleets
Tobias Fleck 1,†, Sascha Gohlke 2,† and Zoltan Nochta 2,*,†

1 SAP Deutschland, 69190 Walldorf, Germany; tobias.fleck@sap.com
2 Data-Centric Software Systems (DSS) Research Group, Institute of Applied Research (IAF), Karlsruhe

University of Applied Sciences, 76133 Karlsruhe, Germany; sascha.gohlke@h-ka.de
* Correspondence: zoltan.nochta@h-ka.de
† These authors contributed equally to this work.

Abstract: Smart charging is a means of monitoring and actively controlling EV chargers to optimize
the distribution and consumption of energy with a focus on peak-load avoidance. This paper describes
the most important requirements that have influenced the design and implementation of the “Smart
Charging System” (SCS). It presents the architecture and main functional building blocks of the SCS,
which have been realized in an iterative development process as an extension component of the
already existing open-source solution “Open e-Mobility”. We also provide details on the functionality
of the core smart charging algorithm within SCS and show how various data sources can be utilized
by the system to increase the safety and efficiency of EV charging processes. Furthermore, we describe
our iterative approach to developing the system, introduce the real-world testbed at SAP Labs France
in Mougins/France, and share evaluation results and experiences gathered over a three-year period.

Keywords: fleet; smart charging; infrastructure; ICT; load management

1. Introduction

In the past decade, the global market share of electric vehicles (EV) has been growing
rapidly. A significant proportion of EVs of all types, including cars, delivery vans, trucks,
buses, etc., belong to corporate fleets. For example, in Germany 58% of all electric cars
sold in 2021 were registered to companies [1]. Companies are increasingly using their EV
fleets for business-related and sometimes even mission-critical purposes as EVs prove
to be more and more reliable. To ensure the high operational readiness of EVs and
reduce dependency on publicly accessible charging stations, many companies build and
operate their own EV charging infrastructure (CI) on their premises. Those facilities are
also often used by employees to charge privately owned EVs at work. Establishing and
operating a CI poses a number of economic challenges to a company, including high
capital and operating costs (TCO), volatile and less predictable utilization (during and
outside business hours), complex tax regulations, etc. [2–4]. In addition, businesses
must take several technical boundaries at typical parking areas into consideration, such
as missing or insufficient cabling, grid power limitations, bad network connectivity,
etc. A properly designed software system can help enterprises master many of the
operational challenges during the entire life cycle of charging stations and other related
assets. A crucial task thereby is to optimize the distribution of available and in many
cases limited amount of power among multiple, often heterogeneous EVs and chargers
in a safe and cost-efficient manner. Smart charging algorithms can also help increase
driver satisfaction by maximizing the average state of charge (SoC) across multiple
simultaneously charged EVs at a given location [5]. In addition, ref. [3] shows that an
intelligent charging strategy can almost double the utilization of the infrastructure and
the available power compared to an uncontrolled baseline charging strategy. Further
related work in the research area of smart charging is summarized in various studies. For
example, ref. [6] reviewed seven case studies related to smart charging. In the context

World Electr. Veh. J. 2023, 14, 335. https://doi.org/10.3390/wevj14120335 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14120335
https://doi.org/10.3390/wevj14120335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-5660-7387
https://orcid.org/0000-0001-9146-8968
https://doi.org/10.3390/wevj14120335
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14120335?type=check_update&version=3


World Electr. Veh. J. 2023, 14, 335 2 of 17

of commercial EV fleets, ref. [7] identified challenges in return-to-base scenarios. A
comprehensive overview of smart charging applications together with an overview of
publicly known pilot projects is provided in [8]. Case studies often include real-world
testing in technically limited environments with a very small number of EVs. For example,
in [9], a possible design of charging infrastructure for company locations is presented
while considering charging preferences and trip data of a bakery in Germany. A three-
day experiment in a so-called “mobility house” (containing student housing, a grocery
store, and a parking garage) showed that rule-based peak shaving and load demand
forecasting can reduce load demand peaks by 25.4–38.5% while ensuring a minimum
SoC of 50% [10]. The applicability of smart charging approaches that were designed
specifically for charge-at-work scenarios, such as [11,12], and various related scheduling
strategies, e.g., refs. [13–17] are usually evaluated in simulations rather than operational
environments. The same holds for [4], which proposed a charging simulation model to
support the design of a corporate charging infrastructure based on employees’ driving
data. Further challenges in the context of scheduling charging processes and related
requirements for a software system are presented by [2]. Other operational challenges that
require the usage of additional hardware, e.g., to recognize vehicles that are not connected
to the system (e.g., unplugged EVs, conventional vehicles that block EV parking lots,
etc.), are not in the scope of our work. An approach to deal with such problems can be
the integration of sensors, such as LiDAR systems, and related data platforms that help
connected automated vehicles detect and handle certain situations, including searching
suitable parking lots [18,19].

In this paper, we present the Smart Charging System (SCS), which is a software
system mainly designed to serve companies that operate EV fleets and have one or more
parking areas at their sites equipped with charging stations. In contrast to the above-
mentioned research, our smart charging approach and system implementation has been
deployed and actively used to power a large number of EVs in resource-constrained
environments. Research results are often validated with the help of simulations, because
research institutions usually do not operate EV fleets and EV fleet operators do not pro-
vide researchers with access to their business facilities and data. Nevertheless, simulation
is a useful instrument, for example, to initially test new features or the applicability
of system improvements before putting those into operation. The same holds for pilot
projects, which usually only run for a limited time with a small number of EVs in a
lab environment (e.g., known vehicle properties, selected hardware, controllable user
behaviour). The findings presented in this work are based on the iterative implementation
process and evaluation in a real-world testbed. We discuss requirements and approaches
to fulfil them with the help of our SCS, such as dealing with missing data, connectivity
issues, etc., in the real-world, which are usually not covered in smaller test scenarios or in
theoretical research backed by simulations. Technically, the SCS is an optional extension
component of the open-source system “Open e-Mobility” (OE) [20]. OE is currently used
to manage thousands of charging stations at different locations of various companies.
It can be deployed and operated as an on-premises system or as a containerized cloud
solution and communicate with several other systems via the provided interfaces. The
deployment and activation of the presented SCS within an OE instance helps manage
energy distribution, infrastructure protection, and other related other requirements in an
automated manner. Without activating the SCS in an OE system, related tasks must be
carried out by the operator, who manually enters power limits for each charging point
(CP), for example. The remainder of the paper is organized as follows: In Section 2, we
describe our iterative approach to develop the software system, summarize the identified
main functional and non-functional requirements, and introduce the real-world testbed at
SAP Labs France in Mougins (France) that was used for technical evaluation. In Section 3,
we present the architecture and main functional building blocks of the SCS, explain the
functionality of the core EV charging algorithm, and show its integration with various
data sources that are supported in the current implementation. We also discuss particular



World Electr. Veh. J. 2023, 14, 335 3 of 17

advantages of the incrementally added features and data sources that helped increase
the efficiency of the charging infrastructure. Finally, we draw conclusions and outline
directions for our future work in Section 4.

2. Materials and Methods
2.1. Iterative Software Development Approach

The SCS, along with other software components of OE, was realized and tested in
multiple iterations in a period of three years. The development process included multiple
phases and related test cycles. In each development phase, a new, encapsulated and inde-
pendent component was added to the already existing SCS so that respective improvements
were feasible and measurable. When designing and implementing the SCS, we focused in
particular on the following capabilities as main requirements for the system:

• Infrastructure protection: During the simultaneous charging of EVs, huge demand
peaks can occur, damaging the infrastructure or even leading to outages. The SCS must
deal with several related thresholds at the same time, such as the mains connection
power of the site, limitations of the local electrical infrastructure according to fuse
hierarchies, capacity of individual power lines and transformers, etc. In addition,
it is important to communicate with the local energy management system (EMS), if
deployed on site, to quickly react on fluctuations of the available power caused by
electricity consuming devices (e.g., machinery, HVAC devices) or by energy producing
assets (e.g., PV, CHP).

• Management of heterogeneous charging equipment: A company’s CI can contain
AC and DC chargers of various vendors, types and versions. Considering only “ab-
stracted” equipment in the software system can lead to severe problems, because “real”
devices behave differently with respect to their, e.g., charging curve characteristics,
in/output ratios, means of data provisioning, interfaces, configurable parameters, etc.
The larger the CI, the greater the cumulative effect of these factors can be.

• Support of EV-specific charging: During a charging session, the EV’s battery man-
agement system may autonomously increase (or lower) the demanded power. As a
reaction, the SCS may limit the maximum available power or provide the EV with addi-
tional power, e.g., by rescheduling other EVs’ charging sessions. Accordingly, the SCS
requires up-to-date information about connected vehicles, including the maximum
allowed current/power, number of phases used, etc.

• Context-aware prioritization: In the business context, a prioritization of charging
sessions is often needed: A salesperson, who wants to visit a customer and needs
a “full” battery within two hours, has higher priority than another employee, who
leaves the office at the evening. To determine prioritization, data items from different
sources are required, e.g., planned arrival time, estimated departure time, capacity of
EV batteries, current SoC, etc.

• Interoperability and scalability: The SCS must seamlessly interact with other system
components over available interfaces and network protocols. It should also be able to
serve CIs of different size and allow adding (removing) locations to the overall setup.

• Flexibility: CI sites have different properties and characteristics, for example, with
regard to the number and type of served EVs, usual charging times, local infrastructure
limitations, etc. Consequently, the structure and operational complexity of the SCS
also varies between deployment sites. In order to address this, the SCS needs to be
built to be modular and thus adaptable to the given infrastructure, EV fleet, user
needs, and prioritization requirements. In general, the SCS must be able to work in
different complexity levels and enable adding/removing components independently
from each other.

• Exception handling: In case of errors, e.g., due to malfunctioning charging stations or
EVs, a proper exception handling in near real time is needed. Thereby, vendor- and
device-specific error messages must be captured and properly interpreted. It must
also be ensured that failing or bad network connectivity (HTTP, WebSocket, TCP/IP)



World Electr. Veh. J. 2023, 14, 335 4 of 17

does not jeopardize running charging sessions and missing data are handled when
planning new sessions. If there is an outage in the local electrical system, a safe restart
of charging procedures is required.

2.2. Method of System Evaluation

The evaluation of the system in an operative environment took place at the premises
of SAP Labs France in Mougins, France. The charging infrastructure on site has been
initially set up and maintained by local team members. Experiments with the SCS began
on 1 April 2020, which was a good time to start, because the local CI was less stressed as
usual (due to COVID-19) and users were therefore more tolerant of potential technical
problems. As time went on, the number of both charging stations and charging operations
increased steadily, so that the scalability of the system could be tested as well. The testbed
currently comprises 38 charging points (31 AC and 7 DC) at 22 charging stations of
different vendors, including Schneider Electric, Legrand, ABB, Delta, IES, Webasto, Ebee,
Mennekes, Keba, StarCharge, Wall Box Chargers, and Joinon. In the evaluation period, the
system served in total over 650 employees to charge 291 company cars of various vendors
including Tesla, Jaguar, Kia, Renault, Volkswagen, Audi, Mercedes, Hyundai, BMW,
Fiat, Volvo, and Nissan. In total, more than 25,000 EV charging sessions were executed
successfully, consuming approximately 700 MWh energy with a combined session time
of almost 3400 days. The system protected the power-constrained infrastructure well
since it never experienced critical overload situations throughout the entire test period.
In addition to the real-world tests, a tool [21] that simulates the behaviour of multiple
OCPP-compliant charging points was also used to frequently test SCS. It especially helped
avoid technical and safety-related problems that would have been occurred due to errors
(bugs) in the software implementation.

3. Results and Discussion
3.1. System Design

The high-level architecture of the SCS contains four main functional components as
shown in Figure 1. The main task of the component Smart Charging Core is to calculate
and dynamically adjust the distribution of available power among the active charging
sessions in the given CI (see details in Section 3.2). The Data Manager stores permanent
data, such as the system configuration and master data about the capabilities of the
installed charging stations. It also maintains temporary information needed to carry out
calculations, for example. As part of OE, the SCS interacts with other components of the
entire charging-point management system, termed as “Internal Components” in Figure 1.
For instance, the SCS logs relevant technical events using the Logging interface of OE. The
SCS also provides information about the status of active charging sessions for EV drivers
via the Mobile App as well as for the CI’s technical operator via Browser/Portal. The SCS can
communicate and exchange data with further “External Components”, including EMS,
enterprise resource planning (ERP) or EV vendors’ Vehicle Backend, if they are available
and made accessible within the CI owner’s IT environment. These external systems are
mainly used by the SCS as data sources to support ongoing calculations of charging
plans. The required connections to these systems and charging stations on site, including
protocol- and API-specific messaging, are handled by the Communication Manager. The
component Integration Layer is mainly responsible for collecting the required data from
the different connected sources in a synchronous or asynchronous way, and also for the
preparation of the gathered data for further processing by the core component (see details
in Section 3.3).



World Electr. Veh. J. 2023, 14, 335 5 of 17

Figure 1. High-level architecture diagram of the Smart Charging System. The four main components
in the middle can fetch data from various external data sources and also interact with other parts of
Open e-Mobility.

The deployment of the four main components, i.e., without the above-mentioned
additional data sources, is sufficient to operate the SCS with basic functionality. In this case,
the Smart Charging Core can work with predefined configuration values, such as fixed safety
limits for power consumption, and it does not take into account dynamic information, such
as instantaneous solar power generation. The above-mentioned additional internal and
external components can be added (activated) optionally and independently from each
other helping to adapt the SCS to specific requirements in the given scenario.

3.2. Smart Charging Core

The current version of the SCS implements a scheduling procedure illustrated by the
flowchart in Figure 2. The initial concept is presented in [13,22], and the corresponding
implementation is available online on GitHub [23]. The main goal of the overall process
(see also the pseudo-code in Algorithm 1) is to share the basically limited charging power at
a given location among the connected EVs in a fair manner. The SCS triggers the calculation
when a new charging session starts to meet the additional demand, or when an ongoing
session ends to redistribute the released capacity. The scheduling procedure can also be
executed periodically (e.g., every 15 min) to adjust the power consumption of ongoing
sessions, as well as on demand, when significant changes in the amount of available energy
are detected (e.g., through additional solar production). The output of the calculation is
a charging plan that determines which of the connected EVs should receive power in the
next k time slots without violating the local site’s safety limits (see also Algorithm 2 for
details). During charging plan creation, EVs can be prioritized (using Algorithm 3), which
is especially useful when the total (aggregated) power demand would exceed the maximum
available power in one or more time slots. As shown in Figure 2 several optional data
sources (represented as rectangles) can be utilized during the calculation in order to adapt
the system’s behaviour. It is important to note that the scheduling process is able to work
without receiving data from those sources, e.g., due to a technical problem. For example, in
case the actual battery type and capacity of a plugged-in EV is unknown because the Fleet
Management component is temporarily unavailable, the SCS can run using preset values.



World Electr. Veh. J. 2023, 14, 335 6 of 17

Figure 2. Flowchart diagram of the scheduling procedure based on [13] with the main calculation
steps and optionally involved data sources (Fleet Management, Vehicle Backend, Mobile App, EMS,
Site Management).

Algorithm 1 Scheduling procedure

1: procedure SCHEDULE(evList, tsList)
2: for i← 1 to evList.length do
3: FILLPLAN(ev[i], tsList) . Algorithm 2 called
4: end for
5: PRIORITIZE(evList) . Algorithm 3 called
6: for k← 1 to tsList.length do
7: sumIts ← 0
8: for i← 1 to evList.length do
9: sumIts ← sumIts + evList[i].tsList[k].I

10: end for
11: index ← 1
12: while sumIts ≥ fuse limit do . Check if total current exceeds limit
13: tsList[k]← blocked . Block time slot for rescheduling
14: sumIts ← sumIts − evList[index].tsList[k].I
15: FILLPLAN(evList[index], tsList) . Reschedule EV with lowest priority
16: index ++
17: end while
18: end for
19: end procedure



World Electr. Veh. J. 2023, 14, 335 7 of 17

Algorithm 2 Procedure to fill EV charge plans

1: procedure FILLPLAN(ev, tsList)
2: for k← 1 to tsList.length do
3: if tsList[k] not blocked & ev.capinit + ev.capcha(k) ≤ ev.capmax then
4: ev.tsList[k].I ← min(ev.Imax, cp.Imax) . Assign lower value of CP/EV max

current
5: else
6: ev.tsList[k].I ← 0
7: end if
8: end for
9: end procedure

Algorithm 3 Prioritization procedure

1: procedure PRIORITIZE(evList)
2: for i← 1 to evList.length do
3: mCapminSoC ← evList[i].capdes − (evList[i].capinit + evList[i].capcha)
4: ∆t← evList[i].tdep − evList[i].tnow
5: if mCapminSoC ≥ 0 then . Assign higher priority if EV is below minimum SoC
6: evList[i].priority← mCapminSoC/((∆t ∗ evList[i].Imax) + 1e− 8)
7: else
8: mCapmaxSoC ← evList[i].capmax − (evList[i].capinit + evList[i].capcha)
9: evList[i].priority← mCapmaxSoC/((∆t ∗ evList[i].Imax) + 1e− 8)− 1000

10: end if
11: end for
12: sort (evList, priority) . Sort according priority
13: return
14: end procedure

The scheduling algorithm (see Algorithm 1) initially creates a “greedy” charging plan
for each ev in evList for n time slots of duration d represented in tsList. In a practical
setup, for example, with n = 96 and d = 0.25 hours, a charging plan for the next 24 h can
be created.

By executing Algorithm 2 for each EV (see Lines 2–4 in Algorithm 1), the maximum
possible charging current will be assigned to each EV, according to the limitations of the
given EV (ev.Imax) and the charging point (cp.Imax).

This is repeated for the next time slots until the sum of the EV’s initial charge capacity
ev.capinit (measured in Ah) and charged capacity ev.capcha reaches/exceeds the battery’s
maximum capacity ev.capmax. Note that ev.capcha is calculated based on the charging
current I assigned to the EV and the total duration of passed k time slots.

To face potential conflicts that could occur if the total scheduled charging power within
one or more time slots exceeds power limitations of the charging infrastructure, some EVs’
initially created charging plans must be adjusted, i.e., delayed. For that purpose, EVs are
ranked by executing Algorithm 3 (see Line 5 in Algorithm 1). In order to determine the
critical time slots, sumIts, the sum of charging currents assigned to all EVs in evList in each
time slot, is calculated. A particular time slot will be blocked (see Line 13 in Algorithm 1)
if the resulting value is not below the relevant technical limitation of the charging site’s
electrical system (called fuse limit). The sumIts is reduced by the previously given charging
current I of the lowest ranked EV (see Line 14 in Algorithm 1), whose charging plan
will be refilled. Afterwards, the EV with the lowest priority is rescheduled by applying
Algorithm 2 (see line 15 in Algorithm 1). Reducing the charging current to zero in all
blocked time slots (see Line 6 in Algorithm 2) leads to a delayed/prolonged charging of
the particular EV, because the intended capmax value cannot be reached otherwise. This
shifting procedure is repeated for the next ranked EVs until the violation of the fuse limit
within the time slot is solved. Note that an adjustment of the charging current in the last



World Electr. Veh. J. 2023, 14, 335 8 of 17

unblocked time slot to match fuse limits more exactly is implemented but not included in
the pseudo-code due to readability and space reasons.

The aforementioned prioritization of EVs for being potentially rescheduled is per-
formed in Algorithm 3. To rank EVs in evList, the missing capacity to reach the minimum
SoC mCapminSoC (measured in Ah) is calculated for each EV. This is the difference between
the EV’s desired charge capacity capdes (calculated from the desired SoC, in %, as entered by
the user) and the sum of its initial capacity capinit on arrival and the capacity charged capcha
since then (see Line 3 in Algorithm 3). The urgency of charging depends on the available
time ∆t between departure time tdep (e.g., entered by the EV driver) and current time tnow.
If the minimum SoC is not yet reached, the priority is calculated based on mCapminSoC, the
urgency ∆t, and the maximum charging current Imax of the EV (see Line 6 in Algorithm 3).
The applied formula basically ensures that EVs/drivers with higher energy demand and
less time for charging will receive a higher priority in average and thus will not be taken as
first candidates for being “shifted”. The other EVs that already reached their minimum
expected SoC will be ranked based on the charge capacity that is missing to reach the
maximum capacity of the vehicle’s battery mCapmaxSoC. The chosen formula (see Line 9
in Algorithm 3) gives in average a higher rank for those EVs with higher energy demand
and less available time to fully charge their batteries. Accordingly, first candidates for
rescheduling will be those EVs that almost reached their batteries’ maximum capacity and
still have time to wait.

3.3. Integration Layer

To leverage the capabilities of the generic Smart Charging Core component and to
configure the implemented algorithms properly, information from several heterogeneous
data sources with regard to, e.g., available APIs, security settings, data formats, etc., must
be gathered. In case these sources are not deployed in the given environment and/or
(temporarily) unavailable, the algorithms must be provided with preset values to ensure
operational safety at any point in time. Similarly, a calculated charging plan must be
transmitted to all connected charging stations and the respective EVs, so that they can
interpret received messages (commands) and set configuration parameters or return data
as requested. These data-oriented tasks are carried out by the Integration Layer. This
component basically allows the adaptation of the Smart Charging Core to the given context
and operational environment. Note that the SCS currently supports Open Charge Point
Protocol (OCPP) version 1.6 [24]. Accordingly, the Integration Layer creates and maintains
a charging profile for each connected, OCPP-compatible charging station within the CI.
A fundamental task thereby is to handle misbehaving or incompatible charging stations.
For that purpose, the Integration Layer monitors and reflects the current status of the CI,
and it reacts on events that occurred. It can also collect data on ongoing charging sessions
in near real time and help redistribute the available power according to the actual power
consumption of ongoing sessions. Below, the tasks and functionality of the Integration Layer
are explained in more detail.

• Error and Exception Handling: The SCS presupposes a proper implementation of
OCPP by the charging stations and the support of OCPP charging profiles. However,
OCPP implementations vary by charging station manufacturer and model. Compat-
ibility problems often appear in specific setups and cases, which were not known
upfront. The Integration Layer offers different mechanisms to master such situations.
When collecting data to properly configure the core scheduling algorithm, the capabil-
ities of connected stations are checked. It is especially examined whether each station
is able to work with the generated OCPP profiles. If not, the given charging station
will be excluded from the optimization, because it cannot be limited. In order to not
endanger the electrical infrastructure, the SCS will automatically adjust infrastructure
limits for the next optimization cycles by subtracting the maximum power that the
incompatible station can draw. The adjustment of these limits only happens if the
affected charging station is charging. Otherwise, the full capacity can be considered



World Electr. Veh. J. 2023, 14, 335 9 of 17

by the optimization. A similar mechanism is applied if a charging station is rejecting
or not answering to charging profile requests, e.g., due to network issues. In this case,
the faulty stations are collected and handled as incompatible charging stations in a
separate optimization cycle. At the same time, a notification framework informs the
administrators about the stations, which are not working correctly in order to take
action if the issue persists.

• AC/DC Handling: The Integration Layer supports both AC and DC charging sessions
according to their specifics. AC sessions can use one, two, or all three phases de-
pending on the given charging station and connected EV. When triggering the Smart
Charging Core, this information must be taken into account to determine the demanded
charging current per phase. DC stations usually use all three phases, which makes
phase assignments redundant. For DC chargers, however, the efficiency values need
to be taken into account because the conversion from AC to DC is carried out by the
charging station and not by the EV (as in case of AC chargers).

• Vendor-specific handling: Charging station vendors tend to vary in how they handle
OCPP charging profiles, for example, by using their preferred measurement units (kW
or Ampere). Therefore, the Integration Layer provides a framework and mechanism to
adapt a generic charging profile template to vendor specific requirements.

• EV-specific handling: With the help of the Fleet Management component, the SCS is
able to retrieve data about converters and batteries of almost every EV-model on the
market, by using the Electric Vehicle Database [25] and other similar repositories. To
keep the vehicle data up to date, synchronization jobs with the respective data sources
are implemented. The data can be used to instantiate vehicles of a certain type in Fleet
Management. By assigning these vehicles to users, the system can determine which EV
model is charging at which station, without the need to establish a communication
channel to the EV itself. The extracted information (converter data, battery size) is
used to send power limits and battery capacities to the Smart Charging Core instead of
waiting for actual monitored consumption data and adopting power limits later. In
addition, the system provides implementations of service interfaces offered by OEMs,
such as Mercedes, and also by third-party service platforms, like Tronity, to receive
live information about the current state of charge during AC sessions. The stored
data of the EVs are extended with this information and can be provided for different
purposes such as priority handling.

• Real-time behaviour adaptation: The process of EV charging (both AC and DC) can
be influenced by many factors. The charging curve, i.e., the power drawn over time,
depends not only on the type, age, and condition of the hardware on the vehicle
side but also on external parameters, such as temperature. In some cases, significant
deviations from the expected model-specific behaviour can be observed when charging
a particular EV. A negative implication can be that EVs consume less power than
expected and thus allocated to the session when it started. DC chargers especially
manage power usage actively by monitoring the connected battery’s charging status.
An efficient charging system must react to such varying (in general, unpredictable)
power curves. The Integration Layer captures the momentary power drawn in the
charging sessions and supports the SCS in calculating the real charge demand of a
particular vehicle. The implemented mechanism puts a buffer on top of the observed
power output of the charging station and uses the increased value as a new power
limit for the session, whereby the new limit remains below the connector’s maximum
limit. By supervising whether the EV uses the buffer, the algorithm can determine if
the car would be able to draw more power and provide it to the session if available.
This way, it is also ensured that incorrect or missing vehicle data does not lead to the
allocation of later unused power capacity.

• Dynamic power limits: In most cases, charging stations are operated in combination
with other energy consuming or producing devices. The amount of demanded and
produced power within an electrical system can heavily vary depending on season,



World Electr. Veh. J. 2023, 14, 335 10 of 17

time of the day, temperature, weather, etc. Setting a fixed, safety-oriented power
limit for the CI could make it basically independent from the fluctuations but lead
to lower throughput and efficiency. For this reason, the SCS can be integrated with
external EMS that monitors and controls the overall electrical infrastructure on site.
This integration should be as flexible as possible, to support as many EMS providers
as possible. Thus, the SCS provides an API endpoint to push energy data, but also
integrates with external APIs to pull/request data from. By taking into account EMS
data, it is possible to dynamically adapt the available power for the CI according to
the current solar production, building consumption, etc.

• Priority Handling: To support the prioritization of EVs (as shown in Algorithm 3)
and related charging sessions, the SCS collects as much information as possible. For
instance, the Mobile App provides a dialogue for the driver to enter their planned
departure time, required state of charge, and also the current state of charge (if the
data are not provided by another integrated source or service). After the data are
collected, they are processed and passed to the Smart Charging Core, which uses the
received parameters to determine which EVs are prioritized and can thus charge
faster. This ensures a fair sharing of power among trustworthy EV drivers and helps
minimize inactivity times.

3.4. Implementation and Deployment in a Real-World Testbed

The SCS was implemented using TypeScript as programming language and the NodeJS
runtime, which are utilised by other OE components as well. The integration with compo-
nents of the existing OE was carried out in accordance with the programming guidelines
of the overall project. To integrate optional, encapsulated components, OE uses a feature-
oriented approach and a Component Manager. It enables the selection and individual
activation, deactivation and configuration of certain functional artefacts in a flexible man-
ner [26]. An example for such an optional feature in the context of OE is the roaming
functionality, which can be switched on or off according to end users’ requirements. The
flexible combination of technically encapsulated system components is fundamentally lim-
ited, mainly due to semantic (sometimes mutual) dependencies between the components.
These dependencies arise when components require the functionality of other components
to work properly.

For example, the Smart Charging Core component relies on the component Site Man-
agement, which is used in OE to maintain the configuration of sites (company locations),
site areas (parking facilities at a given site), and related charging station assignments. At
the same time, Site Management does not depend on an activated Smart Charging Core
component. Therefore, when manually enabling or disabling components in the admin
user interfaces (UIs), the Component Manager verifies whether the known dependencies are
met. If a violation was found, the Component Manager prevents the change and evaluates
necessary actions to resolve the violation, providing the system administrator with the
required information. If all (known) dependencies are satisfied, the configurations are
stored in the database. When a component is disabled, the corresponding database entry
is deleted. Storing component configurations in the database provides flexibility during
runtime. The activation status of a component can be determined by a database request,
and according to the concepts in [27,28], feature flag variables in the code can be used to
determine whether the component’s implementation should be executed or not. Validated
changes take effect immediately, but the user needs to log out and log in again to update the
user context and properly display configuration menus. Furthermore, the implementation
offers multiple variants for each component. For example, the smart charging algorithm
used in Smart Charging Core can be replaced with an alternative algorithm while keeping
other components unchanged. This flexibility is achieved through the use of a factory
pattern [29], which allows for different implementations of the same component. The com-
munication and data exchange with external data sources adheres to commonly accepted
practices like REST [30] using standardized web communication protocols, such as HTTPS



World Electr. Veh. J. 2023, 14, 335 11 of 17

and WebSocket Secure (WSS), and the related commands. The system further ensures the
safety of the electrical infrastructure by employing fallback mechanisms. In the event of
API call failures, it uses default values regarding battery sizes, state of charge, departure
time, etc. Any issues that may arise are handled by a sophisticated error handling system,
which makes sure to not exceed infrastructure limits. Additionally, every step performed
in the SCS can be logged by calling the logging component within OE, enabling advanced
troubleshooting in case of any unintended behaviour.

Before deploying the SCS in the testbed, as described in Section 2.2, it was possible
to exceed the preset maximum power limit, for example, if a large number of EVs had to
be charged simultaneously. With the roll-out of the first version of the SCS core system
with its main components (i.e., without using any other external data sources), it was
ensured for the first time that the maximum power limit of the local infrastructure could no
longer be exceeded. This “safety-first” strategy did not take into account the actual power
limits of the vehicles’ converters. Instead, the algorithm assigned to each charging session
the maximum charging current, which was derived from the chargers’ maximum output
power, e.g., 22 kW in case of most AC chargers. The actual assignment of the determined
power to a particular charger takes place in updating the charger’s OCPP Charging Profile
using the message SetChargingProfile.req. As a result, the fixed maximum power limit of the
CI was reached quickly, so only a few chargers could operate in parallel while the other
charging stations received no power. The disadvantage of this approach is also illustrated
in the upper part of Figure 3. In the example, a Tesla Model 3 charges constantly at 11 kW,
although the connector has a maximum power of 22 kW. Without adjusting the limit to the
actually demanded power, the SCS statically allocates 22 kW for the entire session duration.
The unused yet blocked 11 kW are “wasted”, i.e., they cannot not be given to other stations
at the same time. For instance, in a CI segment created for testing with a power limit of
110 kW, only five EVs could be charged simultaneously.

Figure 3. Power limit adaption to current consumption (screenshots from “Open e-Mobility”).

Such inefficiencies motivated the incorporation of additional information into the
charging power calculation. The required data sources were added step by step by con-
tinuously extending and enhancing the Integration Layer and related other components.
When retrieving the connected EV’s actual demanded power at the beginning of a charging
session (using the OCPP message MeterValues.req), the allocated power limit can be adjusted
(lowered) by updating the OCPP profile limit of the station. This adaptive adjustment



World Electr. Veh. J. 2023, 14, 335 12 of 17

of the power limit for a session is shown in the lower part of Figure 3. As a result, the
charging algorithm can redistribute the otherwise unused power among other charging
stations. For technical and safety reasons, the actual limits per charger were calculated
by adding a safety buffer to the observed power consumption. In the example shown in
Figure 3, the buffer is set to approx. 20%. Accordingly, the limit for the charging session
of the example Tesla Model 3 is set to 13.5 kW. Using this enhancement, the number of
parallel powered sessions increased significantly, since eight (instead of only five) EVs with
a power consumption of 11 kW each could be charged.

However, at the beginning of each session, the maximum connector power remains al-
located and thus blocked for other sessions at least until the next execution of the scheduling
algorithm. The applied safety buffer per station (approx. 2.5 kW in case of the exemplary
Tesla) will not be usable by any other session at all.

To address this issue, the Fleet Management component was introduced. It provides
model-specific master data about EVs and enables the assignment of particular EVs to
drivers. When starting a charging session at a charging station, the driver is authenticated
and thus a linkage to the data about the respective EV is established. By retrieving the
electrical properties of the vehnicle from the database, the maximum charging power
of the EVs can be used in the optimization from the beginning. It was now possible to
assign 11 kW as the definite limit to the exemplary Tesla Model 3 without allocating any
additional safety buffer. Figure 4 shows a comparison of charging the same EV with the
above discussed limit adoption (in the upper part) and with the initially set model-specific
power limit (in the lower part). In essence, it became possible to utilize the freed power
at other stations in parallel. On the above mentioned 110 kW infrastructure segment 10
(average) EVs could be charged at the same time without safety risks.

Figure 4. Utilization of vehicle data in charging limit calculations (screenshots from “Open e-Mobility”).

At that stage, the SCS was only able to efficiently distribute power within the CI
according to a fixed maximum power that was set as a strict upper limit. The limit was
determined, as a proportion of the maximum power consumed by the entire facility (mainly
office buildings). Thereby, neither the actual power consumption nor the power provided
by the building’s PV system were considered as input parameters. Since many energy-
consuming devices are not always in operation and/or do not constantly draw a high
amount of power, ignoring their actual energy consumption leads to a rather low power



World Electr. Veh. J. 2023, 14, 335 13 of 17

limit assigned to the CI. Similarly, considering the actual on-site power generation can help
safely increase the CI’s maximum power consumption limit.

The integration of the SCS with the locally installed EMS solved this issue. The EMS
vendor provides a REST API to query collected data about all connected and monitored
devices, including solar panels and the stationary battery installed in the building. The
continuous retrieval of the actual power consumption and production on site allowed the
dynamic updating of the CI’s maximum power limit. Using this integration feature, it was
possible to allocate 50 kW additional power in average to the charging infrastructure. On
the above-mentioned 110 kW infrastructure it was now possible to charge up to 15 EVs
at the same time on average. Figure 5 shows the power distribution of the testing facility
while taking into account building consumption, solar power production, and charging
station consumption.

Figure 5. EV charging as part of the electrical infrastructure (screenshot from “Open e-Mobility”).

By combining all of the above system components and associated “live” data, the SCS
was able to efficiently distribute power while treating each EV charging session equally.
This approach is beneficial in some use cases, for example, when a logistics company’s
delivery vehicles must be recharged during the night. However, in other settings, some
vehicles must be served faster and/or charge a higher amount of energy than others to fulfil
business-related requirements. Some EVs can have a longer stay at the charging facility
and thus more time to charge than others. The vehicles’ total charging demand may vary
depending on the planned driving distances or specific routes the users need to drive till
the next charge can occur. To meet these requirements and preferences, the incorporation
of further data items, such as the given EV’s current and target SoC, as well as its planned
departure time, is required. These parameters can be provided, for example, by the user
manually, via the Mobile App (see in Figure 1). If user authentication is performed without
using the app, e.g., by presenting a personalized RFID card at the charging station, default
values for the above-mentioned parameters are taken. By passing the collected data to
the Smart Charging Core, the scheduling of sessions can be carried out according to users’
actual needs, and energy can also be provided/distributed in a more efficient way. Figure 6
shows how the prioritization effects the start of powering a charging session in the system
according to the users’ known planned departure time.

In the depicted example, two EVs, EV1 and EV2, arrive at 2:00 p.m. and start charging
at the same time. EV1 can stay till 6:00 p.m., while EV2 must leave earlier, at 4:00 p.m. Due
to the limited available power of approximately 11 kW (see the red line), only one EV can
be charged at its maximum current. If EV1 would be charged before EV2, EV2 would not
have enough time to charge until it must leave, and EV1 will be inactive after it was fully
charged. If the system can take the planned departure times into account, it schedules
EV2 first, allowing to charge to full capacity before it has to leave at 4:00 p.m. EV1 can
start afterwards and have another two hours to charge until 6:00 p.m. Viewing it from the
involved drivers’ perspective, in this particular example, the EV prioritization helps double
the efficiency of the power-constrained infrastructure.



World Electr. Veh. J. 2023, 14, 335 14 of 17

Figure 6. Effects of prioritization on two concurrent sessions (screenshot from “Open e-Mobility”).

In addition to the support of rather passive AC chargers, the SCS is also able to deal
with DC chargers that actively control charging processes while connected to an EV’s
battery. Figure 7 shows an example of how the SCS combines different data to dynamically
adjust the power limit (in red) during an ongoing DC charging session. The information
about the plugged vehicle’s battery (in the example, a Jaguar I-PACE EV400 with battery
capacity of 90 kWh, and initial SoC of 30% which corresponds to 27 kWh) is used to initially
set the maximum allowed power, which is 104 kW in this case. The DC charger in the
example, which is capable to deliver up to 150 kW, is regulated accordingly. The remaining
46 kW can be distributed among other chargers (as long as the resulting total power does not
violate other thresholds). Over time, the car’s battery management system automatically
reduces the power drawn, in order to protect the battery. As a consequence, the power limit
in the example session is readjusted (lowered) three times, making an increasing amount
of power available for other (newly started or ongoing) charging sessions. The battery’s
increasing SoC is further used to recalculate prioritization decisions (the effects of those are
not depicted here).

Figure 7. Example charging process on a Delta Ultra-fast Charger (screenshot from “Open e-Mobility”).

As illustrated above, the SCS, in combination with the external components and data,
can almost triple the efficiency of the power-limited charging infrastructure. To achieve
similar results with a non-controlled hardware solution, the infrastructure limit would have
to be tripled. For the above test infrastructure, this could require an increase in transformer
power by 200 kW, which would lead to very high costs.



World Electr. Veh. J. 2023, 14, 335 15 of 17

4. Conclusions and Future Work

In this paper, we presented an extension to the open-source charging-point manage-
ment system “Open e-Mobility” to enable the intelligent control and power scheduling of
EV charging at enterprise sites. The extension called “Smart Charging System” has already
been successfully deployed and used in various charging infrastructures. Thanks to the
modular system architecture and the realized multiple interfaces to external data sources,
various factors and data can be incorporated in the calculation of charging plans for both
AC and DC charging stations. We validated the positive impact of this flexible design
in a real-world environment at SAP Labs France in Mougins, France. As illustrated by
examples, the usage of various data sources and specific information led to better power
utilization and helped increase the overall effectiveness of the charging infrastructure.

Since the SCS has been continuously extended and enhanced in an agile and iterative
development approach, the positive effects generated by newly added features, functions,
and data sources were measurable. However, many of those realized improvements, such
as the increased average SoC at the end of charging sessions, cannot be clearly attributed to
a single dedicated SCS feature nor to the usage of a given dataset. Rather, at any point of
time it was possible to observe the combined effects of all deployed SCS functions, data
sources, etc., and compare the performance of the system with the previous state, i.e., with-
out the respective new features, data, etc. Therefore, at this point we cannot give a reliable
recommendation regarding which of the features or data sources a CI operator should in-
corporate first and/or in which order to maximize the benefits. Nevertheless, the interested
community (researchers, developers, operators) can immediately benefit from the work and
our reported experience: The source code related to smart charging functionality has been
made available under open-source licence, similar to the other parts of Open e-Mobility,
and we have proven the long-term practicality of the implemented ideas and approaches.
Since the described software system can basically only help better control and optimize EV
charging processes, it can especially be useful in resource-constrained environments, in
which overload situations could occur. In environments without such limitations, there is
only less or even no need to establish and run a sophisticated software system.

The SCS will be enhanced by several features and functions in the near future. Cur-
rently, for example, it is not possible to create charging plans that can take advantage of
variable or time-dependent electricity tariffs. The mainly economic impact of such tariffs on
the calculation of charging plans has been studied theoretically in numerous publications
but has hardly been implemented in practice. Another aspect concerns the realization and
integration of predictive algorithms to deal with short-term uncertainties in a company’s
charging infrastructure [31]. The current scheduler implementation assigns power limits
to ongoing EV charging sessions based on actual information, i.e., previously set data,
without taking potential future data and related uncertainties into account. Regarding the
communication with charging stations, it is also planned to support OCPP version 2.0 and
profit from related enhancements.

Author Contributions: Conceptualization, T.F. and Z.N.; methodology, Z.N.; software, T.F.; valida-
tion, T.F. and S.G.; formal analysis, Z.N.; investigation, S.G.; data curation, T.F. and S.G.; writing—
original draft preparation, T.F., S.G. and Z.N.; writing—review and editing, T.F., S.G. and Z.N.;
visualization, T.F.; supervision, Z.N.; project administration, Z.N.; funding acquisition, Z.N. All
authors have read and agreed to the published version of the manuscript.

Funding: As part of the research project Green4EVer [32], this work has been funded by the German
Federal Ministry for Economic Affairs and Climate Action (BMWK, Ref. 01ME20009).

Data Availability Statement: The data related to the present research are owned by SAP and cannot
be shared at the point of publication.

Acknowledgments: We especially thank to our colleagues in the SAP Labs France team led by Hanno
Klausmeier for their continuous support and Oliver Frendo for his expertise provided.



World Electr. Veh. J. 2023, 14, 335 16 of 17

Conflicts of Interest: Author Tobias Fleck was employed by the company SAP Deutschland. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
CHP Combined Heat and Power
CI Charging Infrastructure
CP Charging Point
EMS Energy Management System
ERP Enterprise Resource Planning
EV Electric Vehicle
OCPP Open Charge Point Protocol
REST Representational State Transfer
RFID Radio Frequency Identification
SCS Smart Charging System
SoC State of Charge
TCO Total Cost of Ownership

References
1. Kraftfahrt-Bundesamt. Statistik—Neuzulassungen Alternative Antriebe. Available online: https://www.kba.de/DE/Statistik/

Produktkatalog/produkte/Fahrzeuge/fz28/fz28_gentab.html?nn=354746 (accessed on 28 September 2023).
2. Bodenschatz, N.; Eider, M.; Berl, A. Challenges and Requirements of Electric Vehicle Fleet Charging at Company Parking Sites.

In Proceedings of the 2021 11th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf,
Germany, 15–17 September 2021; pp. 623–628. [CrossRef]

3. Frendo, O.; Karnouskos, S.; Gaertner, N.; Kipouridis, O.; Rehman, K.; Verzano, N. Charging Strategies and Implications for
Corporate Electric Vehicle Fleets. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics
(INDIN), Porto, Portugal, 18–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 466–471. [CrossRef]

4. Voss, M.F.; Haveman, S.P.; Bonnema, G.M. In-Company Smart Charging: Development of a Simulation Model to Facilitate a
Smart EV Charging System. Energies 2021, 14, 6723. [CrossRef]

5. Frendo, O.; Graf, J.; Gaertner, N.; Stuckenschmidt, H. Data-Driven Smart Charging for Heterogeneous Electric Vehicle Fleets.
Energy AI 2020, 1, 100007. [CrossRef]

6. Bera, T.K.; Bohre, A.K.; Ahmed, I.; Bhattacharya, A.; Yadav, A. Smart Charging for Electric Vehicles (EVs): A Short Review. In
Proceedings of the 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), New
Delhi, India, 23–25 September 2022; pp. 1–6. [CrossRef]

7. Al-Hanahi, B.; Ahmad, I.; Habibi, D.; Masoum, M.A.S. Charging Infrastructure for Commercial Electric Vehicles: Challenges and
Future Works. IEEE Access 2021, 9, 121476–121492. [CrossRef]

8. Deb, S.; Pihlatie, M.; Al-Saadi, M. Smart Charging: A Comprehensive Review. IEEE Access 2022, 10, 134690–134703. [CrossRef]
9. Waclaw, A.; Aloise, T.; Lienkamp, M. Charging Infrastructure Design for Commercial Company Sites with Battery Electric

Vehicles: A Case Study of a Bavarian Bakery. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles
and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020; pp. 1–10. [CrossRef]

10. Wallberg, A.; Flygare, C.; Waters, R.; Castellucci, V. Peak Shaving for Electric Vehicle Charging Infrastructure—A Case Study in a
Parking Garage in Uppsala, Sweden. World Electr. Veh. J. 2022, 13, 152. [CrossRef]

11. Ma, T.; Mohammed, O.A. Optimal Charging of Plug-in Electric Vehicles for a Car-Park Infrastructure. IEEE Trans. Ind. Appl. 2014,
50, 2323–2330. [CrossRef]

12. Zhang, G.; Tan, S.T.; Wang, G.G. Real-Time Smart Charging of Electric Vehicles for Demand Charge Reduction at Non-Residential
Sites. IEEE Trans. Smart Grid 2018, 9, 4027–4037. [CrossRef]

13. Frendo, O.; Gaertner, N.; Stuckenschmidt, H. Real-Time Smart Charging Based on Precomputed Schedules. IEEE Trans. Smart
Grid 2019, 10, 6921–6932. [CrossRef]

14. Jiang, W.; Zhen, Y. A Real-Time EV Charging Scheduling for Parking Lots with PV System and Energy Store System. IEEE Access
2019, 7, 86184–86193. [CrossRef]

15. Deb, S.; Goswami, A.K.; Harsh, P.; Sahoo, J.P.; Chetri, R.L.; Roy, R.; Shekhawat, A.S. Charging Coordination of Plug-In Electric
Vehicle for Congestion Management in Distribution System Integrated with Renewable Energy Sources. IEEE Trans. Ind. Appl.
2020, 56, 5452–5462. [CrossRef]

16. Rottondi, C.; Neglia, G.; Verticale, G. Complexity Analysis of Optimal Recharge Scheduling for Electric Vehicles. IEEE Trans. Veh.
Technol. 2016, 65, 4106–4117. [CrossRef]

https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz28/fz28_gentab.html?nn=354746
https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz28/fz28_gentab.html?nn=354746
http://doi.org/10.1109/ACIT52158.2021.9548563
http://dx.doi.org/10.1109/INDIN.2018.8472104
http://dx.doi.org/10.3390/en14206723
http://dx.doi.org/10.1016/j.egyai.2020.100007
http://dx.doi.org/10.1109/GlobConPT57482.2022.9938183
http://dx.doi.org/10.1109/ACCESS.2021.3108817
http://dx.doi.org/10.1109/ACCESS.2022.3227630
http://dx.doi.org/10.1109/EVER48776.2020.9242989
http://dx.doi.org/10.3390/wevj13080152
http://dx.doi.org/10.1109/TIA.2013.2296620
http://dx.doi.org/10.1109/TSG.2016.2647620
http://dx.doi.org/10.1109/TSG.2019.2914274
http://dx.doi.org/10.1109/ACCESS.2019.2925559
http://dx.doi.org/10.1109/TIA.2020.3010897
http://dx.doi.org/10.1109/TVT.2015.2441635


World Electr. Veh. J. 2023, 14, 335 17 of 17

17. Sepetanc, K.; Pandzic, H. A Cluster-Based Model for Charging a Single-Depot Fleet of Electric Vehicles. IEEE Trans. Smart Grid
2021, 12, 3339–3352. [CrossRef]

18. Meng, Z.; Xia, X.; Xu, R.; Liu, W.; Ma, J. HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using 3D
LiDAR. IEEE Trans. Intell. Veh. 2023, 8, 4069–4080. [CrossRef]

19. Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An Automated Driving Systems Data Acquisition and
Analytics Platform. Transp. Res. Part C Emerg. Technol. 2023, 151, 104120. [CrossRef]

20. SAP Labs France. Open E-Mobility. Available online: https://github.com/sap-labs-france (accessed on 28 September 2023).
21. SAP. E-Mobility Charging Stations Simulator. Available online: https://github.com/SAP/e-mobility-charging-stations-simulator

(accessed on 28 September 2023).
22. Frendo, O.; Gaertner, N.; Stuckenschmidt, H. Open Source Algorithm for Smart Charging of Electric Vehicle Fleets. IEEE Trans.

Ind. Inform. 2021, 17, 6014–6022. [CrossRef]
23. SAP. Emobility-Smart-Charging. Available online: https://github.com/SAP/emobility-smart-charging (accessed on 16 Novem-

ber 2023).
24. Open-Charge-Alliance. OCPP 1.6. Available online: https://www.openchargealliance.org/protocols/ocpp-16/ (accessed on 28

September 2023).
25. EV Database. Electric Vehicle Database. Available online: https://ev-database.org/ (accessed on 28 September 2023).
26. Apel, S.; Kästner, C. An Overview of Feature-Oriented Software Development. J. Object Technol. 2009, 8, 49. [CrossRef]
27. Fowler, M. FeatureFlag. Available online: https://martinfowler.com/bliki/FeatureFlag.html (accessed on 16 November 2023).
28. Hodgson, P. Feature Toggles (Aka Feature Flags). Available online: https://martinfowler.com/articles/feature-toggles.html

(accessed on 16 November 2023).
29. Gamma, E. (Ed.) Design Patterns: Elements of Reusable Object-Oriented Software, 39th ed.; Addison-Wesley Professional Computing

Series; Addison-Wesley: Boston, MA, USA, 2011.
30. Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Thesis, University of

California, Irvine, CA, USA, 2000.
31. Gohlke, S.; Nochta, Z. Towards a Short-Term Forecasting Framework to Efficiently Charge Company EV Fleets. In Proceedings of

the 7th E-Mobility Power System Integration Symposium (EMOB2023), Copenhagen, Denmark, 25 September 2023; pp. 191–198.
[CrossRef]

32. Green4EVer. Project Website. Available online: https://www.h-ka.de/en/iaf/green4ever (accessed on 28 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSG.2021.3064272
http://dx.doi.org/10.1109/TIV.2023.3282567
http://dx.doi.org/10.1016/j.trc.2023.104120
https://github.com/sap-labs-france
https://github.com/SAP/e-mobility-charging-stations-simulator
http://dx.doi.org/10.1109/TII.2020.3038144
https://github.com/SAP/emobility-smart-charging
https://www.openchargealliance.org/protocols/ocpp-16/
https://ev-database.org/
http://dx.doi.org/10.5381/jot.2009.8.5.c5
https://martinfowler.com/bliki/FeatureFlag.html
https://martinfowler.com/articles/feature-toggles.html
http://dx.doi.org/10.1049/icp.2023.2703
https://www.h-ka.de/en/iaf/green4ever

	Introduction
	Materials and Methods
	Iterative Software Development Approach
	Method of System Evaluation

	Results and Discussion
	System Design
	Smart Charging Core
	Integration Layer
	Implementation and Deployment in a Real-World Testbed

	Conclusions and Future Work
	References

