
Citation: He, M.; Yang, M.; Fu, W.;

Wu, X.; Izui, K. Optimization of

Electric Vehicle Routes Considering

Multi-Temperature Co-Distribution in

Cold Chain Logistics with Soft Time

Windows. World Electr. Veh. J. 2024, 15,

80. https://doi.org/10.3390/

wevj15030080

Academic Editor: Joeri Van Mierlo

Received: 10 January 2024

Revised: 16 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimization of Electric Vehicle Routes Considering
Multi-Temperature Co-Distribution in Cold Chain Logistics with
Soft Time Windows
Meiling He 1,* , Mei Yang 1, Wenqing Fu 1, Xiaohui Wu 1 and Kazuhiro Izui 2

1 School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;
2212104093@stmail.ujs.edu.cn (M.Y.)

2 Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
* Correspondence: hemeiling@ujs.edu.cn

Abstract: Inspired by the practice of urban distribution of fresh products, we introduce a new
electric vehicle routing problem with soft time windows. In this problem, goods with different
temperature layers can be distributed in ordinary electric vehicles simultaneously based on the cold
storage insulation box. The primary objective is to devise optimized distribution routes for logistics
companies to minimize distribution costs, including transportation, refrigeration, and charging costs.
To address this, we present a mathematical model for the problem and propose an improved ant
colony optimization algorithm combined with a 2-opt algorithm. Based on Solomon dataset, we
conduct numerical experiments to verify the effectiveness of the proposed model and algorithm.
The numerical results demonstrate that multi-temperature co-distribution can lead to a reduction in
distribution cost and an improvement in distribution efficiency.

Keywords: electric vehicle routing problem; improved ant colony optimization algorithm; multi-temperature
co-distribution; soft time windows

1. Introduction

As the greenhouse effect increases, the use of clean energy is the future of transporta-
tion. With the support of governments, electric vehicles (EVs) are becoming an industry
trend [1]. Many countries have formulated policies to increase the use of EVs in daily
life, and the Chinese government has promulgated the “14th Five-Year Plan for Green
Transportation” to promote the use of battery EVs in the logistics and distribution industry.
It is expected to reach 20 million EVs (battery electric and hybrid vehicles) worldwide by
2022, which is a significant increase compared to the 1 million vehicles in 2016. In 2021,
the output of battery EVs in China accounts for 82.99% of the total output of new energy
vehicles in China, and the sales volume accounts for 82.82% of the total sales volume of
new energy vehicles in China The rapid development of battery EVs will lead to changes
in the cold chain logistics industry as well, especially stimulating logistics and distribution
services in urban areas. To effectively improve the environmental quality in urban areas, it
is a good choice to use battery EVs for logistics and distribution in a reasonable way.

In recent years, cold chain logistics has flourished as an emerging industry. Interna-
tionally, the global cold chain logistics market size is expected to soar all the way from
$3217.8 billion in 2021 to as much as $8429.1 billion by 2028. With the rapid develop-
ment of cold chain logistics, the massive use of fuel vehicles for distribution will generate
more tailpipe emissions, which will affect urban air quality, environment and society [2].
Therefore, the study of electric vehicle routing problem (EVRP), thus alleviating the envi-
ronmental pressure caused by carbon emissions, has become a popular topic in the field of
cold chain logistics distribution routing research.

At this stage, the rapid rise of fresh food e-commerce market has generated a massive
logistics demand [3]. Consumers are more inclined to make online purchases during
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the COVID-19 epidemic, and e-commerce platforms such as FRESHIPPO and Meituan
preferred in China have been able to develop rapidly. With the development of the e-
commerce, logistics and freight transportation are particularly important [4]. Meanwhile,
as the income level of urban and rural residents continues to rise, people’s demand for
diversity, nutrition and taste of food has increased significantly, and the distribution method
of small-lot and multiple batches has gradually become a research hotspot. Although some
scholars have already researched cold chain logistics route planning [5,6], they pay less
attention to using EVs to distribute products simultaneously in different temperature zones.
Therefore, further research should focus on establishing mathematical models according
to the actual situation and study the electric vehicle routing problem based on multi-
temperature co-distribution (EVRP-MTCD) to achieve energy conservation, environmental
protection and cost reduction.

In real life, customer delivery services are usually in different locations with different
time windows [7]. Driven by the customer service time window requirement, the EVRP-
MTCD problem is extended to EVRP-MTCD with soft time window (EVRP-MTCD-STW).
With the improvement of service level in the logistics industry, more and more customers
are choosing door-to-door service. Considering the timeliness of fresh products and the
uncertainty in the delivery process, early delivery of goods within the customer’s accept-
able time window not only ensures the freshness of goods, but also improves customer
satisfaction [8]. Therefore, in this paper, we consider setting the incentive costs to improve
the delivery efficiency of logistics companies.

Based on the above, we propose a new method of EVRP-MTCD-STW. Different tem-
perature environments are given according to the demand of goods to ensure the freshness
of goods while distributing multiple goods at the same time. When building the model, we
consider the minimum cost of distribution to pursue the maximum benefit of integration.
As the complexity of the problem increases, it is essential to design an effective algorithm
to solve the problem. Therefore, we develop an improved ant colony Optimization (IACO)
algorithm to obtain high-quality solutions, and the validity of IACO is verified through
numerical experiments based on the Solomon dataset.

The contributions of this paper can be summarized as follows: (1) A model formulation
defining the EVRP-MTCD-STW is proposed, taking into account the transportation costs,
refrigeration costs, charging costs, and incentive costs in the distribution process. (2) An
IACO is designed to solve the EVRP-MTCD-STW, which combines the ACO with the 2-opt
(2-Optimization) algorithm. (3) Compared with the Solomon dataset results reported in
literature, the IACO has obvious advantages and can provide highly competitive solutions.

The remainder of the paper is organized as follows. Section 2 presents the literature
review. Section 3 performs the model construction. Section 4 describes the algorithm design.
Section 5 validates the model and algorithm based on the Solomon dataset. Section 6
concludes the paper with an outlook.

2. Literature Review

In this paper, we focus on the simultaneous distribution of goods at different tem-
perature levels using EVs in soft time windows to obtain the optimal distribution routes
considering the distribution costs. By studying the related literature, we discuss from four
aspects: vehicle routing problem with time windows, electric vehicle routing problem,
multi-temperature co-distribution problem, and algorithm optimization.

2.1. Vehicle Routing Problem with Time Windows

Dantzig and Ramser [9] first proposed a vehicle routing problem (VRP) in 1959 and
refers to planning a reasonable vehicle route through customers in an orderly manner to
achieve objectives such as the shortest route while satisfying vehicle capacity constraints.
Molina, Abdulkader, and Halassi et al. [10–12] studied different areas of VRP in terms of
time windows, vehicle types, and vehicle yards. Solomon [13] first proposed the vehicle
routing problem with time window (VRPTW). It can be divided into hard and soft time
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windows according to the constraints, where hard time windows require strict adherence
to the time window constraints. Soft time windows allow vehicles to arrive early or late
but need to accept specific penalties [14–16].

At present, the social attributes and customer emotional needs have been integrated
into the vehicle routing problem. Accelerating customer demand response, improving
distribution efficiency, and reducing distribution costs have become hot spots for scholars’
research. Lee et al. [17] studied the problem of manufacturers outsourcing materials from
other suppliers and transporting them back to the company under a soft time window
to minimize transportation costs. Jie et al. [18] constructed a time-dependent VRP-STW
to meet the logistics distribution demand with poorer traffic conditions. Ge et al. [19]
established a mathematical model of the VRP-STW based on the loss cost of delayed service
to consider the time lag of customer demand. With the increasing demand in people’s
lives, considering the soft time window penalty cost in researching cold chain logistics
of fresh products has become the research focus [20]. However, there is less research
on effectively adopting the reward and punishment system to improve the freshness of
products during transportation.

2.2. Vehicle Routing Problem of EVs

The electric vehicle routing problem (EVRP) was proposed in the green environment,
mainly for urban logistics distribution with short distribution distance and light distribution
goods [21–23]. Under the customer time window and vehicle freight capacity constraints,
Schneider et al. [24] studied the application of battery EVs in the “last mile” of urban
logistics. Keskin et al. [22] proposed a partial charging strategy and solved it with a large-
scale integer linear programming model. Macrina et al. [25] consider the limited battery
capacity of EVs and study the possibility of partial charging at any charging station; based
on energy consumption considerations, Hiermann et al. [26] study multiple types of EVs
and rationalize resource allocation. At this stage, most scholars at home and abroad start
by considering the difference between EVs and fuel vehicles and study the influence of
the unique performance of EVs, such as power consumption and charging strategy, on
route planning [27,28], lacking the combination with other application scenarios. With the
rapid expansion of the scale of cold chain transportation, combining EVs and the cold chain
logistics industry to optimize the cold chain distribution route will become a hot spot for
scholars to study.

2.3. Multi-Temperature Co-Distribution Problem

MTCD was first proposed by Japanese scholars, which effectively solved the problem
of unreasonable logistics distribution and inefficient allocation of logistics resources. Hsu
et al. [29] applied MTCD to the short and medium-term distribution model of cold chain
products and compared it with the single temperature distribution model to prove its
effectiveness. Kuo et al. [30] used a MTCD model to co-distribute and store goods for the
characteristics of cold chain logistics products. Ostermeier et al. [31] applied MTCD to
co-distribute products in different temperature regions by considering that retailers rely on
the exact vehicle to transport only one specific temperature product. At this stage, most
domestic and foreign scholars have studied MTCD in two ways. Mechanical MTCD uses
insulating materials to isolate different temperature zones in the carriage and uses a freezer
to control the temperature of each zone. Cold storage MTCD is a non-refrigerated power
delivery system using an ambient temperature vehicle with cold storage insulation boxes
to simultaneously transport cold chain products of different temperatures. Oppen et al. [32]
used multi-compartment vehicles to solve the problem of transporting different kinds of
livestock at the same time. Li et al. [33] studied the storage type MTCD insulation material,
significantly reducing the cost of cold chain logistics transportation. From the perspective
of environmental protection, Chen et al. [34] studied the traditional mechanical MTCD
mode and the cold storage MTCD mode respectively, and verified that the loss of the cold
storage MTCD mode is smaller through numerical experiment.
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With the professional development of cold chain logistics, the use of fuel vehicles for
transportation in the cold chain transportation process will require more fuel consumption
and generate many carbon emissions. In order to balance the relationship between the
freshness of goods and carbon emissions during the distribution process, Bai et al. [35]
considered the change of product freshness and established a model with the lowest
distribution cost and minuscule carbon emissions as multiple objectives for the study.
However, with the popularity of EVs, to effectively reduce carbon emissions during cold
chain logistics transportation, the use of EVs for cold storage MTCD will become the focus
of social attention.

2.4. Algorithm Optimization

VRP is a typical NP-hard problem. With the increase in the problem size, it is difficult
for the exact algorithm to find the optimal solution quickly, so scholars use a meta-heuristic
or improved heuristic algorithm to solve the problem [36]. In cold chain logistics, an
improved heuristic algorithm can quickly help logistics enterprises plan the optimal dis-
tribution route, reasonably arrange the distribution vehicles and reduce the distribution
cost [37]. The ACO is a simulation optimization algorithm that simulates the foraging
behavior of ants, firstly proposed by Dorigo, an Italian scholar, in 1991 and firstly used
to solve TSP [38]. With the increase in VRP types, Kyriakakis, Abdulkader, and oth-
ers [10,39] used the ACO to solve different problems, such as capacity-constrained VRP,
multi-compartment VRP, and VRP with time windows. As the complexity of the problem
increases, the research on improved ACO has attracted the interest of scholars at home
and abroad. Yu et al. [40] took an innovative approach to update the pheromone to better
solve the period VRP with time windows. Kyriakakis et al. [39] combined the ACO with
the variable neighborhood search algorithm to propose a swarm intelligence algorithm
for solving the capacity-constrained VRP. Jia et al. [41] proposed a two-layer confidence-
based ACO to solve the routing problem of capacity-constrained EVs and experimentally
demonstrated the proposed algorithm to be state-of-the-art. In this paper, when solving the
EVRP-MTCD-STW, we introduce the saving matrix, time window waiting for factor, and
frozen product impact factor in guiding the ant search and embed the 2-opt algorithm in
the local search to improve the search capability.

In summary, current scholarly efforts addressing the MTCD problem with EVs are
limited. In this paper, we take a novel approach, focusing on leveraging EVs for eco-
friendly distribution of goods across various temperature levels in cold storage mode. The
proposed model, EVRP-MTCD-STW, is designed to optimize the simultaneous distribution
process. To solve this model, we redesign the Ant Colony Optimization (ACO) algorithm
combined with a 2-opt algorithm. The effectiveness of the proposed model and algorithm
is validated by comparing the solution results of the Solomon dataset. The results can
provide valuable management suggestions for cold chain logistics enterprises seeking to
enhance their operations with environmentally conscious solutions.

3. Problem Description and Model Formulation for EVRP-MTCD-STW
3.1. Problem Description

EVRP-MTCD-STW can be defined on a directed complete graph G = (V, A) where
V represents the set of depot and customers, and A represents the set of arcs. The depot
V = 0 has several electric logistics vehicles k, which depart from the depot, deliver to each
customer in sequence and eventually return to the depot. Each customer is served exactly
once by one vehicle. Customer i has tolerable time window (Ei, Li) and expectation time
window (ei, li) requirements. If vehicle k does not arrive at customer i within the tolerable
time window (Ei, Li), it is considered infeasible. Distribution method is refrigerated multi-
temperature co-distribution, the temperature of the distribution temperature zone m can be
controlled by adding a cooler in insulation box before vehicle loading. Vehicle k is fully
charged when it departs from the depot, and the power is B. When the vehicle does not
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have enough power to drive to the next customer, it will be charged at the nearby charging
station c. The distribution route is shown in Figure 1.
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The goal of EVRP-MTCD-STW is to serve all customers while minimizing compre-
hensive cost under the constraints of customer demand, vehicle load, time windows, and
electricity consumption. The relevant sets, variables and parameters are shown in Table 1,
and some assumptions are as follows:

(1) The demand of each customer and the load capacity of the distribution vehicle do not
exceed the maximum load capacity of the vehicle. Additionally, all vehicles are of the
same type.

(2) The vehicle departs from the depot in a fully charged state. If the power is insufficient
to support its rush to the next customer during transportation, it should be recharged
at the nearest charging station by replacing the battery.

(3) Vehicles do not consume electricity when serving customers, that is, the impact of
unloading operations on electricity consumption is not taken into consideration.

(4) The power consumption of the vehicle is linearly related to the distance traveled.
(5) Customers have a soft time window requirement, with incentives for early arrival

and penalties for late arrival.
(6) Each vehicle can carry the same number of insulation box with a known capacity.
(7) The insulation box and cooler used in the vehicle have the same specifications, and

the cost of cold storage is only related to the number of insulation boxes and coolers.

Table 1. The Sets, variables and parameters involved in the model.

Description

Sets
V Set of depot and customers
C Set of charging station
K Set of distribution vehicles
M Set of fresh produce categories
A Set of arcs
Parameters
f Cost of using the vehicle
e Cost of transporting the vehicle per unit of time
g Cost of using the insulation box
ω Charging cost rate of the vehicle
P1 Early arrival reward factor, P1 < 0
P2 Delayed arrival penalty factor, P2 > 0
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Table 1. Cont.

Description

Q Maximum load of the vehicle
B Vehicle battery capacity
h Number of insulation box that can be accommodated per vehicle
L Maximum capacity of insulation box
ξ Power consumption of the vehicle per unit mile
δ Loss rate of goods
F Maximum acceptable goods loss rate
Variables
xijk Binary variable, equals 1 if vehicle k is transported from node i to j
Yc Binary variable, equals 1 if vehicle is charged at c
Zjmk Binary variable, equals 1 if vehicle k delivers m products to node j
dij Distance from node i to j

Nk
m

Number of insulation box required to put the product of the m temperature layer
into the vehicle k. If there is less than one box, it will be counted as one box.

gm Cost of the cooler required for the m temperature layer
bc Power of the vehicle arriving at the charging station c
(ei, li) Customer expectation time window
(Ei, Li) Customer tolerable time window
t1
i Time for the vehicle to arrive at node i

sjm Demand for goods m at node j
tijk Time taken by vehicle k to travel from node i to j
wij Load from depot to the node j,i = 0
t2
i Time of the vehicle leaving the node i

P1
ck Power of the vehicle k leaving the charging station c

P2
jk Remaining power of the vehicle k arriving at the node j

3.2. Cost Analysis

For the characteristics of EVs and MTCD, we construct a model from the lowest
comprehensive costs to reflect the actual situation of the distribution process. The com-
prehensive costs include four components: (1) transportation costs, (2) refrigeration costs,
(3) charging costs and (4) incentive costs. The following costs are explained in detail below.

(1) Transportation costs

Transportation costs consist of fixed costs related to the number of vehicles and variable
costs related to the distance travelled. Once the vehicle departs from the distribution center
to serve customers, some fixed costs such as the wage of the driver, the depreciation cost,
and the wear and tear cost of the vehicle need to be paid. In addition, expenses such as fuel
consumption cost increase with transportation distance during the distribution process.
Thus, the transportation costs can be expressed as follows:

x1 = f ∑
k∈K

∑
i=0,j∈V

xijk + e ∑
k∈K

∑
i,j∈V

xijkdij (1)

(2) Refrigeration costs

In order to maintain product quality, it is necessary to provide a low temperature
environment, which incurs refrigeration costs. These costs include the usage cost of each
vehicle’s cold storage insulation box and the usage cost of the cooler required for multi-
temperature layer products. The refrigeration costs are calculated as:

x2 = g ∑
k∈K

∑
m∈M

Nk
m + ∑

k∈K
∑

m∈M
gmNk

m (2)



World Electr. Veh. J. 2024, 15, 80 7 of 19

(3) Charging costs

When the vehicle drives to a charging station to charge, it incurs charging costs based
on the amount of energy remaining at the time and the unit charging cost. The charging
costs are calculated as:

x3 = ∑
c∈C

ωYc(B − bc) (3)

(4) Incentive costs

The Incentive costs function is shown in Figure 2. If the vehicle arrives at customer i in
(Ei, ei), it will be rewarded for improving the freshness of the product. If the vehicle arrives
within expectation time window (ei, li), no fees will be incurred. However, an additional
penalty cost should be paid when the vehicle arrives in (li, Li). The incentive costs can be
expressed in Equation (4).

x4 =


P1
(
ei − t1

i
)
, Ei < t1

i < ei
0, ei < t1

i < li
P2
(
t1
i − li

)
, li < t1

i < Li
∞, t1

i < Ei&t1
i < Li

∀i ∈ V (4)
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3.3. Model Formulation

Based on the above analysis, the EVRP-MTCD-STW can be formulated as follows:

min(x1 + x2 + x3 + x4) (5)

Subject to:
∑
k∈K

∑
i,j∈V

xijk = 1 (6)

0 ≤ wij ≤ Q i = 0, ∀j ∈ V (7)

t1
j = ∑

j∈V/{0};i ̸=j
xijk

(
t2
i + tij

)
∀i ∈ V, k ∈ K (8)

P1
ck = B ∀c ∈ C, k ∈ K (9)

0 ≤ P2
jk ≤ P2

ik − ξdijxijk + B
(

1 − xijk

)
∀k ∈ K, ∀j ∈ V ∪ C, ∀i ∈ V/{0}, i ̸= j (10)

0 ≤ P2
jk ≤ B − ζdijxijk ∀k ∈ K, ∀j ∈ V ∪ C, ∀i ∈ C ∪ {0}, i ̸= j (11)

∑
m∈M

Nk
m ≤ h ∀k ∈ K (12)
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∑
i∈V

∑
j∈V/{0}

sjmxijk ≤ LNk
m ∀k ∈ K, ∀m ∈ M (13)

∑
m∈M

∑
i,j∈V

zjmksjm

(
1 − e−δtijk

)
∑

m∈M
∑

j∈V
Sjm

≤ F ∀k ∈ K (14)

The objective function (5) optimizes the total distribution cost. Constraint (6) guaran-
tees that each customer is served exactly once by one vehicle. Constraint (7) guarantees
that the vehicle departs from the depot with a goods load not exceeding the maximum
vehicle load. Constraint (8) defines the time to reach node j. Constraint (9) ensures that the
vehicle leaves the charging station with a full charge. Constraint (10) and (11) represent the
power consumption of the vehicle during transit. Specifically, when the vehicle reaches
node j subsequent to traversing node i, the residual power at node j is determined by
subtracting the power consumed from node i to node j from the residual power at node i.
This calculation ensures that the remaining power at each node is sufficient to reach the next
node, while simultaneously ensuring that the residual power at any given node throughout
the transportation process does not exceed the vehicle battery capacity. In addition, the
power relationship of the vehicle upon arrival at node j after departing from the charging
station or depot in a fully charged state is also represented in constraint (11). Constraint (12)
indicates that the number of insulation box loaded on each vehicle should not exceed the
maximum number that the vehicle can accommodate. Constraint (13) ensures that the sum
of the requirements for each vehicle loaded with goods of type m is less than the maximum
capacity of insulation box. Constraint (14) ensures that the goods loss rate is within the
acceptable range, at the moment the freshness of goods is: F(t) = e−δt.

4. IACO Algorithm for EVRP-MTCD-STW

The traditional ACO has the problems of blind search, easy to fall into local optimum,
and slow convergence speed. We introduce the conservation matrix, time window waiting
factor, and frozen product impact factor to guide the ant search. We also improve the
volatility factor to enhance the convergence speed, and embed the 2-opt algorithm to
improve the local search ability.

4.1. Modification of State Transfer Rules

A suitable formulation of state transfer rules can improve the solving efficiency of the
algorithm. To avoid repeated route selection during the search process, a selection strategy
combining deterministic and random selection will be used, and dynamic adjustment
transfer probability. Different from TSP, in VRP, multiple vehicles are delivered to different
customers from the depot. As shown in Figure 3, to effectively save the number of delivery
vehicles and mileage, a saving matrix is introduced to adjust the state transfer probability,
which is shown in Equation (15).

u(i, j) = d(i, 0) + d(0, j)− d(i, j) (15)
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In Equation (15), u(i, j) denotes the distance saving from customer i to customer j,
d(i, 0) denotes the distance of the vehicle from customer i to distribution center 0, d(0, j)
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denotes the distance of the vehicle from distribution center 0 to customer j, d(i, j) denotes
the distance from customer i to customer j.

To reduce the waiting time under the time window constraint, a time window waiting
factor waitj is introduced to prioritize the customers with a short waiting time. The time
window waiting factor is shown in Equation (16).

waitj =


ej − tj, tj < ej
1, ej ≤ tj ≤ lj
tj − lj, tj > lj

(16)

where tj denotes the time of the vehicle arriving at customer j,
(
ej, lj

)
denotes the expected

time window for customer j. If tj < ej, the time window waiting factor waitj = ej − tj; If
ej ≤ tj ≤ lj, the time window waiting factor waitj = 1; If tj > lj, the time window waiting
factor waitj = tj − lj.

In cold chain logistics, temperature changes make the low-temperature goods more
perishability. Therefore, the frozen product impact factor coldj is introduced in the state
transfer probability. As shown in Equation (17), the customers with high demand for
low-temperature goods are given priority in the following node selection.

coldj =
sj3

sj1 + sj2 + sj3
(17)

where sjk denotes the demand for different temperature zones, k = 1, 2, 3 denotes the
demand for normal temperature, refrigerated, and frozen goods.

The pheromone concentration determines the route selection probability. If it is too
high, the solution will fall into a local optimum. Referring to the state transfer rule of the
ant colony system [42], this paper introduces a constant R to increase the search range by
comparing the size with a random number r(r ∈ [0, 1]). The next node j is determined as
shown in Equation (18).

j =

{
argmax

[
τα

ij(t)η
β
ij(t)uijcoldj

1
waitj

]
, r < R

pk
ij(t), otherwise

(18)

where τij(t) denotes the pheromone concentration on route (i, j) at t. ηij(t) denotes the
expectation degree of route (i, j) at t, ηij(t) = 1/dij. uij denotes the savings matrix of route
(i, j). α denotes the information heuristic factor. β denotes the expectation heuristic factor.

The state transfer probability pk
ij(t) is shown in Equation (19).

pk
ij(t) =


τα

ij (t)η
β
ij(t)uijcoldj

1
waitj

∑
j∈Ak

τα
ij (t)η

β
ij(t)uijsj

1
waitj

, j ∈ Ak

0, otherwise

(19)

where Ak denotes the node that has not yet been distributed.

4.2. Improved Volatility Factor

The pheromone volatility factor ρ refers to the pheromone disappearance level, and
its value affect the algorithm’s convergence speed and global search ability. An appropriate
setting of the pheromone volatility factor can improve the operation efficiency of the
algorithm. Based on the existing research, we randomly select different values in different
iteration ranges within a reasonable value range [0.2,0.5], as shown in Equation (20).

ρ =


0.2 + rand/10, 0 ≤ n ≤ 0.25N
0.3 + rand/10, 0.25N < n ≤ 0.75N
0.4 + rand/10, 0.75N < n ≤ N

(20)
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where rand denotes the random number between (0, 1), which follows a uniform random
distribution. n denotes the current number of iterations. N denotes the maximum number
of iterations.

In the early iteration, the value of ρ is set to a smaller number to expand the ant search
range and find a better value in the global search. In the middle iteration, the route has
accumulated more pheromones, so the value of ρ is increased to prevent the algorithm from
converging quickly and falling into the local optimum. In the late iteration, the value of ρ is
continuously increased to find the optimal solution to accelerate the convergence speed.

4.3. Local Search Optimization

As a local search optimization algorithm, the core of the 2-opt algorithm is to randomly
select an interval segment for optimization. Although optimization only optimizes the
current state, we can improve the convergence speed of ACO by introducing the 2-opt
algorithm and effectively solve the problem of the algorithm quickly falling into local
optima. It improves the efficiency of local search without affecting the overall performance
of the ACO algorithm.

In the VRP, the basic principle of the 2-opt method is to delete the depot node in the
optimal solution obtained by the current iteration, randomly select two customers and
flip the route between the two customers, keep the order of other customers unchanged.
Next based on constraints, insert the depot to get the new route. Then judge whether the
solution of the new route is better than the initial solution, if it is better, replace the initial
solution, and if not, keep the initial solution and continue the iteration. The specific process
is shown in Figure 4.
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4.4. The Main Steps of IACO

Based on the procedures presented in Sections 4.1–4.3, the main steps of the IACO for
solving EVRP-MTCD-STW are shown as follows.

Step 1. Initialization of parameters, including a maximum number of iterations, ant
colony size, information heuristic factor, expectation heuristic factor, etc.

Step 2. Place all ants at the distribution centroid and create a contraindication table to
record ant walking routes.

Step 3. Determine the next customer selected by the ant according to Equations (15)–(19).
Step 4. Determine whether the constraint is satisfied. If so, continue to find the next

customer; otherwise return to the depot.
Step 5. Repeat steps 3 and 4 until all customers are served, and update ant count.
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Step 6. Embed the 2-opt algorithm to adjust the optimal route of this iteration after all
ants have completed customer service.

Step 7. After updating the optimal solution, the pheromone is updated by selecting
the volatility factor according to Equation (20).

Step 8. Determine if the maximum number of iterations is reached. If not, add 1 to
the number of iterations and return to step 2; otherwise, end the program and output the
optimal value.

The whole process is shown in Figure 5.
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5. Computational Experiments

In this section, we first evaluate the performance of IACO by comparing with other
literatures based on Solomon dataset. Next, we create EVRP-MTCD-STW instances, and
solve it with IACO. Then, we analyze the distribution mode and the change of time window
width. The experiments were run using MATLAB R2017b software on a PC with an i5-
6200U processor, 4G RAM, and Windows 10 64-bit operating system.

5.1. Parameter Setting

Based on the relevant parameters provided in the literature [43,44], we conduct re-
peated experiments and obtained the algorithm and model parameters as shown in Table 2.

Table 2. Algorithm and model parameter settings.

Parameter Description Value

Algorithm
m Ant number 100
α Pheromone importance 1
β Heuristic factor importance 5
ρ Initial pheromone volatility factor 0.2
Nc _max Iteration number 200
Model
P1 Reward coefficient −0.5
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Table 2. Cont.

Parameter Description Value

P2 Penalty coefficient 1
f1 Cost of using normal temperature vehicle (CNY) 500
f2 Cost of using refrigerated vehicle (CNY) 550
f3 Cost of using frozen vehicle (CNY) 575
e Vehicle unit transportation cost (CNY/km) 2
g Insulation box cost (CNY) 0.5
g2 Refrigerated cooler cost (CNY) 1
g3 Frozen cooler cost (CNY) 1.6
ω Vehicle charging cost (CNY/kWh) 0.747
B Vehicle battery capacity (kWh) 80
ξ Unit mileage power consumption (kWh/km) 0.055
Q Maximum load of the vehicle (kg) 200
h Number of insulation box that can be accommodated per vehicle 15
L Maximum capacity of insulation box (kg) 12
δ Loss rate of goods 0.03
F Maximum acceptable goods loss rate 20%

5.2. Efficiency Assessment of IACO

The benchmark test instances for EVRP-MTCD-STW are currently unavailable. As
EVRP-MTCD-STW is an extension of VRPTW, we validate the effectiveness of the proposed
IACO using the Solomon dataset, which is an internationally recognized standard test set
widely used for VRPTW. The Solomon dataset contains 56 instances covering six different
problem types: C1, C2, R1, R2, RC1, and RC2. Where type refers to:

C: the locations of customers are geographically clustered;
R: the locations of customers are randomly distributed;
RC: the locations of customers are a mixture of clustering and random distribution;
Type1: the customer’s time window is narrow and the vehicle capacity is small;
Type2: the customer’s time window is wide and the vehicle capacity is large.
IACO is used to test 12 instances with a customer scale of 100, including C1, C2,

R1, R2, RC1, and RC2 types. Each instance is tested 10 times. The experimental analysis
is conducted with the objective of minimizing the distance travelled under conditions
that allowed for time window relaxation. Set soft time window Ei = ei − 0.5(li − ei),
Li = li + 0.5(li − ei).

The optimal solutions of IACO algorithm are compared with the best-known solu-
tions (BSK), the two-phase tabu search algorithm (TP-TS), and the simulated annealing
heuristic with restart strategy (SARS) [45,46], as shown in Table 3. In this table, Column 1
report the name of dataset. Columns 2–9 respectively report the number of vehicles (NV)
and total distance (TD) used in the optimal solution obtained using BKS, TP-TS, SARA
and IACO. Column 10 reports the difference between the distance of the optimal solu-
tion obtained by IACO and the optimal distance obtained by the comparative algorithm,
∆x = (TDIACO − TDbest_other)/TDbest_other × 100%.

According to the results in Table 3, IACO proposed in this study can find the optimal
solution for both the number of vehicles used and the distance travelled in all four datasets
of type C. In other datasets, the distance is improved to varying degrees. It is worth noting
that due to the narrower time window of datasets R101 and RC101 compared to datasets
R201 and RC201, the difference in optimal distance is greater, exceeding 7%. In datasets R2
and RC2, although the number of vehicles is used more than the number in BKS, both are
less than the number of vehicles found by the SARS algorithm. The above comparative
analysis shows that the IACO proposed in this paper is feasible for solving the VRPTW.
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Table 3. Comparison of IACO algorithm with other algorithms for optimal solutions.

Dataset
BKS TP-TS SARS IACO

∆x%
NV TD NV TD NV TD NV TD

C101 10 828.94 10 829.01 10 828.94 10 828.94 0
C102 10 828.94 10 832.56 10 828.94 10 828.94 0
C201 3 591.56 3 591.58 3 591.56 3 591.56 0
C202 3 591.56 3 591.58 3 591.56 3 591.56 0
R101 19 1645.79 20 1653.54 20 1644.26 16 1425.82 −13.29
R102 17 1486.12 19 1488.00 19 1481.9 15 1367.56 −7.72
R201 4 1252.37 5 1216.33 9 1167.53 7 1098.56 −5.91
R202 3 1191.70 4 1131.75 9 1053.5 7 1019.24 −3.25

RC101 14 1696.94 16 1653.06 17 1664.06 14 1513.66 −8.43
RC102 12 1554.75 14 1502.16 15 1489.22 12 1336.57 −10.25
RC201 4 1406.91 4 1470.12 9 1287.05 8 1232.67 −4.23
RC202 3 1367.09 4 1208.10 9 1109.51 7 1099.10 −0.94

5.3. Computational Results for EVRP-MTCD-STW Instance

For the consideration of the timeliness of cold chain goods and the mileage of EVs, we
selected some nodes from dataset R101 to construct an EVPRP-MTCD-STW instance. The
demand data for each customer’s product in different temperature zones is obtained using
the unbalanced partitioning strategy proposed by Fallahi et al. [47]. Moreover, the charging
station locations are randomly selected with the method proposed by Schneider et al. [24].

Table 4 shows data from the adapted dataset R101 for EVRP-MTCD-STW. Column 1
reports set number, number 0 is the depot, 1 to 25 are customers, and 26 to 30 are charging
stations. Columns 2,3 report coordinate information of points. Columns 4–7 report total
demand, demand for normal temperature goods, demand for refrigerated goods and
demand for frozen goods respectively. Columns 8,9, respectively, report expectation left
time window and right time window. The Euclidean distance, based on their positional
coordinates, is used to calculate the distance between nodes.

Table 4. The adapted dataset R101 for EVRP-MTCD-STW.

No. X (km) Y (km) Demand (kg) D1 (kg) D2 (kg) D3 (kg) T1 (min) T2 (min)

0 35 35 0 0 0 0 0 230
1 5 5 25 5 13 7 167 187
2 4 18 16 4 4 8 36 56
3 10 43 20 6 10 4 90 110
4 15 10 19 5 8 6 148 168
5 6 68 26 5 12 9 29 49
6 2 60 24 12 3 9 89 109
7 27 69 13 3 7 3 46 66
8 20 50 9 2 3 4 146 66
9 30 60 25 8 9 8 119 139

10 41 49 34 8 12 14 93 103
11 49 73 18 8 3 7 62 82
12 40 60 35 8 9 18 66 86
13 62 77 23 7 6 10 156 176
14 57 48 28 10 10 8 27 47
15 65 35 19 6 5 8 78 98
16 67 5 30 9 9 12 177 197
17 53 12 26 7 9 10 163 183
18 45 10 33 13 8 12 125 145
19 32 12 17 4 6 7 96 116
20 22 27 38 7 16 15 29 49
21 50 35 30 8 13 9 58 78
22 65 20 36 9 12 15 87 107
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Table 4. Cont.

No. X (km) Y (km) Demand (kg) D1 (kg) D2 (kg) D3 (kg) T1 (min) T2 (min)

23 23 3 29 9 7 13 127 147
24 49 58 28 12 5 11 103 123
25 15 30 32 9 15 8 130 150
26 50 20 0 0 0 0 0 230
27 16 56 0 0 0 0 0 230
28 35 12 0 0 0 0 0 230
29 15 35 0 0 0 0 0 230
30 40 55 0 0 0 0 0 230

(1) Results of solving adapted dataset R101

Through several experiments, the results were obtained, as shown in the graphs.
Table 5 shows the vehicle distribution route when the value of the distribution cost is opti-
mal, Figure 6 shows the iterative convergence, and Figure 7d shows the vehicle distribution
route. The optimal distribution cost is CNY 4520.20; the optimal solution is obtained at the
173rd iteration, using five EVs and passing through the charging station once.

Table 5. Vehicle distribution route.

Vehicle Route

Vehicle 1 0-5-7-10-24-13-30-0
Vehicle 2 0-20-2-6-3-25-0
Vehicle 3 0-14-15-22-4-1-0
Vehicle 4 0-21-11-12-9-8-0
Vehicle 5 0-19-23-18-17-16-0
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(2) Influence of distribution mode

The analysis compares the results of single temperature distribution (STD) and MTCD
based on the primary example. Carrying out STD vehicles can only transport single-
temperature products, and different vehicles are needed to distribute products in different
temperature zones at each customer.

Figure 7 compares vehicle distribution routes for STD and MTCD with 25 customers.
We can see that four vehicles are needed for the distribution of goods in one temperature
zone for STD. During the distribution period, the normal temperature goods need to go to
the charging station twice, and the refrigerated and frozen goods need to go to the charging
station once. If goods in three temperature zones are distributed separately, 12 vehicles are
needed, and the charging station needs to be visited four times. If the MTCD is carried out,
five vehicles are needed for distribution. Only one visit to the charging station is required
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to replenish the power during the distribution period. Therefore, MTCD can save resources
and has specific efficiency.

Table 6 shows the cost comparison between a STD and a MTCD. The refrigeration
cost of MTCD is 19.35% more than that of STD, however, the total cost of the MTCD is
49.45% lower than that of the STD. Due to more vehicles used in STD, leading to higher
transportation costs. Therefore, the use of MTCD will be more resource saving and efficient.
The relevant logistics enterprises can reasonably choose the distribution mode according to
customer demand.

Table 6. Cost comparison between STD and MTCD models.

Method Cost (CNY) Transportation
(CNY)

Refrigeration
(CNY)

Charging
(CNY)

Incentive
(CNY)

Single 8941.16 8340.18 480 93.46 27.52
Multi 4520.2 3941.12 572.9 41.39 −35.21

(3) Influence of the width of the time window

The results of 50%, 100%, 150%, and 200% expansion of the customers’ desired time
window were compared to investigate the effect of soft time window changes on the
distribution results. As shown in Table 7, the number of vehicles required decreases as the
time window width gradually expands, the total cost of distribution also decreases. The
number of vehicles reaches the lowest when the time window width expands to 100%.

Table 7. Comparative analysis of the change of time window width.

Expands Cost (CNY) Incentive (CNY) Vehicle

0% 6234.21 28.48 8
50% 5120.73 6.8 6

100% 4520.20 −35.21 5
150% 4460.52 −52.52 5
200% 4432.88 −61.09 5

The probability of vehicles arriving at the customer earlier increases with the widening
of the time window. As a result, the cost of rewards increases, the cost of punishment
decreases, and the cost of incentives increases in the opposite direction. Therefore, when
the customers’ time window requirements are relatively low, appropriately expanding the
time window width will deliver goods as early as possible, improve delivery efficiency and
reduce distribution cost.

6. Conclusions and Future Research

In this paper, we introduce a variant of the EVs routing problem, considering multi-
temperature co-distribution and soft time windows. Each EVs can deliver three kinds
of temperature goods, and the temperature is controlled by a cooler. Considering the
power, time windows, load, and cargo loss rate constraints, a mathematical model of
EVRP-MTCD-STW with the objective of minimizing the distribution costs is established.

In addition, to effectively solve EVRP-MTCD-STW, we propose the IACO algorithm,
which introduces the distance saving matrix, time window waiting factor, and frozen
product influence factor to modify the state transfer rules, and insert the 2-opt algorithm to
improve the optimization capability. Finally, we verify the validity of the algorithm and
analyze the model based on the Solomon dataset. The numerical experiments demonstrate
that the IACO proposed in this paper can find high-quality solutions compared to other al-
gorithms in the literature. Utilizing EVs for multi-temperature co-distribution can improve
distribution efficiency of cold chain logistics and provide innovative ideas for development
of logistics companies, and setting appropriate soft time windows can ensure freshness of
goods while reducing distribution costs.
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Several directions for future research can be considered. One is to include more realistic
constraints in the mathematical model, such as the uncertainty of travel time caused by
weather changes and road accidents, or the dynamic changes in customer demand, to
meet the challenges of real-world distribution. Second, the energy consumption of EVs is
not only related to the distance travelled, but also affected by many factors such as load,
road conditions, ambient humidity, etc., so another topic for future research is how to
incorporate these factors to accurately represent the energy consumption of EVs in the
distribution process. Finally, more effective local optimization strategies can be designed to
improve the performance of the algorithm in solving large-scale problems.
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