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Abstract: Battery-electric trucks offer a high battery capacity and good predictability, making them
attractive for the implementation of bidirectional charging strategies. Nevertheless, most of the
previous charging strategy studies focus on electric passenger cars. These charging strategies are
usually formulated as separate use cases like tariff-optimized charging, arbitrage trading, peak
shaving, and self-consumption optimization. By combining different use cases, their economic
potential can be increased. In this paper, we introduce a model to optimize charging processes in
depots for electric vehicles considering the combination of different use cases. This model is applied
to a depot for battery-electric trucks. The savings obtained through optimized bidirectional charging
highlight the enormous potential of this technology for the future, especially in the heavy-duty sector.

Keywords: bidirectional charging; smart charging; vehicle to grid; modeling; optimization; electric
vehicles; battery electric trucks

1. Introduction

Controlled and bidirectional charging has recently become an extensively discussed
topic. A variety of publications that deal with this technology predict its high relevance in
the near future [1,2]. The Original Equipment Manufacturers (OEMs) have discovered its
importance as well, and the first bidirectional vehicles are on the market [3]. Nevertheless,
past considerations have mostly revolved around battery-electric vehicle (EV) passenger
cars and not focused on battery-electric heavy-duty trucks (BETs). However, taking into
account that heavy-duty and bus traffic is responsible for 6% of all European greenhouse
gas emissions, a major wave of electrification in this area is necessary [4]. Registration
statistics show that this area is still dominated by diesel vehicles, while BETs represent
only 1.5% of the current truck market [5]. Various challenges impede the market roll-out of
BETs. These challenges include the high acquisition costs and the limited availability of
grid connection capacity in depots [6]. The use of controlled and bidirectional charging
can address these challenges by reducing operating costs and the required grid connection
capacity [7]. When evaluating the requirements for controlled and bidirectional charging,
BETs offer several advantages over passenger cars. Due to the higher charging power
and the bundling of many vehicles in one depot, a high marketable capacity can quickly
be achieved at one location. The use of bidirectional charging in BET depots can exploit
these advantages and support the roll-out of BETs, making the research topic of this paper
highly relevant.

Previous work on BETs typically covered a comparison of the technology with diesel
or hydrogen-based power trains in terms of CO2 emissions, cost, and technical feasibil-
ity [8–10]. Those studies usually acknowledge the advantages of BETs in tons of emission
reductions and cost, but the availability of BETs with sufficient battery capacity for long-haul
transport is noted as an issue [9,11]. Apart from limited real-world observations [10], most
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of those studies are assumption-based and use synthetic driving profiles. When it comes to
the optimization of charging processes for BETs, there is a lack of existing knowledge.

A study that already examines the optimization of charging processes for BETs is [12].
While the routes of the BETs are optimized, variable prices are not considered. In [13],
the charging processes for trucks in a depot are optimized based on charging costs, and
bidirectional charging is included. However, the authors used assumed driving profiles
and price time series. Furthermore, the considered optimization period is only two days.
These simplifications eliminate high price fluctuations, which are particularly important to
determine the revenue of arbitrage trading [14].

Even though most of the prior work on the topic of charging management and op-
timization of charging strategies excludes BETs, there is a large amount of literature fo-
cusing on passenger cars. Related prior work distinguished between different use cases
of controlled and bidirectional charging. These use cases have mostly been considered
separately in previous studies [15]. For the use case self-consumption optimization, the
self-consumption rate is maximized by shifting charging processes to times of PV genera-
tion [2,16]. Minimizing the peak load at a grid connection point is the objective of the use
case peak shaving [7]. The optimization of charging with a variable electricity tariff, where
charging processes are shifted to times of low prices, can be referred to as tariff-optimized
charging [17]. The batteries are charged at times when electricity prices are low, and they
feed the electric energy back into the grid at times when electricity prices are high, such
as in the use case arbitrage trading [14]. To increase the economic efficiency, use cases can
also be combined as a so-called multi-use objective, which has already been investigated
for stationary storage facilities [18,19]. Apart from [15], this methodology has not yet been
applied to EVs.

There already exist various publications on the optimization of charging processes
in bus depots. The use cases defined above can also be found in these publications.
The authors of [20,21] include the peak-shaving use case in their optimization. Tariff-
optimized charging is examined in [21–23]. A few publications have already addressed the
combination of different use cases for charging optimization in bus depots. The authors
of [21] combine peak shaving with tariff-optimized charging and additionally include
timetable shifting in the optimization problem. In [24], a depot is integrated into a virtual
power plant, and arbitrage trading is combined with the provision of power system services.
However, even for bus depots, the combination of all four use cases introduced above has
not yet been examined.

While the optimization strategies developed for passenger cars or buses can be adapted
for BETs, the results are expected to differ due to changes in battery capacities, charging
power, and parking duration. Therefore, we see a need for further research in optimizing
charging processes for BETs, especially with regard to multi-use optimization. In this paper,
we tackle this gap by developing a model that supports the combination of the use cases
self-consumption optimization, peak shaving, tariff-optimized charging, and arbitrage
trading within a multi-use optimization. This model is then applied to a real depot for
BETs. The combination of different use cases and their application to BETs is the novelty
value of this work. The developed model and input data are described in Section 2. By
using the model, possible savings from bidirectional charging of the BETs are determined
and presented and discussed in Section 3. The final conclusion and an outlook are given
in Section 4. The results of this study can be used by freight forwarders and OEMs as
an orientation for expectable savings and for the prioritization of charging strategies. A
preliminary version of this study has already been presented in [25].

2. Materials and Methods
2.1. Optimization Model

The optimization model eFlame was primarily developed to optimize several use
cases for bidirectional charging separately. In [14,26], the use cases arbitrage trading and
self-consumption optimization are elaborated upon. The use case peak shaving is dealt with
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in [7]. The novelty of the present paper is the combination of the use cases in the context
of a multi-use optimization that was not implemented before. Figure 1 shows all power
flows relevant to the optimization. At this point, we describe the optimization problem
covering decision variables, objective function, and constraints. Linear optimization is a
method that can be used to solve problems where the objective function and constraints are
linear functions of the decision variables. The constraints can be formulated as equalities or
inequalities. A mixed-integer linear program (MILP) problem includes integer decision
variables. A comprehensive introduction to linear optimization is given in [27]. Since
the model was primarily developed for optimizing battery-electric cars, the vehicles are
generally referred to as EVs in the following model description.
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Figure 1. Schematic representation of interrelations in the optimization model.

For all decision variables, the non-negativity constraint applies. The constraint is
exemplarily defined in Equation (1) for the received power PGCP,in

t , and the feed-in power
PGCP,out

t at the Grid Connection Point (GCP), but it can be applied to the remaining decision
variables. The total number of time steps t in the observation horizon is represented by n.

PGCP,in
t ⩾ 0, PGCP,out

t ⩾ 0 ∀ t ∈ T = {1, ..., n} (1)

The photovoltaic (PV) generation is not a decision variable, but it may be influenced
during the optimization via the curtailment Pcurt

t . With this optimization variable, the
generation of the PV system can be reduced, e.g., to prevent feed-in at negative prices.
Using the decision variable PGCP,peak

t , the maximum power at the grid connection point is
determined. The charging power Pcharge

t and discharging power Pdischarge
t and the energy

capacity of the battery EEV
t are further decision variables that are related to the EVs.

Furthermore, there is the decision variable Pv2g
t , which is used to observe how much energy

from the vehicles is fed back into the grid. The remaining decision variables bcharge
t , bdischarge

t ,
bout

t , and bin
t are boolean variables, which are used to ensure that the power flow exchanges

with the vehicles and the grid connection point are only in one direction at any time instant.
The objective of the optimization model is to maximize the revenue. The established

objective function shown in Equation (2) consists of four terms: the cashflow from arbitrage
trading at the spotmarket CFspot, costs through levies Clevies, costs through grid fees Cgrid f ee,
and a term that evaluates the opportunity costs due to battery degradation Cbat,deg. The
different terms are defined in the following.

max
(

CFspot − Clevies − Cgrid f ee − Cbat,deg
)

(2)
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The cash flow, the difference between cash in- and outflows, from arbitrage trading at
the spot market CFspot is calculated in Equation (3). Different market data can be selected
for the price time series pin

t and pout
t , but constant values may also be used.

CFspot =
n

∑
t=1

(
Pt

GCP,in · pin
t · ∆t − Pt

GCP,out · pout
t · ∆t

)
∀ t ∈ T (3)

Consumers have to pay a gridfee Cgrid f ee to the Distibution System Operator (DSO)
for the use of the grid infrastructure. In Germany, the grid fee for commercial customers is
divided into a usage price pusage and a capacity price pcap. The usage price depends on the
energy consumed, whereas the capacity price depends on the annual peak power. The grid
fee is included in the objective function of Equation (4).

Cgrid f ee =
n

∑
t=1

Pt
GCP,in · pusage · ∆t + PGCP,peak

t=n · pcap ∀ t ∈ T (4)

Additionally, various taxes and levies are charged on electricity, and those are summa-
rized through Clevies and shown in Equation (5). Stationary battery storage may be partially
exempt from levies, and such an exemption is also being discussed for bidirectional vehicles.
The problem is to determine how much energy is actually fed back into the grid. This is
especially problematic in combination with PV systems. Via the subtrahend of Equation (5),
a partial exemption from the levies on energy fed back into the grid is implemented. The
decision variable Pv2g

t represents the power the vehicles feed into the grid and is introduced
later in (17) and (18). It is an auxiliary variable calculated from the other power variables
and is therefore not directly included in the power balance following in Equation (7). A
partial exemption may be dynamically parameterized via the levies on V2G plevies,v2g that
are still charged even if the energy is fed back into the grid. If plevies,v2g is set equal to plevies,
no exemption occurs. A full exemption can be achieved by setting plevies,v2g equal to zero.

Clevies =
n

∑
t=1

Pt
GCP,in · plevies · ∆t −

n

∑
t=1

Pt
v2g ·

(
plevies − plevies,v2g

)
· ∆t ∀ t ∈ T (5)

The opportunity costs from battery degradation Cbat,deg are included in the optimiza-
tion problem by using Equation (6) based on [28]. The calculation of the degradation costs
Cbat,deg is based on the use of the battery and determined by the decrease of the available
capacity Closs from a cycling aging model. The costs result primarily from the total charge
quantity throughput, which is defined by the charging and discharging power. The price of
the battery is represented by cbat,buy, and EEV,max is the capacity of the battery. The used
model assumes the end of life of the battery at a loss of 20% of the initial capacity.

Cbat,deg =
cbat,buy · EEV,max

20%
Closs(PEV,charge

t , PEV,discharge
t ) ∀ t ∈ T (6)

The optimization model is restricted by several constraints concerning the GCP and
the EVs. We start by introducing the boundary conditions of the GCP. According to the
law of conservation of energy, the incoming power flows at the GCP must be equal to the
outgoing power flows. This is ensured by Equation (7). The load profile of the building
Pbuild

t is integrated into the optimization as a static time series.

PGCP,in
t +

nEV

∑
i=1

PEV,discharge
t + PPV

t =

PGCP,out
t +

nEV

∑
i=1

PEV,charge
t + Pcurt

t + Pbuild
t ∀ t ∈ T

(7)
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For the determination of the grid fee Cgrid f ee in Equation (4), the annual peak power at
the GCP PGCP,peak

t is required. Using Equation (8), the power peak is updated continuously
during the optimization. Thus, the last time step n contains the annual power peak.

PGCP,peak
t ⩾ PGCP,in

t , PGCP,peak
t ⩾ PGCP,peak

t−1 ∀ t ∈ T (8)

Equations (9) and (10) are introduced to prevent energy from being purchased and fed
in simultaneously at the GCP. In consequence, the boolean decision variables bin

t and bout
t

are used. PGCP,max describes the maximum grid connection capacity, which results from
the transformer and structural conditions at the grid connection point. The combination of
Equations (8) and (9) ensures the grid connection capacity PGCP,max is always greater than
or equal to the annual power peak PGCP,peak

t .

PGCP,max · bin
t ⩾ PGCP,in

t , PGCP,max · bout
t ⩾ PGCP,out

t ∀ t ∈ T (9)

bout
t + bin

t ⩽ 1 ∀t ∈ T (10)

The following constraints are related to the EVs and apply separately for each EV.
The energy balance of the vehicle battery must be maintained to preserve the physical
consistency of the EVs. The energy stored in the EV battery in the first time step is defined
by the constraint Equation (11). For the first time step, this equation defines the stored
energy as equal to the initial stored energy plus the charged energy at the GCP minus the
discharged energy and the energy consumed during trips EEV,trip

t plus the energy charged
at public stations EEV,public

t=1 . Constant efficiencies for charging ηEV,charge and discharging
ηEV,discharge are considered.

EEV
t=1 = SOCEV

t=1 · EEV,max + PEV,charge
t=1 · ηEV,charge · ∆t

−PEV,discharge
t=1 · ηEV,discharge · ∆t − EEV,trip

t=1 + EEV,public
t=1

(11)

For the remaining time steps, Equation (12) applies, where the initially stored energy
is replaced by the stored energy of the previous time step.

EEV
t = EEV

t−1 + PEV,charge
t · ηEV,charge · ∆t

−PEV,discharge
t · ηEV,discharge · ∆t − EEV,trip

t + EEV,public
t ∀ t ∈ {2, ..., n}

(12)

Equation (13) ensures that the vehicles are always charged with a minimum State of
Charge SOCEV,dep,min at departure. The condition is only valid for the time steps in which
a vehicle departs, as indicated by the boolean variable bEV,dep

t . This variable is determined
before the optimization based on the driving profiles and is only equal to one if the vehicle
departs. To ensure that the condition can also be met if the vehicle is only plugged in for
a short time and thus the minimum SOC cannot be reached, a buffer Ebu f f er

t is integrated
into the condition. This buffer is also determined before the optimization.

EEV
t + Ebu f f er

t = SOCEV,dep,min · EEV,max · bEV,dep
t ∀ t ∈ T (13)

Apart from public charging, each EV can only be charged or discharged if it is con-
nected to a charging point at the GCP, and this is ensured by Equations (14) and (15). The
boolean variable bEV

t is determined before the optimization based on the driving profiles. If
the vehicle is plugged in, the variable is one, and otherwise it is zero. We assume that each
vehicle has its own charging point. To prevent the EVs from charging and discharging at the
same time, the decision variables bcharge

t and bdischarge
t are added to Equations (14) and (15).

Equation (16) prevents both variables from being equal to one simultaneously. If only uni-
directional charging is considered, the Equations (15) and (16) are omitted, and PEV,discharge

t
is set to zero via a further boundary condition.
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bEV
t · bcharge

t · PEV,charge,max ⩾ PEV,charge
t ∀ t ∈ T (14)

bEV
t · bdischarge

t · PEV,discharge,max ⩾ PEV,discharge
t ∀ t ∈ T (15)

bcharge
t + bdischarge

t ⩽ 1 ∀ t ∈ T (16)

Finally, boundary conditions are required to determine the power fed back from the
EVs into the grid Pv2g

t . This variable is necessary to calculate the exemption from levies
in Equation (5). Therefore, we choose a power balance based approach and rearrange
Equation (7) according to the discharged energy. Since power can only be fed into the grid
if no energy is purchased, PGCP,in

t is set to zero. The discharged power is replaced by the
introduced decision variable Pv2g

t , resulting in Equation (17). The boundary condition in
Equation (18) ensures that Pv2g

t cannot become greater than the feed-in power.

Pv2g
t ⩽ PGCP,out

t − PPV
t + Pcurt

t + Pbuild
t +

nEV

∑
i=1

PEV,charge
t ∀ t ∈ T (17)

Pv2g
t ⩽ PGCP,out

t ∀ t ∈ T (18)

Since the model is intended to examine entire years and since the use of boolean
variables makes it a mixed-integer optimization problem, the computational effort required
to solve the problem is rather high. In order to be able to solve it with a reasonable
computational effort, the model is computed as a rolling optimization. The determination
of the annual power peak is a special aspect of the rolling optimization, which will be
explained in the following using the schematic diagram in Figure 2. For rolling optimization,
the whole optimization period is divided into m smaller optimization time periods of
uniform size. In individual optimization steps, each of the smaller optimization periods is
optimized one after the other. The results of an optimization step are passed as start values
to the next step. By using an overlapping period, we increase the prediction horizon for the
optimization. After the m-th step, the first run of the optimization is finished. According
to Equation (8), the power peak is continuously updated as shown in Figure 2 below. As
can be seen in the figure, the first optimization steps are limited by a lower power peak
compared to the later steps. Therefore, in a second optimization run, the affected steps
before the occurrence of the annual power peak are optimized again with the updated
power peak.
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Figure 2. Schematic diagram explaining the used rolling optimization process.
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The sequence of the used optimization model eFlame is illustrated schematically in
Figure 3. After importing the input parameters and input data described below, the opti-
mization problem is set up. The optimization problem is solved sequentially considering
the charging strategies: uncontrolled charging (ref), unidirectional charging (uni), and
bidirectional charging (bidi). The results are examined separately for each charging strategy.

8

Definition of scenarios

Optimization problem

Optimization

Solve the optimization problem

Analysis

Charging profiles Charging costs Power peak

Charging strategies

Reference: uncontrolled charging (Ref) Unidirectional charging (Uni) Bidirectional charging (Bidi)

General

Input parameters

GCPBET PV-System

Input data

Driving profiles Load profiles Price time series

max 𝐶𝐹𝑠𝑝𝑜𝑡 − 𝐶𝑙𝑒𝑣𝑖𝑒𝑠 − 𝐶𝑔𝑟𝑖𝑑𝑓𝑒𝑒 − 𝐶𝑏𝑎𝑡,𝑑𝑒𝑔

Figure 3. Schematic diagram explaining the used methodology.

2.2. Input Data

As mentioned in Section 1, prior research on the topic of BETs has relied on assump-
tions regarding driving profiles. In this paper, we had the opportunity to use real-life
data from a depot of a freight forwarding company in Germany. The company primarily
operates in the short-haul segment. The data were provided within the framework of the
project NEFTON in which partners from industry and science jointly develop a Megawatt
Charging System (MCS) for BETs. Mobility data of the company’s trucks, historical load
profiles of its buildings, and information about the PV system are included in the data. The
selected depot can serve as a real-life example.

In the project NEFTON, driving data from several fleets of German fleet operators
were recorded using high-resolution GPS data loggers. The recorded dataset includes
1.26 million km of driving data and is openly available in anonymized form in [29]. Only
the driving data of the depot under consideration were extracted from this dataset. Since the
data were recorded for trucks using diesel fuel, our investigation builds on the observation
that the company desires to keep its services in the same way with electric trucks. The data
are available for different lengths of time and were extended to uniform periods using a
Markov process. To avoid oversizing the vehicle batteries, the missions in the dataset are
divided into two clusters depending on the distance traveled. Missions with a distance
of more than 200 km are grouped into the cluster regional transport and those with less
than 200 km into the cluster local transport, which is similar to the classification of [30].
The annual driving profiles are taken as given and are presented in the following. Figure 4
shows the average percentage of vehicles in different locations for the two clusters. It can
be seen that especially the mobility profiles from the Local Transport cluster have very
high idle times at the depot and that at least 50% of the BETs are always present at the
depot. On weekends and at night, most of the vehicles are located at the depot. The driving
profiles of the cluster Regional Transport show significantly lower idle times at the depot.
During daytime on weekdays, 80% of the vehicles are absent. On weekends, almost 40%
are not at the depot. In addition, the driving profiles of the Regional Transport cluster show
high parking durations in industrial areas and other locations. The difference between the
two clusters is also evident from the characteristic values included in Table 1. The annual
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kilometrage of the Local Transport cluster is about 14,000 km. This is significantly lower
than the kilometrage of the Regional Transport cluster of about 66,000 km. The electrical
energy consumption for the driving profiles is determined using the model from [31]. The
average annual consumption determined in this way is also included in Table 1. The
variables bEV,dep

t , Ebu f f er
t , bEV

t , EEV,trip
t and EEV,public

t are determined based on the driving
profiles and serve as inputs for the optimization model.

(a) (b)

Figure 4. Layered percentage of BETs at different locations over the week. (a) Local Transport cluster,
(b) Regional Transport cluster.

Table 1. Characteristics of the used driving profiles.

Characteristics Local Transport Regional Transport

Daily kilometrage
(Weekdays/Weekends) 53.8 km/0.75 km 250 km/4.2 km

Percentage at depot
(Weekdays/Weekends) 78.20%/95.19% 37.80%/63.40%

Annual kilometrage 14.382 km 65.750 km
Average consumption per km 1.1 kWh/km 1.26 kWh/km
Annual energy consumption 14.9 MWh 83.4 MWh

In addition to the driving profiles, the load profile of the building of the depot Pbuild
t is

another important input for the optimization. The used load profile shown in Figure 5b for
an average week relies on real data of the depot. From the annual time series, the average
was determined for each quarter-hour of the week as well as the ranges in which 80% and
100% of the values lie. The plot shows that there are significant load peaks in the evening
hours on weekdays, indicating suitability for peak shaving. The load is significantly lower
at weekends and at night than it is during the day on weekdays.

We assume that the depot pays variable electricity prices based on the prices of the
electricity exchange. Therefore, we used the intraday auction prices as electricity prices pin

t
and pout

t for the optimization. In Europe, there are various short-term markets on the power
exchange. One of those markets is the intraday auction. Due to the shorter time slices of
quarter hours compared to the day-ahead market, in which hourly products are traded,
this market offers higher price spreads. Thus, the revenue opportunities for flexibilities like
bidirectional EVs are increased. The development of the prices of the intraday auction from
the beginning of 2019 to the end of 2022 is shown in Figure 5a. As a consequence of the
energy crisis, the price has risen from around 4 ct/kWh to a maximum of over 70 ct/kWh,
and also the price spreads increased significantly.

The PV generation is determined as a time series depending on the historical irra-
diation data on CAMS level as a function of the orientation of the PV plant and its peak
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power [32]. The irradiation data are used for the location of the depot for the weather year
2012. The weather year is chosen based on the recommendation in [33].

(a) (b)

Figure 5. Visualization of input data: (a) electric load profile of the depot building, (b) daily average
price intraday auction.

2.3. Input Parameters

After introducing the data source and the model in the previous sections, the input
parameters are presented in the following. For this purpose, we define a base scenario for
which the input parameters are listed in Table 2. By varying different parameters of this
base scenario, various sensitivities are examined. For the sensitivity analysis, one parameter
of the base scenario is changed, while the rest of the parameters are left unchanged. The
varied parameters of the sensitivity analysis are also included in the table. The base year is
2021, and the optimization is performed at a time step size of 15 min. As Figure 2 illustrates,
we use a rolling approach and divide the examined years into 61 optimization steps. The
observation period of each step is seven days, consisting of the optimization period of
six days and one day of overlap. In contrast to real-world charging management systems
that apply forecasts, we assume perfect foresight for each optimization step. In the base
scenario, no exemption of levies on energy fed back into the grid is assumed. Therefore,
plevies is set to be equal to plevies,v2g. However, the exemption is considered in the sensitivity
analysis. In the base scenario, no limitation of the grid connection capacity is considered.
Thus, PGCP,max is set to the oversized value of 5 MW. A limitation of PGCP,max is examined
in the sensitivity analysis. The grid connection capacity is minimally limited to 700 kW,
since a lower capacity would result in the curtailment of the PV system in times of high
irradiation. The feed-in tariff of 0.06 EUR/kWh is an assumed value suitable for Germany
and is only used in the reference simulation as pout

t . It is also assumed that 30 BETs of the
depot are electrified. The number of electric vehicles is one of the sensitivities examined.
According to the distribution from the dataset, 30% of the vehicles are used for regional
traffic and 70% are used for local traffic. The appropriate driving profiles are divided
among the BETs according to the distribution, and a battery capacity of 250 kWh for local
and 500 kWh for regional traffic is assumed. Based on [34], the price of the vehicle battery
cbat,buy is set to 139 EUR/kWh. The parameters of the PV system are selected according to
the system of the real depot.
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Table 2. Parameters of the base scenario and sensitivities.

Category Parameter Symbol Unit Value Sensitivities

General Year 2021 2019, 2020, 2022
Time step size t h 0.25
Optimization period h 168
Overlapping period h 24

GCP Levies on V2G plevies,v2g EUR/kWh plevies 0.02, 0
Price for public charging ppublic EUR/kWh 0.50
Max. grid connection capacity PGCP,max MW 5 0.7, 1, 1.5, 2
Feed-in remuneration PV (ref) EUR/kWh 0.06

BETs Number of vehicles nEV 30 20, 40, 50
Efficiency of charging ηEV,charge 0.926
Efficiency of discharging ηEV,discharge 0.921
Capacity of vehicle battery EEV,max kWh 250/500
Minimum SOC at departure SOCEV,dep,min 1
Maximum charging/
discharging power PEV,max kW 100 50, 200, 300

Price of battery cbat,buy EUR/kWh 139

PV system Peak power kW 1000 0, 2000
Azimuth angle ° 0
Tilt angle ° 35

In addition to the year 2021 of the base scenario, the years 2019, 2020, and 2022 are also
examined. For the optimization of the different years, several parameters have to be varied.
In contrast, only one parameter is changed at a time in the sensitivity analysis presented
below. The other parameters remain unchanged. In consequence, these year-dependent
parameters are separated in Table 3. For the reference simulation, a constant price based on
the average day-ahead price is assumed for pin

t [35]. For the levies, the real historical values
for Germany from [36] are used. The prices for the grid fees are also based on historical
values of the grid operator Netze BW, where the depot under consideration is located [37].
We use the prices for medium voltage networks and consider an annual usage time of less
than 2500 h.

Table 3. Year-dependent parameters.

Year pre f
t (EUR/kWh)

plevies

(EUR/kWh)
pusage

(EUR/kWh) pcap (EUR/kW)

2019 0.038 0.131 0.047 16.37
2020 0.030 0.135 0.052 18.36
2021 0.097 0.133 0.054 18.65
2022 0.245 0.495 0.056 19.20

3. Results and Discussion

In order to better understand the results presented in the following, we first look
at a single example day. A sunny weekday in August from the base scenario in 2021 is
chosen. Figure 6 is intended to explain the charging strategies and shows the important
time series from the optimization results for the example day. The results for the reference
with uncontrolled charging are shown on the left, and those for bidirectional charging
are shown on the right. In the upper diagram, the power of the different components
is plotted as a stacked area diagram. The resulting power at the grid connection point
PGCP

t = PGCP,in
t + PGCP,out

t is shown as a black line. The center diagram illustrates for
each time step how many vehicles are attendant and how many of them are charging or
discharging. The given prizes are shown in the lower diagram. Levies and grid fees are not
included in the prices.
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With uncontrolled reference charging, the vehicles are charged immediately when
they arrive at the depot. Even though some vehicles arrive and charge at midday, this leads
to charging processes in the evening and at night where the power of the PV system is
unavailable. The unused energy from the PV system is fed into the grid for the low feed-in
tariff, and more expensive energy is purchased from the grid in the evening hours. The
situation is different with the bidirectional charging strategy. According to the optimization
problem presented in Section 2.1, the objective of the optimization is to maximize the
revenue. One way to achieve this is to shift the charging process to times when PV power is
available, since this power is not priced in the optimization problem. This shifting is clearly
visible in the diagram because the area of the BET charging matches the PV generation.
Energy can also be fed into the grid to maximize the revenue. Such a feed-in takes place on
the example day from around 6 PM, when many vehicles are available and high energy
prices are reached. Due to the oversized grid connection capacity of 5 MW, a large number
of BETs discharge at the same time, resulting in a high feed-in power of over 2 MW. Because
of the power price integrated in Equation (8), the annual power peak of the reference
of 1.3 MW is lowered in the optimization to 0.4 MW. The power price only affects the
purchased power, which allows the feed-in with a higher power. Figure 6 also clearly
shows that outside the times with PV generation, the vehicles supply each other and also
the building with energy.

(a) (b)

Figure 6. Results for an example day for different charging strategies.: (a) reference, (b) bidirectional.

The results of the base scenario are compared with those of the other examined years in
Figure 7. Figure 7a shows the annual savings for the optimization with unidirectional (uni)
and bidirectional (bidi) BETs. The savings are calculated from the difference between the
costs in the reference simulation and the respective charging strategy and are normalized
per vehicle. Before 2021, the savings are modest at about 2000 EUR/BET even with
bidirectional vehicles. As energy prices rise from 2021 (cf. Figure 5), savings also increase
significantly. Thus, almost 3300 EUR/BET can be achieved in 2021 with the bidirectional
and 1500 EUR with the unidirectional charging strategy. In 2022, the savings skyrocket
up to more than 10,000 EUR/BET. On the one hand, this can be explained by the fact that
the reference costs in 2021 and 2022 rise due to the higher prices. On the other hand, the
increasing price spreads and falling levies are responsible for the high savings, as this
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makes arbitrage trading significantly more attractive. In comparison, the authors of [13]
estimate lower savings of 1515 EUR/BET. The deviation mainly results from the simplified
price time series they use, which does not adequately reflect realistic price spreads of the
spot market.

(a) (b)

Figure 7. Results of the analyzed years: (a) annual savings, (b) discharged energy.

A corresponding observation can be made in Figure 7b, where the average discharged
energy per BET and year is illustrated. It only represents the results from the bidirectional
charging strategy, because only here can discharging occur. The diagram contains infor-
mation on how much energy is fed back to the building (V2B), to other vehicles (V2V),
or to the grid (V2G). Discharging into the grid takes place in order to generate revenues.
V2G dominates the discharged energy in 2022. This explains the high revenues discussed
above. Since the load of the building cannot flexibly respond to prices and PV generation,
the BETs can, through discharging, supply the building with cheaper energy from the PV
system or the grid in time steps with high electricity prices. Furthermore, V2B can serve
to reduce the annual power peak. The same applies for V2V, where vehicles with high
parking duration can supply frequently driving vehicles with cheap energy. V2V is thus
another way to reduce charging cost. The share of V2B is relatively similar in all years and
is slightly higher in 2021 and 2022 than in previous years. V2V takes the smallest share of
the discharged energy in all years. In the reference scenario, the self-consumption rate is
around 50% in all the examined years. The optimization increases this ratio to almost 65%
with unidirectional BETs and 95% with bidirectional BETs.

To examine the influence of individual parameters on the results, the results of the
sensitivity analysis for the bidirectional charging strategy are shown in Figure 8. In the
sensitivity analysis, we varied various parameters that could impact the savings. Depend-
ing on the results, the values of these sensitivity parameters are selected iteratively. The
diagram shows the percentage deviation of the sensitivity parameters from the parameters
of the base scenario on the x-axis and the annual savings on the y-axis. The absolute
values of the sensitivity parameters are provided in the last column of Table 2. The point
in the diagram where the parameter variation is zero contains the savings of the base
scenario already shown in Figure 7 (2021). The reduction of the grid connection capacity
PGCP,max has the least impact on the savings. With the limitation of 700 kW (parameter
variation = 86%), the grid connection capacity is still large enough and the savings decrease
only minimally. A reduction of PGCP,max below 700 kW would reduce the savings more
significantly, but then the PV system (1 MW peak) has to be curtailed. More points are
calculated for this parameter to determine the boundary where no curtailment occurs. The
savings decrease without a PV system but increase with a larger PV system. With higher
charging and discharging power, savings can be increased. In the analysis, the charging
power of 300 kW (parameter variation = 200%) leads to increased savings above 3700 EUR
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per BET. A larger number of vehicles reduces the savings per vehicle. The parameter with
the strongest impact on the savings is the levies on the energy fed back. In the base scenario,
we assume the worst case for V2G without any exemption from levies for energy fed back
into the grid. Therefore, plevies,v2g is set equal to plevies. With full exemption (plevies,v2g = 0),
the annual savings per BET strongly increase to 5300 EUR. However, these savings are only
possible with a significantly higher, discharged energy from the BETs to the grid.

Figure 8. Results of the sensitivity analysis for the bidirectional charging strategy.

4. Conclusions and Outlook

This study presents a model to optimize charging processes in depots for EVs. In
addition to the chargers, the depots may be equipped with a PV system and an inflexible
load, e.g., from a building. The objective of the optimization is to minimize the charging
cost. The cost reduction is achieved by increasing the self-consumption rate, reducing the
annual peak load, shifting charging processes to time steps with low energy prices, and
arbitrage trading. Through this combination of different use cases, a multi-use optimization
is implemented. The optimization is implemented on a rolling basis. Despite a higher
computing effort, even large depots with hundreds of vehicles can be optimized using
this method. The economic benefits of V2G can be compromised by levies on purchased
energy fed back into the grid. A full or partial exemption from levies for bidirectional EVs
could solve this problem in the future. The implementation of this exemption is difficult, as
it may only apply to the energy fed back into the grid. Energy consumed while driving
must be taxed. If EVs feed into the grid and are charged by energy from the grid plus a
PV system, then no exemption may apply to fed-in energy provided by the PV system.
A partial exemption from levies is therefore implemented in the presented model. The
amount of the exemption from levies can be chosen freely, and the approach even works
with PV systems.

The model presented is used to optimize a depot for BETs. The study shows that the
examined depot is very well suited for implementing bidirectional charging strategies.
The operator of the depot can benefit monetarily from it. Due to the large PV system
and the long duration of attendance of the BETs, the depot under consideration offers
excellent conditions for optimization. In the base scenario, the bidirectional charging
strategy can save 3300 EUR per vehicle and year compared to uncontrolled charging. A self-
consumption rate of 95% can be achieved and the peak load can be significantly reduced.
Arbitrage trading is only worthwhile when price spreads are high like in the examined
years 2021 and 2022. Levies on fed-back energy impede arbitrage trading. According to
the results of the sensitivity analysis, the exemption from levies can significantly increase
savings. We examined the exemption from levies within a sensitivity analysis. At least a
partial exemption from levies would be a precondition for the successful operation of V2G.

For further research, we propose a three-step strategy: Firstly, the model can be readily
adapted to include additional use cases, e.g., providing frequency control. Secondly, instead
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of solely decreasing charging costs, it could be further developed to minimize the total cost
of ownership (TCO) of the depot. Thirdly, the method can be applied to examine other
depots by simply exchanging the database. The model is not limited to depots for BETs
and can also be used to optimize depots for passenger cars or buses. This paper is therefore
a basis for further research on the topic of bidirectional charging in depots for EVs.
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