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Abstract: The purpose of this paper is to study the sensor-less rotor position estimation method
for permanent magnet synchronous motors, and to achieve accurate estimation of rotor position in
different conditions. Firstly, the traditional super-twisting observer algorithm is analyzed, and a new
discrete variable gain sliding mode observer is designed to solve the buffeting problem in discrete
systems, taking the reaction force as the disturbance signal. By estimating the back potential of the
observer, the buffeting problem in the sliding mode algorithm can be effectively improved as shown
by the simulation results. Then, to solve the problem of phase delay in rotor position estimation, an
adaptive orthogonal phase-locked loop method is used to compensate the estimation error caused by
the change in motor speed and increase the estimation accuracy of rotor position. The stability of the
method can be proven by Lyapunov’s second method. Simulation experiments verify the accuracy of
the proposed PMSM rotor position estimation method.

Keywords: permanent magnet synchronous motor; rotor position estimation; adaptive quadrature
phase-locked loop; discrete variable gain sliding mode observer

1. Introduction

In recent decades, permanent magnet synchronous machines (PMSMs) have been
extensively applied in various drive fields ranging from servo drives, robotics, electric
vehicles to aerospace engineering owing to their superior characteristics, such as high
efficiency, high power density, high torque-to-volume ratio, wide speed range, and reliable
operations [1]. As the essential information in the high-performance field-oriented control
(FOC) system, the accurate rotor position is often obtained from the shaft-mounted mechan-
ical encoders, which, in turn, may result in a reduction in robustness, additional volume
and limited applications in high-frequency vibration and humidity, and high-temperature
environments. Therefore, PMSMs with position sensor-less control have attracted more
and more attention [2].

The sliding mode observer method has the advantages of being simple, robust, rapid
convergence, and easy to implement. PMSM sensor-less control systems rely heavily
on it [3]. Initially, the traditional sliding mode observer requires the establishment of a
mathematical model and the subsequent design of the sliding mode surface and control law
based on the controlled object [4]. Position-free control of permanent magnet synchronous
motors necessitates the design of a sliding mode observer for the stator current using
the sliding mode algorithm [5]. The sliding mode equivalent control principle is used to
estimate back potential and interference signals are eliminated using filtering techniques.
Inverse tangent calculations, phase-locked loop methods, and other approaches can all be
used to obtain rotor position estimation [6].

The basic sliding mode observer’s control law has a symbol function that causes
high-frequency chattering. To eliminate interference signals, a filter must be employed. The

World Electr. Veh. J. 2024, 15, 87. https://doi.org/10.3390/wevj15030087 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15030087
https://doi.org/10.3390/wevj15030087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-7793-8879
https://orcid.org/0000-0002-6548-9666
https://doi.org/10.3390/wevj15030087
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15030087?type=check_update&version=2


World Electr. Veh. J. 2024, 15, 87 2 of 20

use of a filter results in an increase in computational load and a reduction in the dynamic
response capability of the system, which can cause phase delay. To obtain back potential
and reduce phase delay amplitude after signal processing, an adaptive filter is proposed in
reference [7]. The chattering phenomenon observed in the observed results is mitigated by
replacing the switching function with a sigmoid function in Reference [8]. The chattering
phenomenon in sliding mode algorithms can be improved by incorporating a sign function
into the integral term in higher-order sliding mode arithmetic. The superhelix algorithm is
used in References [9–12] to estimate back potential values and reduce observation errors
by designing variable sliding mode gain. The State-of-Health (SOH) of alternating DC-DC
boost conversion systems is estimated in the literature [13] through data-based methods,
which alleviate issues like system mismatch aging and enhance overall system lifespan. We
have gained inspiration by analyzing and verifying the research presented in these papers.
Although there have been recent improvements in position sensor-less control theory for
permanent magnet synchronous motors, challenges such as chattering and phase delay
during rotor position observations still need further investigation and resolution [14–18].

The purpose of this paper is to propose a method for observing permanent magnet
synchronous motors that does not care about position, using discrete systems and the
super spiral sliding mode. As a summary, the main contributions of this study can be
summarized as follows:

(1) The problem of rotor position estimation buffeting in sliding mode observers is
addressed by proposing a novel observer control law based on the supersonic sliding
mode. By using this method, the gain can be adjusted in real-time depending on the
rotor speed, which ensures that the error between the actual value and estimated
value stays within a small range.

(2) An adaptive phase-locked loop (PLL) approach is used to account for phase delay and
other challenges when estimating rotor position. The PLL gain is adjusted adaptively
based on the operating state of the rotor, thereby improving issues such as slow
fixed bandwidth response during speed switching in high-speed permanent magnet
synchronous motors.

(3) The proposed position-independent observation method is demonstrated by numer-
ical simulation results to effectively reduce buffeting and enhance corresponding
speed during speed switching. Validating the system’s stability under load conditions
involves subjecting it to different loads at different times.

The rest of this article is arranged in the following manner: Section 2 presents the
mathematical model of discrete systems for permanent magnet synchronous motors. The
new discrete sliding mode observer’s design methodology is explained in Section 3. The
design approach for adaptive phase-locked loops is outlined in Section 4. Our proposed
method is verified and validated through the use of MATLAB/Simulink 2022b simulations
in Section 5. Finally, Section 6 provides a summary of this thesis.

2. Mathematical Model of a Permanent Magnet Synchronous Motor

To simplify the mathematical model of the PMSM, the motor voltage equation as-
sumes a sinusoidal distribution of the air-gap magnetic field in the α-β axis system while
neglecting eddy current and hysteresis losses [19].

u =

[
Rs +

dLd
dt ωe(Ld − Lq)

−ωe(Ld − Lq) Rs +
dLq
dt

]
i + e (1)

where u = [uα uβ]T is the stator voltage α-β-axis component; Ld and Lq are the stator
inductance d-q-axis components; Rs is the stator resistance; ωe is the electrical angular
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velocity; i = [iα iβ]T is the stator current α-β-axis component, and e is the expanding
counter-potential in the α-β-axis system with the expression:

e =

[
eα

eβ

]
=

[
−ωeψ f sin θe
ωeψ f cos θe

]
(2)

where Ψf is the permanent magnet chain; θe is the electrical angle.
For a table-posted permanent magnet synchronous motor, the stator inductance is

approximated by Ld = Lq = Ls. This simplifies and rewrites Equation (1) as the current
equation of state.

di
dt

= −Rs

Ls
i +

1
Ls

u − 1
Ls

e (3)

3. Design of a Sliding Mode Observer for Gain of a Discrete Variable
3.1. Design of a Conventional Super-Twisting Sliding Mode Observer

The Super-Twisting Algorithm–Sliding Mode Observer (STA-SMO) was designed by
utilizing a twisting algorithm–sliding mode approach [20], which incorporates nonlinear
feedback into the state variables, thereby enabling the system to achieve fast and smooth
tracking and control. This algorithm offers high precision and robustness, effectively
addressing the buffeting issue encountered in traditional sliding mode control.

The main reason for the chattering of the sliding mode observer is the discontinuity of
the control signal, so reducing the chattering allows the signal to become continuous and
smooth and have a higher derivative property. Therefore, in order to solve the problem
of sign() signal discontinuity at zero time, homogeneous function and integral control are
added to the design of traditional super-twisting observers. For example, multiplying
a homogeneous function with an absolute value before the sign() function gives us the
following equation:

limx→0− |x|
αsign(x) = limx→0+ |x|

αsign(x) = 0, α > 0 (4)

Another way to solve the chattering problem is to introduce integrals. kp and ki can be
designed as follows according to the first-order system model:

kp = k1/|x1 − x̂1|1/2 (5)

ki = k2/|x1 − x̂1| (6)

Therefore, the expression of the super-twisting sliding mode is as follows:
dx̂1
dt = k1√

|x1−x̂1|
|x1 − x̂1|sign(x1 − x̂1) + x̂2 + p1

dx̂2
dt = k2

|x1−x̂1| |x1 − x̂1|sign(x1 − x̂1) + p2
(7)

When the perturbation is ignored, it can be regarded as a linear PI controller with
variable gain, whose gain kp and ki change with the absolute value of the state. We can
simplify Equation (7) to Equation (8):{

dx̂1
dt = k1|x1 − x̂1|

1
2 sign(x1 − x̂1) + x̂2 + p1

dx̂2
dt = k2sign(x1 − x̂1) + p2

(8)

where x1, x2 are the state variables;x̂1, x̂2 is the estimated value of the state variables; k1, k2
are the sliding mode gains; p1, p2 are the perturbation terms.

For any constant ζ greater than zero, the following two equations must hold:

|p1| ≤ ζ|x1|
1
2 ; p2 = 0 (9)
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k1 > 2ζ; k2 > k1
5ζk1 + 4ζ2

2(k1 − 2ζ)
(10)

According to the literature [21], the perturbations p1 and p2 in Equation (8) will
converge the system to the slip mode surface in finite time if the conditions of Equation (9)
are met and the gains k1 and k2 satisfy the conditions of Equation (10).

From Equation (3), the estimated equation for the current in the α-β axis system is
given as follows:

dî
dt

= −Rs

Ls
î +

1
Ls

u − 1
Ls

ê (11)

where î is the observed current in the α-β axis system and ê is the observed counter-potential.
The current error equation is obtained by subtracting Equation (3) from Equation (11).

d̃i
dt

= −Rs

Ls
ĩ − 1

Ls
(ê − e) (12)

where ĩ = î − i is the observed error value of the stator current.
When the current observation error converges and ĩ = 0, the observed value of the

anti-potential equals the actual value. The estimated value of the anti-potential, designed
based on the super-twisting algorithm, is:

ê = k1

∣∣∣̃i∣∣∣ 1
2 sign(̃i)−

∫
k2sign(̃i)dt (13)

The initial term of Equation (13) will gradually decrease as the current error converges.
By comparing Equations (8) and (11), we can obtain the current estimation equation

as follows:
dî
dt

= − k1

Ls

∣∣∣̃i∣∣∣ 1
2 sign(̃i)−

∫ k2

Ls
sign(̃i)dt − Rs

Ls
î +

1
Ls

u (14)

The current error equation can be obtained by subtracting Equation (3) from Equation (14).

d̃i
dt

= − k1

Ls

∣∣∣̃i∣∣∣ 1
2 sign(̃i)−

∫ k2

Ls
sign(̃i)dt − Rs

Ls
ĩ +

1
Ls

e (15)

When the system achieves stability, the estimation error is on the sliding mode surface.
This indicates that the estimated value is close to the actual value, and the rotor position
can then be estimated using Equation (15). Due to the discontinuity of the sign function
in practical applications, the estimated current switches back and forth on the sliding
mode surface, resulting in a noticeable jittering phenomenon. In this paper, we propose a
discrete variable gain super-twisting sliding mode observer that can adjust the convergence
function based on the rotational speed.

3.2. Design of a Sliding Mode Observer for Discrete Variable Gain

In computerized control systems, continuous systems need to be discretized. Accord-
ing to the article [22], Equation (3) is discretized and expressed by Equation (16):

i(k + 1) = (1 − TsRs

Ls
)i(k) +

Ts

Ls
[u(k)− e(k)] (16)

where k is the sampling moment; i(k), u(k), and e(k) are the current, voltage, and anti-
potential values at moment k, respectively; and Ts is the discrete system sampling period.

To obtain anti-potential estimates, a sliding mode observer with perturbation obser-
vation compensation is designed. The current state Equation (16) is revised to remove
anti-potential information.

î(k + 1) = (1 − TsRs

Ls
)î(k) +

Ts

Ls
u(k)− δ(k) (17)
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where
^
i is the observed value of the stator current, δ is a parameter containing an estimate

of the counter potential, and δ(k) is defined as follows:

δ(k) = v(k)− k1(k)
√∣∣∣̃i(k)∣∣∣sat(̃i(k)) (18)

v(k + 1) = Kvv(k)− Tsk2(k)sat(̃i(k)) (19)

where ĩ is the stator current observation error and its expression is as follows:

ĩ(k) = i(k)− î(k) (20)

The constant Kv is a fixed value that always satisfies 0 < Kv < 1. The auxiliary gain,
v(k), is used in conjunction with the sat(s) function, which is defined as follows:

sat(s) =


1 s ≥ 1

c
arctan( qs

c ) |s| < 1
c

−1 s ≤ − 1
c

(21)

where q = tan(1) = 1.557, c is the sliding mode boundary and s is the sliding mode surface.
k1(k), k2(k) functions are defined as follows:

k1(k) = Kη1

√
fσ(k) (22)

k2(k) = Kη2 fσ(k) (23)

Kη1 and Kη2 are constants. The function fσ(k) is bounded and defined as follows:

fσ(k) =


σmin 0 ≤ σ(k) < σmin
σ(k) σmin ≤ σ(k) < σmax
σmax σ(k) > σmax

(24)

where σmin, σmax, σ(k) are defined as follows.

σmax =
Ts

Ls
λpmωmax (25)

σmin =
Ts

Ls
λpmωmin (26)

σ(k) = (1 − K f )
∣∣∣x f (k)

∣∣∣ (27)

where λpm is the permanent magnet magnetic chain, ωmax and ωmin are the maximum and
minimum electrical angular velocities during motor operation [23], xf is the low-pass filter
state parameter; Kf is the low-pass filter gain, and the expression is as follows:

K f = e−ω f Ts (28)

where ωf is the filter cutoff frequency.
Then, the filter dynamic equation is:

x f (k + 1) = K f x f (k) + fv(k) (29)

where fv(k) is defined as follows:

fv(k) =
{
∥v(k)∥ 0 < ∥v(k)∥ < vmax
vmax ∥v(k)∥ > vmax

(30)



World Electr. Veh. J. 2024, 15, 87 6 of 20

where vmax = σmax.
In summary, Figure 1 shows the structure of the new discrete variable gain sliding

mode observer.
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3.3. Feasibility and Convergence Analysis
3.3.1. Proof of Feasibility

The feasibility of Equation (18) is analyzed and proved as follows:
From Equation (20):

ĩ(k + 1) = i(k + 1)− î(k + 1) (31)

By substituting Equations (16) and (17) into Equation (31), the following is obtained:

ĩ(k + 1) = Kãi(k)− Kbe(k) + δ(k) (32)

where Ka = 1 − TsRs
Ls

, Kb = Ts
Ls

.
We can assume the existence of an ideal sliding mold surface that satisfies Equation (33).

ĩ(k + 1) = ĩ(k) = 0 (33)

Substituting Equation (33) into Equation (31) gives the following:

δ(k) = Kbe(k) (34)

Assuming the existence of an ideal slip mold surface, Equation (18) can be rewritten
as follows:

δ(k) = v(k) (35)

It is possible to request the following:

v(k) = Kbe(k) (36)

The e(k) counter-potential is proportional to the rotor speed, and therefore, v(k) is also
proportional to the rotor speed. As fv(k) is a function of v(k), it can be concluded that fv(k) is
also proportional to the rotor rotational speed. This allows for the rotor rotational speed
to be used in fv(k) to calculate the gain coefficients, k1(k) and k2(k), of the discrete sliding
mode observer Equation (18) in real-time, achieving discrete variable gain sliding mode
observation of the counter-potential.
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The counter-potential can be estimated directly from Equation (34).

ê(k) ≈ K−1
b δ(k) (37)

Equations (18) and (32) provide the necessary information.

ĩ(k + 1) = Kãi(k)− Kbe(k) + v(k)− k1(k)
√∣∣∣̃i(k)∣∣∣sat(̃i(k)) (38)

The equation above describes the updated law of the sliding mode controller in discrete
time. Control input is calculated based on the current state of the sliding mode, and the
sliding mode surface is updated accordingly to achieve system control through continuous
iterative calculation. Equation (38) shows that Ka controls the update rate of the sliding
mode surface, while Kb controls the error decay rate.

The analysis above demonstrates that the switching function trajectories described in
Equations (12) and (31) always converge to the quasi-smooth mode surface of

∣∣∣̃i(k)∣∣∣ ≤ ε,
provided that the perturbation Kbe(k) is bounded and there exists a value of 0 < Ka < 1 such
that k1(k), k2(k), and Kv satisfy 0 < k1(k) ≤ Kη1(σmax)½, 0 < k2(k) ≤ Kη2σmax, and 0 < Kv < 1,
respectively.

3.3.2. Proof of Convergence

The feasibility of the new discrete variable gain super-twisting sliding mode observer
has been demonstrated through the above analysis. Next, its convergence is analyzed using
the inverse method. It is assumed that the trajectory of the switching function deviates from
the sliding surface, which is obtained by subtracting ĩ(k) on both sides of Equation (38),
respectively.

ĩ(k + 1)− ĩ(k) = −(1 − Ka )̃i(k)− Kbe(k) + v(k)− k1(k)
√∣∣∣̃i(k)∣∣∣sat(̃i(k)) (39)

Assuming that ĩ(k) → +∞ , ∀̃i(k) > 0, we obtain the following:

ĩ(k + 1)− ĩ(k) > 0 (40)

By substituting Equation (40) into Equation (39), we obtain:

v(k)− Kbe(k) > (1 − Ka )̃i(k) + k1(k)
√∣∣∣̃i(k)∣∣∣sat(̃i(k)) (41)

If ĩ(k) → +∞ , it can be seen that v(k) → −∞ . Equation (42) is satisfied when k ≥ N
such that ĩ(k + 1)− ĩ(k) < 0, and the convergence condition is met.

v(k)− Kbe(k) < (1 − Ka )̃i(k) + k1(k)
√∣∣∣̃i(k)∣∣∣sat(̃i(k)) (42)

Therefore, the above assumption that the trajectory of the switching function deviates
from the sliding surface does not hold, showing that when ĩ(k) → +∞ , ∀̃i(k) < 0. Similarly,
it can be shown that when ĩ(k) → −∞ , ∀̃i(k) < 0 does not hold. In other words, when
k→∞, the trajectory of the switching function does not deviate from the sliding surface,
and when the stator current error tends to 0, v(k) ≈ Kbe(k).

From Equation (33) and Equation (34), the conditions for the motion of the switching
function on the surface of the sliding mold are as follows:

v(k) = Kbe(k) ⇒ v(k + 1) = Kbe(k + 1) ⇔ e(k + 1) = Kve(k) (43)
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When the stator current error tends to 0, the expression for v(k) is obtained:

v(k) → Kbe(k) + ĩ(k) (44)

where ṽ(k) ≈ Kb(e(k) − Kve(k − 1)) − Tsk2(k)sat(̃i(k)); since Kbe(k) is bounded, ṽ(k) is
also bounded and can compensate for the error in the counter-potential estimation.

This can be obtained by substituting Kc = Kbe(k) + v(k), Kd = (1 − Ka )̃i(k) +

k1(k)
√∣∣∣̃i(k)∣∣∣ into Equation (32):

ĩ(k + 1)− ĩ(k) = −Kdsat(̃i(k)) + Kc (45)

Since 1 − Ka > 0 and k1(k) > 0, Kd > 0, ĩ(k) ̸= 0 and when k ≥ N, Kc = ṽ(k), so the slip
mode surface expression is:

ĩ(k + 1)− ĩ(k) = −Kdsat(̃i(k)) + ṽ(k) (46)

Thus, when k is greater than or equal to N, the equations of motion for the sliding
mode are always limited to ε, ensuring convergence.

The block diagram of the PMSM system based on the above variable gain super-
twisting sliding mode is shown in Figure 2. In Figure 2, ud

* and uq
* are the voltage

estimates of the d-q-axis obtained through the PI controller, while uα
* and uβ

* are the
voltage estimates under the α-β-axis obtained through the Park transformation of ud

* and
uq

*. These values are used to calculate the sliding mode parameters in the next period.
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4. Phase-Locked Loop Performance Improvement

The study focuses on position sensor-less control of permanent magnet synchronous
motors. The rotor position can be calculated directly using the inverse tangent method
by utilizing the counter-potential estimated by a sliding mode observer [24]. However, in
practice, the magnetic chain of a motor cannot be directly measured. It can only be estimated
based on a motor model, which inevitably introduces some degree of error. Additionally,
the sliding mode observer switching function causes high-frequency dithering in the
estimated counter-potential. To mitigate this issue, a low-pass filter [25] is necessary, but
it can introduce unwanted errors. To improve the accuracy of rotor position observation,
this paper proposes an adaptive quadrature phase-locked loop method to compensate for
these errors.

4.1. Design and Analysis of Basic Phase-Locked Loop

Figure 3 shows the structure of the phase-locked loop (PLL) for a permanent magnet
synchronous motor in the α-β axis system [26].
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ê

ê
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For ω̂,θ̂ is the estimated value of the motor rotor position and ∆u is expressed
as follows:

∆u = −êα cos θ − êβ sin θ (47)

Substituting Equation (47) into Equation (2) gives:

∆u = ψ f ω sin θ̂ cos θ − ψ f ω cos θ̂ sin θ

= −ψ f ω sin(θ − θ̂)
(48)

When the PI controller adjusts ∆u to θ = θ̂, it becomes possible to calculate the
estimated position of the rotor [27]. The process of parameterizing Kp and Ki in the PI
controller is as follows:

When θ − θ̂ is approximately equal to 0, the PLL structure diagram shown in Figure 3
can be simplified to Figure 4.
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In Figure 4, the open-loop transfer function is:

G(s) = ψ f G(Kp +
Ki
s
)

1
s
=

ψsω(Kps + Ki)

s2 (49)

The closed-loop transfer function is:

Φ(s) =
ψ f ωKps + ψ f ωKi

s2 + ψ f ωKps + ψ f ωKi
(50)

The typical form of a second-order system is determined by taking this as the
tuning parameter.

G(s) =
ω2

n
s2 + 2ξωns + ω2

n
(51)

The closed-loop transfer function can be calculated using the standard form of a
second-order system, resulting in the following equation.{

ψ f ωKp = 2ξωn
ψ f ωKi = ω2

n
(52)

Kp and Ki can be calculated from Equation (52).
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4.2. Design of Adaptive Quadrature Phase-Locked Loop

In the control system depicted in Figure 2, the counter-potential obtained through esti-
mation by a discrete variable gain sliding mode observer is fed into the quadrature phase-
locked loop (QPLL) for rotor position calculation [28]. Compared to a basic phase-locked
loop with a fixed bandwidth, the adaptive quadrature phase-locked loop can dynamically
adjust its bandwidth based on the rotational speed of the motor [29]. This adjustment
effectively reduces estimation errors in the rotor position and enhances accuracy in rotor
position estimation, thereby enabling proper decoupling of rotor current and resulting in
higher torque output [30]. As illustrated in Figure 5, when feeding estimated anti-potential
information into the adaptive quadrature phase-locked loop, an adaptive filter needs to be
incorporated to eliminate harmonic components present in the anti-potential information.
The transfer function of this quadrature phase-locked loop is as follows:

GPLL(s) =
êkps + êki

s2 + êkps + êki
(53)
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In order to reduce the error of the back EMF, the back EMF can be normalized by
Equation (54).

ê = ê/
√

ê2
α + ê2

β (54)

After normalizing the inverse potential, the bandwidth of the quadrature phase-locked
loop is no longer affected by the rotor speed [31]. As a result, the transfer function can be
simplified as:

GPLL(s) =
kps + ki

s2 + kps + ki
(55)

We can replace the poles in Equation (55) with Equation (56) as follows:

kp(h) = 2τρ(h)
ki(h) = ρ2(h)

(56)

where τ is the damping coefficient; ρ is the AQPLL tuning parameter; h is the discrete time
step parameter.

Because it is difficult to adjust both τ and ρ at the same time and the bandwidth of the
QPLL is related to ρ, the damping coefficient is set to a constant value in order to simplify
the calculation process. The AQPLL tuning parameter ρ is set as follows:

ρ(h) = ρ(h − 1)− µ
1
2
(

∂εe(h)
∂h(h − 1)

) (57)
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where µ is the step parameter of the adaptive speed and εe is the PI controller input error of
the QPLL.

The final equation for updating the tuning parameters can be expressed as:

ρ(h) = ρ(h − 1)− µz1(h)z2(h) = ρ(h − 1)− ∆ρ(h) (58)

where z1 and z2 parameters are set as follows:

z1(h) = ê f
αn(h) sin(θ̂e(h − 1))− ê f

βn(h) cos(θ̂e(h − 1))
z2(h) = 2τεe(h − 1) + Ts p(h − 1)(εe(h − 1)− εe(h − 2))

(59)

where
[
ê f

αn, ê f
βn

]
is the filtered counter-potential estimate.

The AQPLL logic block diagram designed based on the above analysis is shown in
Figure 6.
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4.3. Stability Analysis

To analyze the stability of AQPLL as ρ varies, we use Equation (56) in Equation (55) to
calculate the root of the AQPLL characteristic equation.

s1,2 = −τρ ± ρ
√
(τ2 − 1) (60)

According to the literature [32], the roots of the characteristic equation remain in the
left half-s plane as long as ρ > 0, indicating stability of the AQPLL system. It is difficult to
observe the counter-potential accurately when the motor is running at lower speeds, so it is
necessary to limit the minimum speed of the motor, i.e., the value of ρ:

ρ ≥ ρmin (61)

where ρmin is the minimum value of ρ that can lock the motor frequency during motor startup.
The computation of the observer gain is only possible if the observer’s dynamic

response is faster than the PMSM state change. Additionally, the observer gain is limited
by the observer state feedback [33].

.
x̂αβ = (A(ω̂e)− KC)x̂αβ + Bv∗αβ + Kĩαβ (62)

where the matrix expression for C is
[

1 0 0 0
0 1 0 0

]
;x̂αβ is the observer gain.
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Note that the observer gain in Equation (62) must be valid for the entire speed range
of the motor and the closed-loop poles must remain in the left half-s plane [34].

5. Simulation Experiments

In order to verify the effectiveness of the proposed method, fixed gain and variable
gain super-torsional sliding mode observers were constructed in MATLAB/Simulink, as
shown in Figure 2. The adaptive orthogonal phase-locked loop (PLL) method is used
to obtain the rotor position of both observers, and a PI controller is used in the speed
loop of the motor control system. Simulation experiment parameters are shown in the
following table. The horizontal coordinate in the figure below represents the time used in
the simulation, and the vertical coordinate represents the rotor speed comparison, rotor
speed error, rotor position comparison, and rotor position error.

Table 1 includes the values of the parameters used in the experiment: Rs represents
the stator resistance of the motor; VDC indicates the voltage level of the motor; Ls denotes
the stator inductance; ωrmax signifies the maximum allowable speed of the motor; power
refers to the power supply’s output. Ts represents the sampling period. Kη1, Kη2, and Kv
are constants; ωc is defined as the cut-off frequency; λpm represents a permanent magnet
flux linkage; J stands for moment of inertia; pole pairs indicate the number of poles present
in the motor structure; B represents magnetic induction intensity. ωr denotes motor speed,
while ωf signifies the filter cut-off frequency. Q is used to represent the quality factor.

Table 1. Simulation platform parameters.

Parameter Value Parameter Value

Rs 2.875 Ω λpm 0.175 Wb

Ts 0.1 ms J 0.85 mKgm2

Ls 85 mH B 0.373 mNms

Kη1 0.3861 Kη2 750

ωrmax 3000 rpm ωf 2π10 rad/s

Kv 0.999 Tioad(ωr) (0.00142ωr) Nm

VDC 300 V Pole Pairs 4

Power 100 W Q 50

Figure 7 shows the actual versus estimated speed waveforms of the output of the fixed
gain super-twisting sliding mode observer for an initial speed of 500 r/min at no load on
the motor, 1000 r/min given at 0.1 s, and 2500 r/min at 0.2 s. The output of the fixed gain
super-twisting sliding mode observer is shown in Figure 8, which shows the actual versus
estimated speed waveforms.
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Figure 8. Fixed gain STA-SMO speed error.

Figures 7 and 8 show that when fixed gain STA-SMO is used, the speed error remains
around 10 r/min because the fixed gain sliding mode parameter is calculated based on the
maximum and minimum speed of the rotor, so the speed error does not fluctuate much
when the speed varies.

Figures 9 and 10 show the estimated rotor position and the actual rotor position
information when the fixed gain sliding mode observer is used. From the figure, it can be
seen that the rotor position error increases as the motor speed increases.
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The actual speed exhibits a slight decrease relative to the reference speed when differ-
ent loads are added at 0.15 s and 0.25 s, as depicted in Figure 11 and Figure 12, respectively;
however, the error between the estimated speed and the actual speed remains constant at
10 r/min.
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The waveforms of the estimated rotor position and the actual rotor position with loads,
along with their corresponding position errors, are depicted in Figures 13 and 14. The
obtained results indicate that under different load conditions, when estimating the rotor
position using a fixed gain approach, the position error is approximately 2 radians at 0.15 s
and around 4 radians at 0.25 s.
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Figures 15 and 16 show the motor speed and the actual speed information estimated
using the variable gain super-twisting sliding mode observer for a given speed variation
when the motor is unloaded.
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Figure 16. Variable gain STA-SMO speed error.

As shown in Figure 15, the variable gain super-twisting sliding mode observer not only
eliminates the high-frequency jittering observed in Figure 7, but also results in improved
convergence of the estimates to the true values. As can be seen from the enlarged view of
Figure 16, the maximum error is only 0.6 r/min when the given speed is 500 r/min. When
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the 0.1 s speed is 1000 r/min, the speed error is only 1 r/min. And when the motor is in the
high-speed domain at 2500 r/min, the speed error is only 2 r/min.

From Figures 17 and 18, it can be seen that the rotor position error is always kept small
when the rotational speed is at 500 r/min, 1000 r/min, and 2500 r/min, respectively.
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From the comparison between Figures 10 and 18, it can be seen that the rotor position
estimation accuracy is higher and the position estimation error is reduced by half when the
variable gain super-twisting sliding mode observer is used.

To verify the stability of the variable gain super-twisting sliding mode observer with
load, a load of 4 N-M was added at 0.15 s and raised to 10 N-M at 0.25 s. The rotational
speed and positional errors were observed for a given constant rotational speed.

From Figure 19, it can be seen that the estimated and actual speed decreases by
10 r/min when the load is applied suddenly at 0.15 s and stabilizes to 998 r/min at 0.152 s.
Likewise, when the load is abruptly increased at 0.25 s, the speed will decrease by 150 revo-
lutions per minute and will stabilize after 0.01 s. From Figures 20 and 21 it can be seen that
sudden loading has no effect on the speed error and rotor position error, which also shows
the observation accuracy of this observer with a load.
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Figures 20 and 22 Everyone has agreed demonstrate the performance of the variable
gain STA-SMO under loads. The variable gain module reacts quickly to sudden load
additions at 0.15 s and 0.25 s by adjusting the sliding mode control rate in real-time based
on the rotor speed change. The simulation results show that the variable gain STA-SMO
can accurately estimate the rotor speed and position under various operating conditions of
the motor.
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6. Conclusions

A sensor-less estimation method of a permanent magnet synchronous motor based
on a discrete variable gain super-twisting sliding mode observer and adaptive orthogonal
phase-locked loop is proposed. The signal estimated by the discrete variable gain super-
twisting sliding mode observer can effectively avoid buffering, and can quickly track
the rotor speed and position in real time, so as to minimize the error between the actual
value and the estimated value. The parameters in the adaptive orthogonal PLL can also
be adjusted according to the motion state of the rotor, which effectively improves the
problem of the poor tracking performance of the rotor caused by the fixed bandwidth in the
traditional PLL. The simulation results show that the speed error of the fixed gain observer
is about 10 r/min when the speed is 500 r/min, 1000 r/min and 2500 r/min, while the
speed error of the variable gain observer is only 1 r/min. Therefore, the performance of the
variable gain observer in rotor speed estimation is better than that of the fixed gain observer.
In terms of rotor position estimation, the rotor position error shown by the variable gain
observer is only half that of the fixed gain observer. Moreover, when the system speed is
switched, the response time required by the variable gain observer is shorter and closer to
the actual situation. In order to further study the observation of the proposed estimation
method under loads, different loads were added at 0.15 s and 0.25 s, respectively. The
simulation results show that under the influence of a load, the estimated performance
of rotor speed and position is not weakened, and the error between the estimated value
and the actual value is the same as that when the load is 0, so the rotor position can be
controlled with high precision.
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