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Abstract: Ensuring pedestrian safety is one of the most significant challenges for autonomous driving
systems in urban scenarios due to the non-cooperative and unpredictable nature of pedestrian
movements. To tackle this problem, firstly, we propose a collision avoidance strategy based on
entropy-increasing risk perception in a vehicle–pedestrian reaction space. Our approach combines
a limited range of reaction space regions with entropy to quantify the risk of pedestrian–vehicle
collision. Then, multi-vehicle candidate trajectories are generated using the path and speed sequence
method, and the uncertain states of pedestrians are predicted based on the social force model and
Markov model accordingly. Finally, to determine the optimal collision avoidance trajectory, we
use quantitative reaction-space entropy as a new “cost function” to measure potential risk and
perform multi-objective trajectory optimization based on the elitist non-dominated-sorting genetic
algorithm region-focused (NSGA-RF) approach. Simulation results show that our proposed strategy
can enhance the safety of the planned trajectory interaction between vehicles and pedestrians for
autonomous driving under normal and emergency conditions.

Keywords: pedestrian safety; vehicle–pedestrian reaction space; entropy-increasing risk perception;
non-dominated-sorting genetic algorithm; autonomous driving

1. Introduction

As typical vulnerable road users, pedestrians’ safety is a critical transport concern,
as there is a high occurrence of vehicle–pedestrian collision incidents due to the non-
cooperative and unpredictable nature of pedestrian movements. For this reason, researchers
have been working diligently to develop more effective vehicle–pedestrian interaction
prediction and anti-collision mechanisms. Many researchers have conducted extensive
research in the field of autonomous-driving collision avoidance. Model predictive control
(MPC) has an advantage in vehicle dynamics as it deals with multiple constraints of con-
trol objectives input depending on the optimization algorithms [1]. Therefore, collision
avoidance control systems based on MPC have received substantial attention. For example,
in [2], H. Li, et al. presented a control strategy that integrates four-wheel steering and
utilizes adaptive model predictive control (AMPC) to implement collision avoidance, and
in [3], S. Cheng et al. divided the driving state into three categories and adjusted the weight
of the MPC cost function based on different driving states. Meanwhile, advancements
in computer technology and artificial intelligence (AI) have accelerated the research on
collision avoidance. Early models such as the time-to-collision acceleration model [4] and
its subsequent improvements [5,6] incorporated probability theory to predict the likeli-
hood of collision avoidance with obstacles [7,8]. Utilizing probabilistic models such as
the Bayesian network [9] and the Markov model [10] provided trajectory routes that were
generated through a combination of path-planning algorithms and applied to various
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road-interaction scenarios. Some of the primary path-planning algorithms included A*,
polynomial, and ant-colony algorithms [11–13], while others utilized curve fitting [14]. Ad-
ditionally, researchers have proposed extracting contextual information from smartphones
and wireless networks, such as Wi-Fi, in developing collision avoidance methods and
related security systems [15–17]. Other studies analyzed the constraints between different
variables, such as vehicles, bicycles, pedestrians, road conditions, and vehicle speeds, and
developed corresponding theoretical methods [18–20]. Then, with the rapid advancement
of communications technology, multi-vehicle cooperative collision avoidance was pro-
posed: for example, multiple-vehicle cooperation and collision avoidance (MVCCA) [21]
and reinforced cooperative autonomous-vehicle collision avoidance (RACE) [22]. However,
it is important to note that these studies were primarily concentrated on vehicle decision-
making and trajectory action, with little attention paid to the unpredictability of pedestrian
motion. Collision avoidance research must give consideration to both pedestrians and
vehicles as they are major participants within a traffic system. With AI algorithms, some
studies utilized convolutional neural networks to predict behavior trajectories [23–26],
while others used deep reinforcement-learning algorithms to improve the accuracy of tra-
jectory predictions [27–31]. Pedestrian behavior on the road is highly random, significantly
increasing the challenge of collision avoidance, especially when uncertain factors arise
during emergencies and increase the risk of collisions. In [32], researchers divided behavior
models without interactions into unstructured walking models with known goals and
behavior prediction with unknown goals. Because pedestrians exhibit non-cooperative
behavior, there is a need to further improve the degree of coincidence between predicted
and actual traffic rule outcomes [33,34], especially in emergency situations.

To tackle the above challenges, we propose an active collision avoidance strategy for
autonomous vehicles that incorporates risk perception constructed through the integration
of reaction-space entropy. This results in a series of trajectories generated by combining path
and speed planning while considering pedestrian–vehicle interaction through a probability
model to predict pedestrian positions. Stability and safety requirements are combined with
quantified reaction-space entropy to be used as cost functions for trajectory evaluation.
Lastly, a series of simulations are performed to validate the effectiveness of the proposed
collision avoidance strategy. Figure 1 illustrates the specific architecture process.
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Our main contributions are summarized as follows:

(1) A collision avoidance strategy based on reaction-space regions with entropy-increasing
risk perception is proposed.
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(2) Path and speed sequences are adopted to generate candidate trajectories while pre-
dicting the uncertain states of pedestrians based on the social force model and the
Markov model.

(3) Response-space entropy is used as a new cost function to measure the collision risk
and to optimize multi-target trajectories while considering factors of entropy, safety,
and stability.

This paper is divided into seven sections. The current status of pedestrian collision
avoidance trajectories in autonomous driving systems is described in Section 1. The
representation of the reaction space and the quantification of entropy are introduced in
Section 2. Section 3 generates candidate trajectories through path planning and speed
planning. In Section 4, a vehicle–pedestrian interaction model is constructed by integrating
the reaction space with predictions of pedestrian positions. Section 5 introduces the
selection of the optimal trajectory using the NSGA-RF algorithm through cost functions.
The simulation and result analyses are presented in Section 6. Section 7 presents the
conclusion and suggests future directions from this paper.

2. Related Work

Collision avoidance mechanisms are largely influenced by the timing and strategy of
decision-making. This involves an increasing amount of cognitive processing for decision-
making due to the complexity of changes in the driving environment. To simplify this
challenge, we use a vehicle–pedestrian reaction space and the entropy quantification
method to compute the collision risk map.

2.1. Reaction Space Constraints

To ensure that autonomous vehicles have sufficient time to process information and
provide appropriate feedback, the response space description must accurately reflect the
current driving state and situation in time. In [35,36], the reaction space Z has been defined
as an area that the vehicle can reach within a future time period of k seconds. The range of
this space is determined both by the position of the vehicle within t seconds in the future
and by its theoretical state parameters. As shown in Figure 2, the curve boundary of the
reaction space is determined by the maximum centrifugal acceleration ac that is produced
as a result of vehicle resistance. The space appears as a closed area when the vehicle is
operating at a constant speed without major state changes, thereby indicating that the
vehicle is not interacting with other road users. In this area, the vehicle is contained within
the dotted line corresponding to its radius at a consistent speed, while the outer solid line
represents the circle formed by the distance radius along the x-axis during the time period
t. The mathematical expression of the dotted line in the coordinate system can be given as

x =
v2

0
fmaxg cos( fmaxgt

v0
)

y = B
2 +

v2
0

fmaxg sin( fmaxgt
v0

)
(1)

where v0 is the initial speed, with units of m/s; g corresponds to the gravitational accel-
eration, with units of m/s2; B is the width of the vehicle, with units of m; and fmax is the
maximum achievable friction coefficient between the tire and the road. The radius forming
the solid part of the circle can be described as

xr =
∫ T

0 ( fmaxg + ar)tdt
yr = 0

(2)

where ar is the instantaneous deceleration of the vehicle, with units of m/s2; t and T,
respectively, correspond to the time when the vehicle speed becomes zero and the time
when the vehicle is in a certain position at a certain time in the future. Here, T can be
assumed as the time when the vehicle arrives at the predicted area of a potential collision
with pedestrians, during which the speed of the vehicle may not be zero.
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In summary, we can obtain the following closed reaction space Z, i.e., where all
positions inside the area are accessible to the vehicle.

2.2. Entropy Quantification and Collision Risk Perception

The regional interaction of road users in an autonomous driving system is a dynamic
and complex process. The nature of collision depends on the state of road users in the
construction of the system and the dynamic sequence between them, transforming it into
the entropy theory. The concept of entropy was proposed by the German physicist Rudolf
Clausius in 1867 [37]. Entropy can be used to measure the level of organization and
chaos, consistency and diversity, and disorder in different systems and fields of science.
In the macroscopic state of thermodynamics, entropy represents the degree of irregular
arrangement between particles in a system composed of a large number of particles. The
more “chaotic” the system is, the greater the entropy will be. It means that if the macroscopic
state of a system is specified, the value of entropy can be determined. The application of
entropy involves exploring the complexity of urban construction or illustrating its use for
monitoring and management in urban sprawl research [38]. However, entropy is rarely
applied to measure collision risk in a transportation system.

Entropy is a measure of chaos in a system, which can be defined as the product of the
probability of a specific system entity state and the quantity defining the physical properties
of the system, i.e.,

S = −k∑n
i=1 p(xi) lnp(xi) (3)

where p(xi) is the probability function that the system entity appears in a specific state xi,
n is the total number of possible states, and k is a constant defining the physical properties
of the system. To combine the actual situation, we define the following parameters:

(1) θ is a vector representing the existence of the entity in the constrained reaction-
space area.

(2) P(θi) is the probability of the existence of the ith entity, referring to the ith pedestrian
involved in the vehicle reaction space.

(3) ψj is defined as the j unique interaction vector between the ith entity (pedestrian) and
the vehicle.

(4) P(ψj) is the probability of each vector j interaction, which is considered as the proba-
bility of collision of the pedestrian interacting with the vehicle at different positions in
the reaction space.

It should be noted that when there is no pedestrian in the reaction space, the probability
of P(θi) is zero, and the probability of interaction between the corresponding entities P(ψj)
is also zero. In summary, the reaction-space entropy we described can be expressed as

S(θ, ψ) = −1
k ∑m

i=1 ∑n
j=1 (P(θi) ln P(θi) + P(ψi) ln P(ψj)) (4)



World Electr. Veh. J. 2024, 15, 180 5 of 18

It should be noted that this paper considers only one pedestrian in the reaction space,
which refers to the condition in which P(θi) = 1, representing the entropy of the reaction
space of the potential collision interaction behavior between the vehicle and the pedestrian.
The expression can be simplified as

S(θ, ψ) = −1
k ∑n

j=1 ln P(ψj) (5)

At this time, P(ψj) can be defined as the probability of pedestrians appearing in
different positions in the reaction space at the moment of collision. Under this condition,
the value of the response-space entropy based on the predicted pedestrian position should
be an uncertainty constant greater than or equal to zero. After selecting a specific vehicle
trajectory in the generated candidate trajectory sequence, the position and probability of the
corresponding pedestrian in the collision prediction area under this trajectory are inferred
from considering the interaction between the vehicle and the pedestrian.

The area Sz of the reaction space at the corresponding time can be used to replace
the calculation constant k in (5). Then, the entropy of the system indicating the risk of the
pedestrian–vehicle collision in this state can be obtained as

S(θ, ψ) = − 1
sz

∑n
j=1 ln P(ψj) (6)

Under different trajectories, the location probabilities of pedestrians, as well as the
entropy of the system, will be different. The reaction-space entropy of the system can be
used as a cost function to evaluate the candidate trajectories, which help to evaluate the
optimal trajectory when combined with multi-objective optimization.

3. Generation of Candidate Trajectories

This section will explain the path-planning method based on the fifth-order polyno-
mial [12] to fully consider the continuity information of vehicle speed, acceleration, and
pedestrian uncertain dynamic factors. It is necessary to realize that the speed planning of
the vehicle is also very important. To ensure the safety of the trajectory, i.e., no collisions,
the speed of the vehicle must be stable, and the selection of the steering angle should
be smoother.

3.1. Path Planning

In the path-planning process, the state of the vehicle planned by candidate trajectory l
at moment i can be described as

sveh,l
i = (xveh

i , yveh
i , vveh

i , αveh
i ) (7)

where xveh
i and yveh

i refer to the coordinates of the vehicle’s position at moment i, while
vveh

i and αveh
i , respectively, correspond to the velocity and the angle between the vehicle’s

trajectory and the y-axis at moment i.
During the dynamic interaction between pedestrians and vehicles on urban roads,

although it is challenging, and even impossible, to precisely predict the precise future
motion of transportation vehicles, it is feasible to estimate their future approximate motion
over a short period of time by utilizing a set of potential trajectories [39]. In addition, the
continuous path generated by the planning should be as smooth as possible relative to
the previous position point, ensuring safety while meeting the boundary constraints. The
quintic polynomial path-planning method can satisfy the constraints of speed, acceleration,
displacement, and other conditions related to each trajectory point for continuous re-



World Electr. Veh. J. 2024, 15, 180 6 of 18

planning. The specific path-planning equation incorporating the vehicle model and the
parameters defined above can be given as

.
xveh

i = vveh
i cos θveh

i
.
yveh

i = vveh
i sin θveh

i
.
θ

veh
i = vveh

i klim

(8)

where θ and k are, respectively, the heading angle of the vehicle and the curvature of the
candidate path at the current moment, and klim is the limit value of the steering limit
imposed by the vehicle.

k =

.
xveh

i
..
yveh

i − ..
xveh

i
.
yveh

i

((
.
xveh

i )
2
+ (

.
yveh

i )
2
)

3
2
≤ klim (9)

The position information of the above-mentioned fifth-degree polynomial path-planning
algorithm in the Cartesian coordinate system conforms to the following:

y(xveh
i ) =

{
∑5

τ=0 aτxτ , (x ∈ [0, x f inal))
y f inal , (x ≥ x f inal)

(10)

where aτ is the polynomial equation coefficient, while x f inal and y f inal are the horizontal
and vertical position parameters of the final point of the collision-avoidance planning
trajectory, which are satisfied by

y(0) = yi.
yx=0 = tan θveh

i
..
yx=0 = 1..

x(t)
[
..
y(t) −

..
x(t)

.
y(t)

.
x(t)

]
t=0.

y(x f inal) = 0
..
y(x f inal) = 0

(11)

where yi represents the initial coordinate position along the y-axis of the coordinate system
established in a planning cycle, θveh

i is the initial heading angle of the vehicle in the
corresponding cycle,

.
x(t) and

..
x(t) are the corresponding longitudinal velocity and the

acceleration of vehicle, and
.
y(t) and

..
y(t) are the lateral velocity and acceleration in the

established coordinate system. In practice, these parameters can be directly obtained by
the onboard sensory equipment, and these are not studied in this paper. In the actual
simulation experiment, the relevant data can be assigned according to the specific situation.

Figure 3 shows the process of using a fifth-degree polynomial for continuous path-
planning updates in real time. When the autonomous vehicle enters the range of sensors
at moment t0, it will obtain the state parameters about the vehicle and pedestrian. After
that, a series of alternative paths will be planned, and a temporary trajectory that best
meets the constraints, Ltra

k1
, will be determined. Then, the subsequent cycles will be globally

re-planned based on the data of the previous cycle until the interaction process of collision
avoidance is completed. Among them, Ltra

k1
stands for different vehicle trajectories, and Sveh

ti
represents the vehicle-state information parameter corresponding to the track index time.
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3.2. Velocity Planning

Velocity planning impacts both vehicle stability and driver comfort. Path-planning
methods introduced in [39] did not address velocity planning, whereas in [10,27,28], veloc-
ity planning was only considered as a uniform velocity or uniform acceleration process.
To enhance the driver’s comfort level, we present a method that generates a smooth
trapezoidal acceleration profile to derive the integral velocity curve. We employ a cubic-
polynomial spline function from [40] to smooth the linear-velocity distribution and to
ensure the further continuous adaptation of the speed–acceleration curve. We quantify
speed safety by selecting the parameter Csv as the speed-risk safety factor based on the
pedestrian–vehicle collision injury risk curve outlined in [41]. We graph the velocity plan
and the smoothed speed profile during deceleration, as shown in Figure 4.
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Figure 4. Schematic diagram of the velocity plan and smoothed speed profile during deceleration.
(a) The curve of acceleration changes during deceleration and braking. (b) Velocity planning diagram.
(c) Schematic diagram of smooth-velocity planning.

In Figure 4, tab represents the driver’s reaction time before braking, and tbc represents
the time for the braking system to overcome the braking gap.

The vehicle speed and driving state during this period can be expressed as

v(t) = vveh(0)
x(t) =

∫ t
0 v(t)dt

Xbc =
∫ tbc

0 v(t)dt
(12)

where v(t) is the speed function of the vehicle, x(t) is the displacement function of the vehi-
cle, Xbc is the displacement of the vehicle along the x-axis during this period, vveh(0) is the
initial speed of the vehicle, and tcd is the period of a rapid increase in braking acceleration
after the braking system overcomes the braking gap. The speed and displacement of the
corresponding vehicle can be expressed as

v(t) = vveh(0)−
∫ t

tc
a(t)dt

x(t) =
∫ t

tc
v(t)dt + Xbc

Xcd =
∫ tc+tcd

tc
v(t)dt

(13)
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where a(t) is the acceleration function of the vehicle, Xcd is the displacement of the vehicle
along the x-axis during this period, and tde refers to the time of continuous braking. To
ensure safety, the vehicle speed should be reduced to a controllable level as soon as possible.
The vehicle maintains maximum braking deceleration to reduce the speed to a controllable
velocity [41]. This helps prevent pedestrians from sustaining injuries and improves the
accuracy of predicting pedestrian trajectories. During this period, the speed of the vehicle,
the time of continuous braking to reduce to a safe speed, and the displacement of the
vehicle can be expressed as

v(t) = vveh(td)−
∫ t

td
abmaxdt

tde =
vveh(0)−0.5abmax·tcd−vs

abmax

x(t) =
∫ t

tb
v(t)dt + Xbc + Xcd

Xc =
∫ td+tde

td
v(t)dt

(14)

where abmax is the maximum braking deceleration under normal conditions.
When the braking deceleration becomes zero, the vehicle should run at a constant

speed within the safe range to complete the collision avoidance process. For the period of
te f , the state parameters can be expressed as

v(t) = vs

x(t) =
∫ t

tbe
v(t)dt + Xde + Xcd + Xbc

te f =
xped(0)−Xs−Xcd+Xbc

vs

(15)

where xped(0) is the initial position coordinates of the pedestrian in the x-axis direction. It
can be concluded that the period during which the vehicle detects a pedestrian entering
the potential collision area ttcz is used to predict the pedestrian motion probability in the
next section.

ttcz = tbc + tcd + ted + te f (16)

Based on the above process, the braking-speed curve at each stage can be obtained. To
enhance the stability and comfort characteristics, we use a cubic polynomial to simplify the
parameterization of the speed profile to obtain a further smoothed speed curve as [40,42]:

vsmooth(t) = v0 + at + bt2 + ct3 (17)

According to (17), the first-order derivative and integral are performed on the velocity
expression of each stage, and the corresponding acceleration asmooth(t) and the correspond-
ing path length x(t) can be obtained. Given the initial velocity v0 and the corresponding
acceleration a0, the smoothened velocity vsmooth(t) can be analytically solved by the follow-
ing equations:

vsmooth(t) = v0 + ats + bt2
s + ct3

s
asmooth = a + 2bts + 3ct2

s
x(ts) = v0ts +

1
2 at2

s +
1
3 bt3

s +
1
4 ct4

s

(18)

Based on these, we can obtain the deceleration and speed curves at different stages,
as well as the smoothened speed curves and the corresponding time series. To generate a
series of candidate trajectory sequences, i.e., Ltra

k , the path in Section 3.1 above should be
combined with the velocity profile of the corresponding time series as follows:

Ltra
ki

= (y f inal,ki
, vs,ki

) (19)

4. Construction of a Vehicle–Pedestrian Response-Space Entropy Interaction Model

This section discusses probabilistic prediction methods to estimate pedestrian lo-
cations, particularly considering the interactions between vehicles and pedestrians. By



World Electr. Veh. J. 2024, 15, 180 9 of 18

combining the previously established reaction-space entropy, we can describe the collision
risk between vehicles and pedestrians during the road interaction process.

4.1. Pedestrian Position Probability Prediction

To prevent accidents, autonomous vehicles must communicate with other road users
and deduce their intentions. Of all the road users, pedestrians are the most vulnerable due
to their uncertain behaviors, and accordingly, they demand a higher priority consideration
when implementing collision avoidance strategies. To address this challenge, this study
employs a vehicle–pedestrian interaction model [43,44]. Under this model, pedestrians are
deemed independent agents whose movements follow an undisturbed Markov process
under the conditions of limited vehicle speed, vehicle–pedestrian distance, and road
boundaries. The social-force model is utilized to measure the influence of the vehicle on
the position and velocity of pedestrians within a particular trajectory, allowing for the
determination of vehicle–pedestrian forces at any given point. By estimating pedestrian
state parameters and their subsequent movement as a function of calculated forces, it is
possible to obtain a trajectory. Our approach assumes that a pedestrian’s path is nearly
a straight line, driven by the desire to cross the road rapidly. Additionally, this paper is
based on the assumption that the initial longitudinal distance between the pedestrian and
the vehicle is known, and that road boundary constraints are identifiable [45,46].

Figure 5 shows the influence of vehicle trajectory on pedestrians. Under the condition
whereby the pedestrian is not affected by the outside world, it can describe a free-movement
force by itself in Figure 5a. After constructing the superposition of the mapping force of the
vehicle to the pedestrian at any time, the following expression can be given:

FPed
i = Ftotal = c + FVeh2Ped (20)
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free-movement diagram; (b) The pedestrian is affected by the influence of the vehicle and the
pedestrian itself.

In Figure 5, α is the angle between the vehicle and the pedestrian connecting line
and the y-axis at moment i; in the blue-lined frame, FPed f ree represents the force state
of pedestrians under free movement; the orange-lined frame represents the pedestrian’s
superimposed force state; FVeh2Ped

i represents the mapping force of the vehicle to the
pedestrian state received by the pedestrian at moment i; and the final force Ftotal of the
pedestrian depends on the superposition of the vector sum.

The movement of a pedestrian is uncertain. The Markov process is a random pro-
cess [47], in which the result of the next moment depends on the state of the current
moment, which can describe the pedestrian’s undisturbed motion state as

yPed
i+1(t) = yPed

i (t) + ∆y
vPed

i+1(t) = vPed
i (t) + ∆v

(21)

where yPed
i+1(t) denotes the pedestrian’s position along the y-axis as a function of time at

moment (i + 1), vPed
i+1(t) is the pedestrian’s speed as a function of time at moment (i + 1),

and ∆y and ∆v are, respectively, the position and speed variation caused by the pedestrian’s
step during this time interval. Assuming that a pedestrian walks in an almost-vertical
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direction while crossing the road, his/her speed along the y-axis as a function of time
satisfies the following:

vPed(t) =
.
yPed

(t) (22)

If the pedestrian moves at a constant speed during this period, the change in pedestrian
step speed and position can be given as:

∆vped = −φ[vped(t)− v] + ε (23)

where φ and v are, respectively, the speed variation coefficient and the average speed of
the pedestrian, and ε is the random fluctuation of pedestrian movement, which conforms
to the probability distribution law of the Gaussian model.

Combining the results in [48] with the simulation of pedestrian gait, motion scene
analysis, and the laws of mechanics, the following expression can be derived:

FPed f ree = m · dvped f ree(t)
dt

FVeh2Ped = φv2pexp[γv2p · (rv + rp − dvp)]
(24)

where m is the simulation quality of pedestrians, vPed f ree(t) is the speed function of pedes-
trians in a free-motion state, rv is the safe driving radius of the vehicle, rp is the safe walking
radius of the pedestrian, and dvp is the real-time distance between the pedestrian and the
vehicle, while φv2p and γv2p are the strength and distance coefficients of the interaction
force between the pedestrian and the vehicle. For specific values, one can refer to [48]. The
state parameter of the pedestrian can be set as

SPed
i = (xPed

i , yPed
i , vPed

i ) (25)

where xPed
i , yPed

i , and vPed
i , respectively, correspond to the horizontal and longitudinal

coordinate positions and the velocity of the pedestrian at moment i.
The analysis of the force model can be combined with the probability prediction

method to predict the uncertain motion of the pedestrian. Figure 6 shows the probabilistic
prediction process for the pedestrian’s location. In Figure 6, turquoise indicates the state
parameters at each moment in the collision avoidance process; the parameters pointed
to by the blue arrow are the superimposed forces on the pedestrian at the corresponding
moments, and the red arrow points to the blue area to indicate the status of the pedestrians.
Using the candidate trajectory planned in Section 3, the state of the vehicle parameters at
any time can be obtained. By analyzing the mapping force between the pedestrian and
the vehicle, the comprehensive force FPed

i of the pedestrian at each moment are obtained,
and then the acceleration of each step of the movement can be calculated. Therefore, the
next stage of the pedestrian can also be obtained. Finally, through continuous iterations
to obtain the state of the pedestrians at the last collision moment, the probability of the
pedestrian position is predicted. This will be input data to calculate the reaction-space
entropy of the corresponding trajectory.
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In Figure 7, the initial distance between the vehicle and the pedestrian is 10 m, the
speed of the vehicle is 40 km/h, and the different paths are set at different safe speeds.
Among them, the red path was set to 20 km/h and the blue path was set to 30 km/h, while
the black path was set to 40 km/h. As shown in Figure 7, the probability prediction results
for the corresponding pedestrian positions under the three given paths can be obtained.
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4.2. Collision Hazard Perception Based on the Reaction-Space Entropy

In this subsection, a schematic diagram of collision risk perception, as shown in
Figure 8, is constructed based on the reaction-space entropy. The trajectory planned and
the pedestrian position probability predicted in the previous sections are combined with
specific trajectories in the process of the vehicle–pedestrian simulation interaction. In
the experimental verification, this paper randomly selects candidate trajectories under
different simulation conditions and gives the results of speed and path planning at the
corresponding time and entropy of the corresponding collision risk evaluation.
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Figure 8 depicts the real-time evolution of collision occurrences during the mutual
influence of both the reaction area of a vehicle driving at the present speed and the pedes-
trians crossing the road. The different colors in Figure 8 indicate the probability of collision
in the corresponding area at the current moment. For example, red indicates the great-
est degree of danger while green refers to safety, and yellow denotes a level of danger
somewhere in between red and green. The size of the reaction space varies with speed,
and the evaluation of the trajectory does not entirely depend on the entropy size. As a
whole, it must also be combined with the stability, the range of the reaction space, and the
comprehensive constraints of the road boundary.
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5. Objective Evaluation of Candidate Trajectories

In this section, we will discuss the evaluation and optimization of candidate trajectories.
Considering the safety and the stability of the vehicle, different cost functions are set, and
the weights of Jc, Jd, and Js are taken to determine the optimal trajectory according to the
actual situation.

5.1. Cost Functions for the Perceived Risk

The distance between pedestrians and vehicles on a road is the most intuitive indicator
for measuring their safety. Under permitted conditions, the farther this distance is, the safer
both users will be. In the process of collision avoidance, the longitudinal distance between
the vehicle and the pedestrian can be expressed as

dcp(t) = [(xv(t)− xped(t))
2 + (yv(t)− yped f (t) + ypedvp(t))

2]
( 1

2 ) (26)

Csv is the velocity safety coefficient. Hence, the cost function of measuring safety is
shown as

costd(Ltra
i ) =

Csv
dn

vp − rveh − rped
(27)

where dn
vp is the relative distance between the pedestrian and the vehicle at the final moment

of collision avoidance n, rveh is the safe driving radius of the vehicle, and rped is the radius
to replace the range of position occupied by the pedestrian.

The vehicle may easily become unstable if the steering range is too large when it is
performing collision avoidance operations, which will yield to an uncomfortable driving
experience. Therefore, considering the smoothness of the trajectory, the curvature integral
of the candidate trajectory should be used to measure the comfort and stability of the
vehicle, i.e.,

costd(Ltra
i ) =

Csv
dn

vp − rveh − rped
(28)

where k(Ltra
i (s)) is the curvature value of the candidate trajectory Ltra

i at moment i during
the collision avoidance process. kmax is the maximum value of the curvature, which is also
the boundary of the reaction space [35].

Since the vehicle encounters complex and varying situations on the road, careful
consideration of safety and stability in combination with the entropy value of the reaction
space, described in the previous section, can make up for the shortcomings of a single
limitation in a comprehensive measure. Therefore, the overall evaluation should also satisfy
the criteria that the entropy of the regional response space under a certain trajectory be
limited to a safe range, i.e.,

costs(Ltra
i ) = Ski

(θ, ψ)Ltra
i

= − 1
sz

∑n
j=1 ln P(ψj)Ltra

i

(29)

Due to the different evaluation angles, it is impossible to adopt a single evaluation
value as a standard. Hence, different values need to be considered in forming the “per-
ceived risk” cost function of the collision avoidance process. In practice, weighting factors
can be used to make empirical adjustments based on behavioral decision-making and
results analyses.

In the future, machine learning can be used to adaptively adjust these cost functions to
achieve the best matching results. Based on the consideration of the previously mentioned
factors, the integrated cost function of the collision risk can be given as

Cost(Jp, Ltra
ki
) = Jd · costd(Ltra

i ) + Jc · costc(Ltra
i ) + Js · costs(Ltra

i ) (30)
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5.2. Optimal Trajectory Search Based on the NSGA-RF Algorithm

In the multi-objective optimization problem, each objective usually restricts the oth-
ers. The performance of one objective is often improved at the cost of other objectives’
performance. It means that there must be some relative weights for them. As the name
reveals, the optimization algorithm called the non-dominant-sorting genetic algorithm
(NSGA-II) is developed based on a genetic algorithm [49]. It adds fast non-dominated
sorting methods and an elite strategy to improve the computational complexity. Population
diversity also achieves fast and accurate search performance [50]. To prevent the traditional
multi-objective optimization method from falling into the optimal local solution in the
optimization process, we adopt an improved NSGA-RF, inspired by [51]. This is based
on a region-oriented, elite, and non-dominated-sorting genetic algorithm that limits the
analysis area to the nearby point of interest, achieving a faster search performance and a
lower calculation cost.

Following the speed and path planning explained in the previous sections, as well
as the response-space entropy constraints, the safe speed and the corresponding path
can be named as the two decision variables of the Pareto solution set, which correspond
to safety and stability in the trajectory optimization process. The cost function and the
entropy of the reaction space are set to three target values. The optimal trajectory under
the given constraints can be filtered based on this algorithm. In the iterative process of
the algorithm, the results that exceed the vehicle’s limited reaction space and the speed-
change constraints are eliminated. Figure 9 shows the specific algorithm flow, in which the
optimized parameter corresponds to a series of trajectories obtained beforehand, which is
then combined with the path and the corresponding speed. In the optimization process,
the reference speed of each node is set to the safe speed vs, and the (optimization) reference
value of the path is taken as the lateral coordinates of the vehicle. The reason for this is that
it can directly measure the risk of collision in a local area.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 15 of 21 
 

( , ) ( ) ( ) ( ) +  + =
i

tra tra tra t

c s s

ra

p k d d i c i iCost J L J cost L J cost L J cost L  (30) 

5.2. Optimal Trajectory Search Based on the NSGA-RF Algorithm 

In the multi-objective optimization problem, each objective usually restricts the oth-

ers. The performance of one objective is often improved at the cost of other objectives’ 

performance. It means that there must be some relative weights for them. As the name 

reveals, the optimization algorithm called the non-dominant-sorting genetic algorithm 

(NSGA-II) is developed based on a genetic algorithm [Error! Reference source not 

found.]. It adds fast non-dominated sorting methods and an elite strategy to improve the 

computational complexity. Population diversity also achieves fast and accurate search 

performance [Error! Reference source not found.]. To prevent the traditional multi-objec-

tive optimization method from falling into the optimal local solution in the optimization 

process, we adopt an improved NSGA-RF, inspired by [Error! Reference source not 

found.]. This is based on a region-oriented, elite, and non-dominated-sorting genetic al-

gorithm that limits the analysis area to the nearby point of interest, achieving a faster 

search performance and a lower calculation cost. 

Following the speed and path planning explained in the previous sections, as well as 

the response-space entropy constraints, the safe speed and the corresponding path can be 

named as the two decision variables of the Pareto solution set, which correspond to safety 

and stability in the trajectory optimization process. The cost function and the entropy of 

the reaction space are set to three target values. The optimal trajectory under the given 

constraints can be filtered based on this algorithm. In the iterative process of the algorithm, 

the results that exceed the vehicle’s limited reaction space and the speed-change con-

straints are eliminated. Figure 9 shows the specific algorithm flow, in which the optimized 

parameter corresponds to a series of trajectories obtained beforehand, which is then com-

bined with the path and the corresponding speed. In the optimization process, the refer-

ence speed of each node is set to the safe speed sv , and the (optimization) reference value 

of the path is taken as the lateral coordinates of the vehicle. The reason for this is that it 

can directly measure the risk of collision in a local area. 

 

Figure 9. NSGA-RF flow chart of the multi-objective optimization algorithm. 

6. Simulations and Results Analysis 

In this section, we will conduct a set of simulations in the CARLA simulator (Center 

for Computer Vision, Autonomous University of Barcelona, Barcelona, Spain), under var-

ying conditions to validate the effectiveness of the proposed collision avoidance strategy. 

By testing the cost function for different initial positions and velocities of the vehicle, the 

Figure 9. NSGA-RF flow chart of the multi-objective optimization algorithm.

6. Simulations and Results Analysis

In this section, we will conduct a set of simulations in the CARLA simulator (Center
for Computer Vision, Autonomous University of Barcelona, Barcelona, Spain), under
varying conditions to validate the effectiveness of the proposed collision avoidance strategy.
By testing the cost function for different initial positions and velocities of the vehicle,
the reliability of the collision avoidance strategy can be determined. Finally, we will
compare the results with those obtained from the traditional automated emergency braking
(AEB) system.
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6.1. Simulation and Parameter Selection

The risk of pedestrian fatality rapidly increases at a velocity of 40 km/h for both sedans
and light passenger cars [38]. There are three conditions in the simulation settings related
to this part, which include the normal range, emergency range, and critical braking range.
In an urban road scenario, the first scene is described as the vehicle and the pedestrian
moving in the vertical direction; the distance between them along the x-axis d0

cp is 20 m,
and the initial speed vveh

0 of the vehicle is 40 km/h and 50 km/h for the corresponding
simulation groups, namely A(1) and A(2). Then, the second group of the vehicle is set to
the same speed, but the distance along the x-axis is changed to 10 m for the groups called
B(1) and B(2). The analysis shows that the initial distance is not out of the safe braking
range under conditions A(1) and A(2). The initial distance between the pedestrian and the
vehicle is close to the minimum braking distance under condition B(1), which belongs to
the critical-interaction state. Under condition B(2), the initial distance exceeds the shortest
braking range, which means that the AEB will fail in such a dangerous interaction. Table 1
provides the parameters used in the simulations [41,44].

Table 1. Main simulation experiment parameters.

Description Parameter Value

Time for eliminating the brake clearance tbc 0.1 s
Time for the braking force to increase tbg 0.1 s

Step interval of the pedestrian ∆t 0.5 s
Safe walking radius for the pedestrian rpe 0.35 m

Interaction coefficient φv2p/γv2p 4.7/5.5
Random fluctuation ε N(0, 0.0286)

Average pedestrian speed V (1.25 ± 0.05) m/s
Velocity safety factor Csv 2

3.6vs
9.8 /9.8

Vehicle lateral radius rveh 1.1 m
Safe driving radius of the vehicle rvehs 1.6 m

Weight coefficients of safety Jc 0.4
Weight coefficients of stability Jd 0.3

Weight coefficients of the reaction-space entropy Js 0.3

6.2. Results Analysis

Figure 10 illustrates the simulation results for the scenario described above. After the
superposition of speeds and paths, the series trajectories can be obtained. Then, through the
optimization of the NGSA-RF algorithm, the optimal trajectory under different conditions
can be determined. These are shown in Figure 10 (left panels), as well as the final selected
path with its corresponding risk probability representation (right panels).

In the whole process, the interaction models between the pedestrians and vehicles
are combined to analyze the potential impact of vehicles on the pedestrians. Based on the
reaction space constructed in Section 2 and the pedestrian position probability prediction
obtained in Section 4, the risk assessment of trajectory collision can be obtained through the
reaction space. According to the different risk-cost evaluation weights set using (29), the
optimal trajectory under comprehensive conditions can be obtained, the details of which
are provided in the schematic diagram.

As shown in Figure 10, under the condition of B(1), the initial pedestrian–vehicle
distance is 10 m, which is close to the critical range for the braking safety distance. At
this time, the vehicle speed can be decelerated to a relatively low speed with regard to the
predicted pedestrian position. There are still many choices for combining the speeds and
paths in the reaction space (as shown on the left side of the third row in Figure 10). Under
the condition of B(2), the initial pedestrian–vehicle distance is short, which is not enough
for the vehicle to decelerate to a safer speed. To reduce the risk of collision, the vehicle
needs to decelerate continuously, which causes fewer results in aggregate than in other
conditions (as shown on the left side of the fourth row in Figure 10).
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Based on the same scenario, the results of this work are compared with the traditional
AEB, as shown in Table 2. Under the conditions of A(1) and A(2), both the collision
avoidance scheme we proposed and the traditional AEB can guarantee safety. However,
the strategy we propose increases the distance from pedestrians while ensuring safety and
improving maneuverability, allowing for a better response to complex road conditions and
enhancing traffic efficiency.

Under the conditions of B(1) and B(2), both our proposed collision prevention solution
and the traditional AEB can also ensure that there is no collision with pedestrians. However,
the safety cost function of the AEB is infinite, meaning that the distance from pedestrians is
already below the safe distance. Under condition B(1), the distance between the vehicle
in the AEB and pedestrians is 26.7% of the distance in our proposed solution. Under
condition B(2), the distance between the vehicle in the AEB and the pedestrians is 22.6% of
the distance in our proposed solution.
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Table 2. Comparison of results.

Group yfinal/m vs/(km/h) costc costd costs

A(1) 1.36 10.46 0.058 0.017 0.376
AEB 1.55 0 0 0.045 0
A(2) 1.19 9.31 0.031 0.036 0.564
AEB 1.55 0 0 0.045 0
A(3) 3.65 5.61 0.263 0.475 0.436
AEB 1.55 0 0 ∞ 0
A(4) 3.71 1.42 0.068 0.491 0.194
AEB 1.55 0 0 ∞ 0

In summary, our scheme meets the safety performance requirements for the entire col-
lision avoidance process. The reaction-space entropy parameter that we have defined can
be evaluated comprehensively in terms of both safety and stability aspects, thereby compen-
sating to a certain extent for the impact caused by a single deviation on the evaluation side.

Nevertheless, our method presents some restrictions. Presently, this method only
accounts for a single-pedestrian scenario. Therefore, subsequent research will analyze
congested traffic circumstances encompassing multiple pedestrians and other vehicles.
Furthermore, we will conduct sensitivity analysis on the measurement noise of velocity,
acceleration, heading angle, and other parameters to improve engineering practicality.
Additionally, we will consider more rational optimization conditions, employ machine
learning techniques to obtain a more appropriate cost-weighting coefficient, and evaluate
the value range in various scenarios to determine a more beneficial collision trajectory.

7. Conclusions

In this paper, we propose an active collision avoidance strategy for autonomous
vehicles and pedestrians. It combines the concepts of reaction space and entropy, taking
into account the potential impact of the vehicle on a pedestrian. The strategy obtains
the response-space entropy value to assess the collision risk of trajectories by combining
planned trajectories with predicted pedestrian positions within the limited reaction space.
Furthermore, the optimal trajectory is determined based on the vehicle’s safety and stability
requirements. Finally, the feasibility of the proposed strategy was evaluated through a
series of simulations under various conditions.

Author Contributions: Conceptualization, Y.D.; methodology, Y.D. and W.Z.; software, Y.D.; vali-
dation, J.X.; formal analysis, X.W.; investigation, X.W.; resources, W.Z.; data curation, W.Z. and J.G.;
writing—original draft preparation, Y.D.; writing—review and editing, X.W.; visualization, W.Z.;
supervision, X.W.; project administration, J.G.; funding acquisition, J.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Weiwei Zhang, Jiejie Xu, and Jun Gong are employees of Shanghai Smart
Vehicle Cooperating Innovation Center Co., Ltd. The paper reflects the views of the scientists and not
the company.

References
1. Zhang, X.; Liniger, A.; Borrelli, F. Optimization-Based Collision Avoidance. IEEE Trans. Control Syst. Technol. 2021, 29, 972–983.

[CrossRef]
2. Li, H.; Zheng, T.; Xia, F.; Gao, L.; Ye, Q.; Guo, Z. Emergency collision avoidance strategy for autonomous vehicles based on

steering and differential braking. Sci. Rep. 2022, 12, 22647. [CrossRef] [PubMed]
3. Cheng, S.; Li, L.; Guo, H.-Q.; Chen, Z.-G.; Song, P. Longitudinal Collision Avoidance and Lateral Stability Adaptive Control

System Based on MPC of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2376–2385. [CrossRef]

https://doi.org/10.1109/TCST.2019.2949540
https://doi.org/10.1038/s41598-022-27296-3
https://www.ncbi.nlm.nih.gov/pubmed/36587056
https://doi.org/10.1109/TITS.2019.2918176


World Electr. Veh. J. 2024, 15, 180 17 of 18

4. Lee, D.N. A theory of visual control of braking based on information about time-to-collision. Perception 1976, 5, 437–459. [CrossRef]
[PubMed]

5. Keller, C.G.; Dang, T.; Fritz, H.; Joos, A.; Rabe, C.; Gavrila, D.M. Active Pedestrian Safety by Automatic Braking and Evasive
Steering. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1292–1304. [CrossRef]

6. Greene, D.; Liu, J.; Reich, J.; Hirokawa, Y.; Shinagawa, A.; Ito, H.; Mikami, T. An Efficient Computational Architecture for a
Collision Early-Warning System for Vehicles, Pedestrians, and Bicyclists. IEEE Trans. Intell. Transp. Syst. 2011, 12, 942–953.
[CrossRef]

7. Kaempchen, N.; Schiele, B.; Dietmayer, K. Situation Assessment of an Autonomous Emergency Brake for Arbitrary Vehicle-to-
Vehicle Collision Scenarios. IEEE Trans. Intell. Transp. Syst. 2009, 10, 678–687. [CrossRef]

8. Joerer, S.; Segata, M.; Bloessl, B.; Cigno, R.L.; Sommer, C.; Dressler, F. To crash or not to crash: Estimating its likelihood and
potentials of beacon-based IVC systems. In Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC), Seoul,
Republic of Korea, 14–16 November 2012; pp. 25–32.

9. Schreier, M.; Willert, V.; Adamy, J. An Integrated Approach to Maneuver-Based Trajectory Prediction and Criticality Assessment
in Arbitrary Road Environments. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2751–2766. [CrossRef]

10. Howard, T.M.; Green, C.J.; Kelly, A. State Space Sampling of Feasible Motions for High Performance Mobile Robot Navigation in
Highly Constrained Environments. In Proceedings of the 6th International Conference on Field and Service Robotics-FSR 2007,
Chamonix, France, 9–12 July 2007.

11. Boroujeni, Z.; Goehring, D.; Ulbrich, F.; Neumann, D.; Rojas, R. Flexible unit A-star trajectory planning for autonomous vehicles
on structured road maps. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES),
Vienna, Austria, 27–28 June 2017; pp. 7–12.

12. Chen, Y.; Peng, H.; Grizzle, J.W. Fast Trajectory Planning and Robust Trajectory Tracking for Pedestrian Avoidance. IEEE Access
2017, 5, 9304–9317. [CrossRef]

13. Yoshida, H.; Shinohara, S.; Nagai, M. Lane change steering manoeuvre using model predictive control theory. Veh. Syst. Dyn.
2008, 46, 669–681. [CrossRef]

14. Berglund, T.; Brodnik, A.; Jonsson, H.; Staffanson, M.; Soderkvist, I. Planning Smooth and Obstacle-Avoiding B-Spline Paths for
Autonomous Mining Vehicles. IEEE Trans. Autom. Sci. Eng. 2010, 7, 167–172. [CrossRef]

15. Colorni, A.; Dorigo, M.; Maniezzo, V. An Investigation of some Properties of an “Ant Algorithm”. In Parallel Problem Solving
from Nature 2, Proceedings of the Second Conference on Parallel Problem Solving from Nature, Brussels, Belgium, 28–30 September 1992;
Elsevier Science Inc.: New York, NY, USA, 1992.

16. Ho, P.; Chen, J. WiSafe: Wi-Fi Pedestrian Collision Avoidance System. IEEE Trans. Veh. Technol. 2017, 66, 4564–4578. [CrossRef]
17. Bila, C.; Sivrikaya, F.; Khan, M.A.; Albayrak, S. Vehicles of the Future: A Survey of Research on Safety Issues. IEEE Trans. Intell.

Transp. Syst. 2017, 18, 1046–1065. [CrossRef]
18. Rothenbücher, D.; Li, J.; Sirkin, D.; Mok, B.; Ju, W. Ghost driver: A field study investigating the interaction between pedestrians

and driverless vehicles. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 795–802.

19. Rasouli, A.; Kotseruba, I.; Tsotsos, J.K. Understanding Pedestrian Behavior in Complex Traffic Scenes. IEEE Trans. Intell. Veh.
2018, 3, 61–70. [CrossRef]

20. Rasouli, A.; Tsotsos, J.K. Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice. IEEE Trans.
Intell. Transp. Syst. 2020, 21, 900–918. [CrossRef]

21. Muzahid, A.J.M.; Kamarulzaman, S.F.; Rahman, M.A.; Murad, S.A.; Kamal, M.A.S.; Alenezi, A.H. Multiple vehicle cooperation
and collision avoidance in automated vehicles: Survey and an AI-enabled conceptual framework. Sci. Rep. 2023, 13, 603.
[CrossRef] [PubMed]

22. Yuan, Y.; Tasik, R.; Adhatarao, S.S.; Yuan, Y.; Liu, Z.; Fu, X. RACE: Reinforced Cooperative Autonomous Vehicle Collision
Avoidance. IEEE Trans. Veh. Technol. 2020, 69, 9279–9291. [CrossRef]

23. Nasernejad, P.; Sayed, T.; Alsaleh, R. Modeling Pedestrian Behavior in Pedestrian-Vehicle near Misses: A Continuous Gaussian
Process Inverse Reinforcement Learning (Gp-Irl) Approach. Accid. Anal. Prev. 2021, 161, 106355. [CrossRef] [PubMed]

24. Xue, H.; Huynh, D.Q.; Reynolds, M. A Location-Velocity-Temporal Attention LSTM Model for Pedestrian Trajectory Prediction.
IEEE Access 2020, 8, 44576–44589. [CrossRef]

25. Zhu, Y.; Qian, D.; Ren, D.; Xia, H. StarNet: Pedestrian Trajectory Prediction using Deep Neural Network in Star Topology.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 8075–8080.

26. Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human motion trajectory prediction: A survey.
Int. J. Robot. Res. 2020, 39, 895–935. [CrossRef]

27. Manglik, A.; Weng, X.; Ohn-Bar, E.; Kitani, K.M. Future Near-Collision Prediction from Monocular Video: Feasibility, Dataset,
and Challenges. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 3–8
November 2019.

28. Li, J.; Yao, L.; Xu, X.; Cheng, B.; Ren, J. Deep Reinforcement Learning for Pedestrian Collision Avoidance and Human-Machine
Cooperative Driving. Inf. Sci. 2020, 532, 110–124. [CrossRef]

https://doi.org/10.1068/p050437
https://www.ncbi.nlm.nih.gov/pubmed/1005020
https://doi.org/10.1109/TITS.2011.2158424
https://doi.org/10.1109/TITS.2010.2097594
https://doi.org/10.1109/TITS.2009.2026452
https://doi.org/10.1109/TITS.2016.2522507
https://doi.org/10.1109/ACCESS.2017.2707322
https://doi.org/10.1080/00423110802033072
https://doi.org/10.1109/TASE.2009.2015886
https://doi.org/10.1109/TVT.2016.2598786
https://doi.org/10.1109/TITS.2016.2600300
https://doi.org/10.1109/TIV.2017.2788193
https://doi.org/10.1109/TITS.2019.2901817
https://doi.org/10.1038/s41598-022-27026-9
https://www.ncbi.nlm.nih.gov/pubmed/36635336
https://doi.org/10.1109/TVT.2020.2974133
https://doi.org/10.1016/j.aap.2021.106355
https://www.ncbi.nlm.nih.gov/pubmed/34461394
https://doi.org/10.1109/ACCESS.2020.2977747
https://doi.org/10.1177/0278364920917446
https://doi.org/10.1016/j.ins.2020.03.105


World Electr. Veh. J. 2024, 15, 180 18 of 18

29. Chen, Y.F.; Everett, M.; Liu, M.; How, J.P. Socially aware motion planning with deep reinforcement learning. In Proceedings of the
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September
2017; pp. 1343–1350.

30. Dubey, V.; Kasad, R.; Agrawal, K. Autonomous Braking and Throttle System: A Deep Reinforcement Learning Approach for
Naturalistic Driving. In Proceedings of the 13th International Conference on Agents and Artificial Intelligence, Online, 4–6
February 2021.

31. Long, P.; Fan, T.; Liao, X.; Liu, W.; Zhang, H.; Pan, J. Towards Optimally Decentralized Multi-Robot Collision Avoidance via
Deep Reinforcement Learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018; pp. 6252–6259.

32. Camara, F.; Bellotto, N.; Cosar, S.; Weber, F.; Nathanael, D.; Althoff, M.; Wu, J.; Ruenz, J.; Dietrich, A.; Markkula, G.; et al.
Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior. IEEE Trans. Intell. Transp. Syst. 2021,
22, 5453–5472. [CrossRef]

33. Koschi, M.; Althoff, M. Set-Based Prediction of Traffic Participants Considering Occlusions and Traffic Rules. IEEE Trans. Intell.
Veh. 2021, 6, 249–265. [CrossRef]

34. Manzinger, S.; Pek, C.; Althoff, M. Using Reachable Sets for Trajectory Planning of Automated Vehicles. IEEE Trans. Intell. Veh.
2021, 6, 232–248. [CrossRef]

35. Jirovsky, V. Entropy in Reaction Space—Upgrade of Time-to-Collision Quantity. In Proceedings of the Wcx™ 17: Sae World
Congress Experience, Detroit, MI, USA, 4–6 April 2017.

36. Qu, P.; Xue, J.; Ma, L.; Ma, C. A constrained VFH algorithm for motion planning of autonomous vehicles. In Proceedings of the
2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; pp. 700–705.

37. Ben-Naim, A. Entropy and Time. Entropy 2020, 22, 430. [CrossRef] [PubMed]
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