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Abstract: Traffic sign detection plays a pivotal role in autonomous driving systems. The intricacy
of the detection model necessitates high-performance hardware. Real-world traffic environments
exhibit considerable variability and diversity, posing challenges for effective feature extraction by the
model. Therefore, it is imperative to develop a detection model that is not only highly accurate but
also lightweight. In this paper, we proposed YOLO-ADual, a novel lightweight model. Our method
leverages the C3Dual and Adown lightweight modules as replacements for CPS and CBL modules
in YOLOv5. The Adown module effectively mitigates feature loss during downsampling while
reducing computational costs. Meanwhile, C3Dual optimizes the processing power for kernel feature
extraction, enhancing computation efficiency while preserving network depth and feature extraction
capability. Furthermore, the inclusion of the CBAM module enables the network to focus on salient
information within the image, thus augmenting its feature representation capability. Our proposed
algorithm achieves a mAP@0.5 of 70.1% while significantly reducing the number of parameters and
computational requirements to 51.83% and 64.73% of the original model, respectively. Compared to
various lightweight models, our approach demonstrates competitive performance in terms of both
computational efficiency and accuracy.

Keywords: traffic sign detection; small object detection; YOLO-ADual; attention mechanism; dual
convolution

1. Introduction

With the rapid advancement of artificial intelligence and computer hardware, au-
tonomous driving has become an essential feature in contemporary intelligent vehicles
(IVs). This technology allows vehicles to transport passengers to their destinations safely
without human intervention, significantly enhancing both comfort and safety. A crucial
component of autonomous driving systems is traffic sign detection (TSD), which ensures
safe operation through precise recognition of traffic signs. Any inaccuracies in TSD can
jeopardize driver safety [1]. Various sophisticated high-precision base networks have been
proposed, including VGGNet [2], RetinaNet [3], and SSD [4]. However, these models are
often complex, with a significant number of parameters and computations. For effective
traffic sign recognition, TSD systems must be efficiently implementable in embedded vehi-
cle devices. Large models frequently struggle to provide the real-time performance needed
for industrial applications [5]. Thus, the target detection algorithm for autonomous driving
must combine high accuracy with a lightweight structure and rapid detection speed.

Most contemporary traffic sign detection (TSD) algorithms can be categorized into
two main groups: traditional approaches and deep learning techniques. Traditional algo-
rithms [6] rely on shape, edge, and color characteristics, such as HSV, SIFT, and HOG, to
identify traffic signs. However, they often underperform in complex backgrounds. Deep
learning algorithms, in contrast, have gained popularity due to their robust feature ex-
traction capabilities, enabling effective identification of small traffic signs even in intricate
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environments. Despite their advantages, deep learning models require substantial matrix
operations and parallel processing, necessitating high-performance processors [7]. GPUs
are commonly used in deep learning due to their superior parallel processing capabil-
ities. Neural network models contain millions of parameters, leading to high memory
requirements for both storage and processing of extensive intermediate data. To mitigate
these demands, the storage space required for neural networks can be reduced by pruning
unimportant weights or lowering the number of parameters.

The deep learning approach to object detection categorizes target detection algorithms
into two main categories: one-stage and two-stage detection algorithms. Typical examples
of two-stage detection algorithms include R-CNN [8], SPPNet [9], and Fast R-CNN [10].
The earliest model, R-CNN, employed a convolutional neural network for feature extraction
and classification after using selective search to produce area recommendations. Despite
the high level of accuracy, the model required a lot of computing power because so many
region proposals needed to be handled separately. Later, SPPNe added spatial pyramid
pooling to R-CNN, enabling the use of input images of varying sizes and cutting down
on computational expenses. By removing the requirement for external region suggestion
techniques and integrating the region of interest (Rol) pooling layer directly into the
network design, Fast R-CNN increases accuracy and speed. Despite their excellent accuracy,
these two-stage models lag in training time and detection speed. In contrast, one-stage
detection algorithms offer high speed, making them particularly well-suited for mobile
applications. Several lightweight one-stage detection algorithms have been developed,
such as Xception [11], SqueezeNet [12], MobileNet [13], ShuffleNet [14], and You Only Look
Once (YOLO) [15], have been proposed by researchers. Xception combines depth-wise
convolution derived from Inception-V3 [16] with pointwise convolution so that the number
of 3 x 3 convolutions is equal to the number of 1 x 1 convolution output channels, which
reduces the amount of computation and parameters while maintaining high accuracy.
SqueezeNet uses the VGG stacking concept and a compression method by substituting
3 x 3 convolutions with 1 x 1 convolutions, achieving only 2.14% of the parameters of
AlexNet [17] while maintaining the same level of performance. While SqueezeNet reduces
the network’s parameters by increasing depth and minimizing the number of parameters,
this approach can impact the network’s parallel processing capabilities. This often results
in slower convergence during training and heightened sensitivity to hyperparameter
selection, complicating the tuning process. Additionally, SqueezeNet employs conventional
convolution computation techniques.

In contrast, the subsequently introduced MobileNet model employs a more efficient,
deeply separable convolutional computation method, effectively reducing computational
effort and model size and thereby accelerating the implementation of convolutional net-
works on mobile devices. MobileNetV3 [18] incorporates the VGG concept along with
additional components such as the Squeeze and Excitation (SE) module and the novel
nonlinear h-swish activation function. The SE module dynamically adjusts the importance
of the feature channels by learning the dependencies between the channels, which enhances
the expressive power of the model. h-swish activation function, on the other hand, is an
improvement from the traditional Swish function, which provides higher computational ef-
ficiency and is particularly suitable for environments with limited computational resources.
MobileNet utilizes the depth separable convolution, which offers enhanced computational
efficiency and compatibility with quantization techniques. However, this may lead to
poor dissemination of information. To address this, ShuffleNet employs channel shuffling,
allowing information exchange across different groups of feature channels, thus enhancing
feature representation and reducing computation. Additionally, ShuffleNet introduces the
ResNet concept, which accelerates the model training process and improves the training
efficiency of deep networks, setting it apart from MobileNet and SqueezeNet.

In the end, we concentrate on the YOLOv family. YOLO's core principle is to treat
object detection as a single regression problem, directly converting image pixels into
bounding box coordinates and class probabilities. YOLO partitions the input image into
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grids, each responsible for predicting objects whose centers are within that grid. By
simplifying detection to a single network forward propagation, YOLO is particularly
well-suited for real-time applications.YOLOV5 [19], the most classic and widely adopted
single-stage algorithm in the YOLO family, excels in precision, accuracy, and confidence
scores over other YOLO algorithms. Despite this, YOLOVS5 lacks an effective attention
mechanism, leading to suboptimal performance for small target detection. Furthermore,
these algorithms do not fulfill the lightweight and high-accuracy requirements essential for
mobile devices.

Within the limitations of YOLOVS5, the primary aim of this study is to develop a traffic
sign detection algorithm that combines lightweight design with high precision, ensuring
a balance between accuracy and efficiency. Moreover, this research aims to improve the
detection of smaller targets. We present a novel traffic sign detection method named
YOLO-ADual, whose structure is shown in Figure 1.
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Figure 1. The overall architecture of YOLO-ADual.

The key contributions of our research are summarized below:

The YOLO5s-ADual model is introduced in this study. By utilizing DualConv and
C3, we propose a more efficient C3Dual architecture to replace the CBL module in
the backbone of the YOLOVS5 object detection model. Additionally, this architecture
incorporates ADown from YOLOVY in place of the Conv module in both the head and
backbone of YOLOv5s. As a result, the model becomes lightweight, enabling faster
reasoning and reducing the need for hardware resources, thereby making it more
suitable for mobile device deployment;

e  Inthe actual scenario of TSD, since there are more small objects for traffic sign detection,
the CBAM attention mechanism is adopted to improve the small object detection
performance;

e  The experimental outcomes on the TT100k dataset demonstrate that the proposed
method halves the parameters of the original YOLOv5s model while enhancing the
mAP by 5 points. Compared to several contemporary lightweight object detection
methods, the model presented in this paper demonstrates superior accuracy and a
more lightweight structure;
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e  The structure of the remaining sections is as follows: Section 2 provides an overview
of recent research on two-stage object detection and YOLOvV5s. Section 3 details
the design of the C3Dual module, the structure of the ADown module, the CBAM
attention mechanism, and the overall model structure. Section 4 describes the dataset,
experimental setup, and the results obtained from the experiments. Finally, Section 5
offers a summary and the paper’s conclusions.

2. Related Work
2.1. Research on Two-Stage Approaches in Object Detection

The two-stage object detection algorithm is acclaimed for its remarkable precision in
detecting targets. Within this algorithm, the task of detecting targets is segregated into two
fundamental components: proposing regions and classifying targets. These components
are adept at handling complex scenarios and identifying diminutive objects. The initial
deployment of the R-CNN (region-based convolutional neural network) model marked the
introduction of employing convolutional neural networks (CNNs) for the recognition of
objects. Notably, the deep features retrieved by this model supplanted the conventional
HOG and SIFT features [20] and significantly enhanced the performance of detection.
Nevertheless, due to up to 2000 candidate regions in the first image search, each candidate
frame necessitates characterization by CNN and subsequent classification by SVM, leading
to a substantial computational burden. The spatial pyramid pooling network (SPPNet) [21]
employs a single convolutional neural network (CNN) operation on the entire image. It
also utilizes a pyramid spatial pooling operation, significantly enhancing both speed and
accuracy. Fast R-CNN incorporates an ROI pooling layer, using Sofmax for classification,
and utilizes a multi-task loss function. However, it still employs a selective search to
acquire 2000 candidate origins, which is very time-consuming. Consequently, the Faster
R-CNN was later created, but the selective search was abandoned, and the region proposal
network (RPN) was introduced instead. RPN generated region proposals and introduced
the idea of an anchor, enabling the training of the entire object detection process from end
to end. Region-based Fully Convolutional Networks (R-FCNs) [22] employ convolutional
operations to produce position-sensitive score maps. These maps encode the positional
information of the target, enabling all region proposals to share all parameters. This feature
significantly enhances the efficiency of the detection. Feature Pyramid Networks for Object
Detection (FPN) [23] introduce a feature pyramid network that emulates the down-top path
of convolutional neural networks (CNNs). The system employs lateral connections and a
top—down path to extract features from images of varying scales, generating multi-scale
feature representations. Feature maps at all levels possess robust semantic information,
including specific high-resolution feature maps.

2.2. Lightweight Traffic Sign Detection Network

In real-world application settings, mobile devices often lack sufficient storage capacity
to accommodate the extensive parameters of deep convolutional networks. Consequently,
researchers have suggested viable methods. Zhang et al. [24] (2023) proposed a lightweight
YOLO model called Ghost-YOLO. This model uses the Ghost module and C3Ghost to
achieve a lightweight detection model. Liu et al. [25] (2023) integrated ConvNeXt-V2 to
propose a module named C3_CN2. In the head section, the lightweight receptive field
attention module, LPFAConv, is employed to enhance the detection capability. Li et al. [26]
(2024) predict categories in the first stage of detection and fuse two-stage category predic-
tion. An effective post-processing method, named SANMS, is also proposed for the first
stage detection. The final results were obtained with high accuracy and inference speed.
These studies show that the lightweight YOLO model performs better in detection and
accuracy for mobile devices.
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2.3. YOLOuv5s

Before the introduction of YOLOv1 [27], the R-CNN series of algorithms held a promi-
nent position in the domain of target detection. The R-CNN series exhibited a notable level
of detection accuracy. Still, its detection speed fell short of real-time performance due to its
two-stage detection network architecture, resulting in substantial criticism. YOLO’s core
idea is to convert the target identification task into a regression issue. This transformation
involves using the entire map as input to the neural network and only using a neural
network to obtain the position of the bounding box and its corresponding class. YOLOv5
is an advancement iteration derived from YOLOv3 [28] and YOLOvV4 [29]. The overall
architecture of YOLOV5 is shown in Figure 2. The dataset comprises five distinct models,
specifically YOLOv5n, YOLOv5s, YOLOv5m, YOLOvS], and YOLOb5x. Those YOLOvV5
models exhibit a progressive enhancement in detection accuracy, accompanied by a grad-
ual decline in detection speed. Individuals can select an appropriate model to attain an
optimal balance between precision and efficiency. In contrast to its predecessors, YOLOv4
and YOLOv3, YOLOvV5 employs the focus structure within its backbone component and
incorporates three distinct output heads to facilitate multi-scale prediction. The same
project team develops YOLOvVS [30] as YOLOvVS. This model is advanced and currently
at the forefront of technology. The general framework of this model bears resemblance
to YOLOv5. YOLOVS gave up the prior anchor-based approach and instead adopted the
anchor-free concept. Moreover, YOLOVS introduced the C2f module to replace the CBL
module in YOLOVS. The architecture of C2f primarily draws inspiration from the ELAN
concept in YOLOvV7 [31] and C3 modules. This enables YOLOVS to obtain ampler gradient
flow information while maintaining a lightweight approach.
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Figure 2. The overall architecture of YOLOV5s.

Selcuk et al. [32] conducted a mobile UI detection experiment. It was observed that
YOLOVS5 outperforms YOLOv8 when applied to smaller Ul solid parts. For comparison,
Bian et al. [33] employed three models in their UAV image detection experiment, namely
YOLOV5, YOLOV?, and Roboflow 2.0. The findings revealed that the YOLOv5s model
achieved the highest average precision. Yusof et al. [34] conducted a road detection ex-
periment. It was observed that YOLOvV5S exhibited the highest mean average precision
(mAP) when compared to YOLOv7 and YOLOv6. While YOLOv5 and YOLOv7 demon-
strated similar inference image capabilities, YOLOV5 outperformed YOLOV7 regarding
confidence. Ultimately, the experiment concluded that YOLOV? is twice as fast as YOLOV5,
yet YOLOVS5 outperformed YOLOV? in accuracy and precision. Based on the three exper-
iments above, it can be concluded that despite not being the most recent addition to the
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YOLO family, YOLOVS5’s algorithm continues to exhibit superior precision compared to
YOLOv6, YOLOvVZ, and YOLOvS. The YOLOv5 model remains highly valuable for further
research and enhancement. Hence, we choose YOLOV5 as the foundation for enhancement
to design a detection model that is simultaneously lightweight and highly accurate.

3. Method
3.1. Overview of YOLO-ADual

This paper introduces a novel and lightweight object detection method named YOLO-
ADual, intended to overcome the challenges of integrating intelligent transportation systems on
mobile devices. The method integrates three key components into the YOLOv5s framework.

3.2. Adown

Traditional convolutional neural networks (CNNSs) often necessitate an extensive
number of parameters and FLOPS to attain acceptable levels of accuracy. This is due to the
significant redundancy present in the intermediate feature maps generated by prevalent
CNN architectures. In this study, we utilize the Adown module introduced in YOLOV9 [35]
to improve the Conv module of YOLOv5s. The Adown module is enhanced from the
downsample network transition block in YOLOv7. A comparison of the structures of
these two downsample networks is shown in Figure 3. The transition block module’s
right section employs Maxpool and a convolution kernel with a stride of 1 for processing.
Conversely, the branch’s left section utilizes convolution kernels of 1 x 1 and 3 x 3 for the
convolution operation [36]. The Adown module performs the AvgPool operation before
splitting, the right part of the branch retains the original transition block operation, and the
other half only uses 3 x 3 convolution kernels for the convolution operation and deletes
the 1 x 1 convolution. The Adown module has been improved to reduce the feature loss
and enhance the feature learning efficiency.

%
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Chunk Conv MaxPool

k= llszl k=2
Mii})ZOOI Conv Conv
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Figure 3. (a) The structure of the Adown module, which is used in YOLOvV9 as a downsample network,
and (b) the structure of transition block, which is used in YOLOV? as a downsample network.
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3.3. C3Dual

DualConv is a lightweight deep neural network designed to optimize both spatial
information capture and computational efficiency. As illustrated in Figure 4, DualConv
combines 3 x 3 and 1 x 1 convolutional kernels [37]. The 3 x 3 convolutional kernel
enhances spatial information extraction, while the 1 x 1 convolutional kernel facilitates
interactions between feature channels and information integration, minimizing additional
parameters and computational complexity. By integrating these two convolutional kernels,
DualConv processes the same input feature mapping channels concurrently, with each
group of convolutional kernels handling a subset of the input channels separately. The
outputs are then merged, promoting efficient information flow and integration across
different feature map channels. This structural design preserves the network depth and
characterization capability, optimizing information processing for kernel feature extraction
and reducing computational complexity and model size. Thus, DualConv is particularly
suitable for resource-constrained environments.

1x1 2x2
Je N/G ] fe N/G A NG —
@ @ MG
S J o)
M-M/G
M-2M/G l
|
T
MGy @ ®
e N —

Dual Convolution

Figure 4. Diagram of the structure of the group convolution technique utilized by DualConv.

Furthermore, DualConv employs group convolution to effectively reduce the number
of parameter kernel computations. In group convolution, the input and output feature
maps are divided into multiple groups, and each group of convolution filters processes
only a portion of the corresponding input feature map. This reduces model complexity by
allowing different convolutional kernels within a group (e.g., 3 x 3and 1 x 1) to process the
same set of input channels in parallel. This design leverages the spatial feature extraction
capabilities of large-size convolutional kernels and the computational efficiency of small-
size convolutional kernels, thereby lowering the parameter and computational costs of the
model while maintaining accuracy.

In this study, we leverage the advantages of DualConv to introduce a compact feature
extraction framework named C3Dual. The C3Dual architecture consists of three 1 x 1
convolutional layers and n sequentially arranged DualBottlenecks. The initial 1 x 1 con-
volutional layer halves the channel count relative to the output channels. Subsequent
layers extract features through sequentially arranged DualBottlenecks and separate resid-
ual branches. This method captures deep semantic information from the input image
through both branches, and the two feature sets are combined via the Contact module.
The Contact operation fuses multiple feature maps based on channel count, enhancing
semantic information utilization across various scales and improving performance through
channel expansion. The combined features are processed through a BatchNorm module
and activated using LeakyReLU. Each DualBottleneck comprises two 1 x 1 convolutional
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Input Feature F

Channel-refined
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layers flanking a dual convolutional layer, with the 1 x 1 layers reducing and expanding
dimensions and the dual convolutional layer serving as the bottleneck for smaller dimen-
sions. By replacing all CSP modules in YOLOv5 with C3Dual modules, computational
demand is significantly reduced, and the model size is compressed without compromising
detection accuracy.

3.4. CBAM

Convolutional Block Attention Module (CBAM) focuses on essential features and
screens out unnecessary features to enhance the network representation [38]. Figure 5a
shows the schematic structure of CBAM. It contains a channel attention module (CAM)
and a spatial attention module (SAM). Firstly, CBAM focuses on the important features
through CAM and then focuses on the important locations of these features through SAM.
This method can effectively help the network focus on the image’s key information and
improve the features’ representation strength. Given the input feature F € REH*W first,
perform the one-dimensional convolution M, € R*!*! of the channel attention module,
and then multiply the convolution result by the original image to obtain the CAM output
result F/, as shown in Equation (1):

F/ = MC(F) x F, (1)
o Spatial . Refined Feature
Attention Spatia
Module Attention
Module

S—, _

& G)—

(a) Convolutional Block Attention Module

MaxPool Shared MLP

PFa o~ Wa o
\* e / X" @ @ Channel

Attention

(b) Channel Attention Module e

[MaxPool, AvgPool]

conv

: Spatial
—_— layer pat:
L ———8 Attention
é

Ms

(c) Spatial Attention Module

Figure 5. (a) The structure of the Convolutional Block Attention Module (CBAM); (b) the structure of
the channel attention module (CAM); (c) the structure of the Spatial Attention Module (SAM).

Take the CAM output F’ as the input and perform the two-dimensional convolution
M; € RVXHXW of spatial attention module and multiply the output result with the original
image. As shown in Equation (2),

F" = My(F') x F, 2
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3.4.1. Channel Attention Module

The channel attention module (CAM) is designed to enhance the feature representa-
tion of each channel. It maintains the channel dimension while compressing the spatial
dimension. As illustrated in Figure 5b, the input feature F is processed through parallel
MaxPool and AvgPool layers, transforming the feature map from a size of C x H x W to
C x 1 x 1. Subsequently, it undergoes processing in the Shared MLP module, where it first
reduces the channel count to 1/r of its initial value and then restores it to the original count.
Finally, it generates two activated outputs using the ReLU activation function [39]. Element-
wise summation is performed on the two output results, followed by the application of
a sigmoid activation function to obtain the channel attention weight. This weight is then
applied to each channel of the original feature map, resulting in a weighted feature map
with dimensions C x H x W. By employing parallel MaxPool and AvgPool layers, a more
diverse and comprehensive set of high-level features can be extracted. The weighting of the
feature map serves to highlight channels beneficial for the current task while diminishing
the impact of irrelevant channels. The formula for channel attention is

Mc(F) = o(MLP(AP(F)) + MLP(MP(F))) 3)

where o denotes the sigmoid function, MLP € R% %C and AP € RE*C/T. AP represents
AvgPool, MP represents MaxPool, and MLP represents the connect operation. Note that
the MLP weights, MLP and AP, are shared for both inputs, and the ReLU activation
function is followed by AP.

3.4.2. Spatial Attention Module

The spatial attention module (SAM) concentrates on the spatial information of the
target without altering the spatial dimensions; it only compresses the channel dimensions.
Figure 5c illustrates the schematic structure of SAM. The output F’ from the channel
attention module (CAM) is processed through maximum and average pooling to generate
two 1 x H x W feature maps. These maps are then concatenated and transformed into
a single-channel feature map through a 7 x 7 convolution. Spatial attention weights are
subsequently derived using a sigmoid function. These weights are applied to the original
feature map to emphasize features at specific spatial locations, converting the map back
toa C x H x W size. This process accentuates significant regions of the image while
diminishing the impact of less important areas. The formula for spatial attention is

Ms(F) = o f77([AP(F) + MP(F)))) @

where o denotes the sigmoid function, and f”*” represents a convolution operation with
the filter size of 7 x 7. AP € RV>H*W and MP € RV>H*W_ AP represents AvgPool, and
MP represents MaxPool. Each denotes average-pooled features and max-pooled features
across the channel.

3.5. Algorithm Implementation

Step 1 (data preprocessing): To comprehensively evaluate the performance of the target
detection algorithm in traffic scenarios, we utilized the Tsinghua-Tencent 100K dataset.
This dataset comprises 100,000 photos collected by Tencent Street View Map under various
lighting and weather conditions, covering 221 categories of Chinese traffic signs and over
30,000 traffic signs labeled in 10,000 images. For the experiment’s accuracy, we selected
9457 images, using 6598 for training, 970 for testing, and 1889 for validation. To address
issues of missing labels or incorrect annotations, we manually corrected and labeled them
using the Labellmg tool.

Before formal model training, all images underwent a rigorous preprocessing step to
optimize learning. Initially, images were normalized by scaling pixel values to the range
[0, 1] to reduce pixel value differences. Subsequently, images were uniformly resized
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to the model’s required size, generally using bilinear interpolation to maintain quality
and cropping or padding as necessary. Finally, image enhancement techniques were
applied to overexposed or low-contrast images: exposure compensation restored details
in overexposed images, while contrast stretching or histogram equalization enhanced
low-contrast images. These enhancements improved image quality and, consequently, the
model’s accuracy in recognizing traffic signs.

Step 2 (model selection): In the field of target detection technology, numerous ad-
vanced algorithms have been developed and applied to monitor the transportation en-
vironment. Each algorithm has specific design features and corresponding advantages
and disadvantages. When selecting algorithms for our experiments, it was crucial to con-
sider not only their inherent performance but also their adaptability to specific datasets.
We explored seven cutting-edge target detection algorithms: YOLOv5n, YOLOv5s, SSD,
YOLOv7-tiny, EfficientDet, YOLOX, Faster R-CNN, and Zhang et al. Additionally, we
introduced and explored an innovative detection method, YOLO-ADual. Although these
algorithms have demonstrated excellent performance in various application scenarios, our
primary goal was to evaluate their performance differences in traffic sign detection. We
benchmarked these algorithms on the same dataset to identify the most suitable model for
traffic scene detection.

Step 3 (model training): In this study, we employed a transfer learning approach to
rigorously train the YOLO-ADual model. Initially, the YOLO-ADual model was initialized
using pre-trained weights on the COCO dataset. Then, it was carefully fine-tuned on
specific datasets to meet our application requirements. During training, we set the batch
size to 32 and the initial learning rate to 0.01 and performed 300 training cycles. The
parameters related to the YOLO-ADual configuration are detailed in Table 1. We used
PyTorch as the deep learning framework due to its comprehensive tools and libraries for
building and training neural networks. Adam [40] was chosen as the initial optimizer for
its combination of the momentum method and adaptive learning rate technique, which
automatically adjusts each parameter’s learning rate. Unlike SGD [41], Adam simplifies
the optimization process by not requiring manual learning rate adjustments, thereby
finding the minimum value of the loss function faster and accelerating model convergence.
Algorithm 1 in the article details the training process used. The CBL and Conv modules in
the original model of Figure 2 are replaced with C3Dual and Adown modules, respectively,
and the CBAM module is inserted in layer 8 to obtain the YOLO-Adual model of Figure 1.
After improvement, the model follows the first step in the steps of Algorithm 1: Initialize
YOLO-ADual neural network with COCO pre-trained weights.

Table 1. YOLO-ADual configuration parameters.

Parameters Specific Information
Epoch 300
Image size 640
Batch size 32
Number of images 9457
Parameters 3,817,609
Layers 246

Step 4 (model evaluation): For a comprehensive and systematic evaluation of the
model’s performance in target detection for traffic scenes, we utilize standardized evalua-
tion metrics such as precision, average precision (AP), mean average precision (mAP), recall,
F1 score, and processing speed (fps). These metrics provide a quantitative overview of
the model’s effectiveness in complex traffic environments. If the model underperforms in
specific areas, optimizing hyperparameters or expanding the training dataset may enhance
its capabilities. Ensuring a balance between overfitting and underfitting is essential for
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excellent generalization to unseen data. Precision, for instance, indicates the proportion of
true positive (TP) samples out of all samples predicted as positive.

TP

precision - m

)
where TP denotes the number of images that have properly recognized items with an Inter-
section over Union (IoU) of more than 0.5. In other words, it refers to the count of images
with correctly identified positive samples by the model. Conversely, FP represents the count
of images where objects are detected with an IoU below 0.5, classified as false positives.

Algorithm 1: YOLO-ADual training algorithm with transfer learning

Data: COCO Pretrained Weights, Specialized Datasets: TT100k
Result: Fine-tuned YOLO-ADual Model
Initialize YOLO-ADual neural network with COCO pre-trained weights;
Initialize training parameters: batch size = 32, initial learning rate = 0.01, total epochs = 300;
Initialize loss function: Loss;
Initialize optimizer: Adam;
Initialize evaluation metrics: Recall, Precision;
for epoch <— 1 to total_epochs do
for batch <— 1 to total_batches do
// Load a batch of training data from TT100k
image_batch, ground_truth_batch <— LoadBatchFromDatasets(TT100k, batch_size);
// Forward pass through the network
predicted_boxes <— YOLO-ADual(image_batch);
// Calculate Loss
loss <— CalculateloULoss(predicted_boxes, ground_truth_batch);
// Backpropagation and weight update
BackpropagateAndOptimize(loss);

end

// Adjust learning rate (e.g., learning rate decay)

if epoch % learning_rate_decay_interval == 0 then
AdjustLearningRate(optimizer, new_learning_rate);

end

// Evaluate the model on validation data

recall, precision <— EvaluateModel(YOLO-ADual, ValidationData);

if recall > threshold_recall and precision > threshold_precision then
// Save the model if recall and precision meet the criteria
SaveModel(YOLO-ADual, ‘trained_model_epoch_’ + epoch);
end

end

Recall the ratio of accurate predictions to the total number of positive samples, as

follows:
TP

TP+ FN’ ©)
where FN (false negative) represents the number of pictures mistakenly classified as not
containing things of interest.

The average precision (AP) is the measure of the area enclosed by the precision-recall
curve and the X-axis, calculated as follows:

recall =

1
AP:/0 p(r)dr, (7)

where the precision function for a given recall is denoted by p(r).
The F1 score is calculated as the harmonic mean of precision and recall, with values
ranging from 0 to 1, as follows:
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precision-recall

F1= — .
precision + recall

®)

The mean average precision (mAP) is calculated as the average AP value across all
object classes, as follows:

map = 24 ©)

classes

where N_j;s50s denotes the number of classes.

4. Experimental Analysis
4.1. Datasets

The Tsinghua-Tencent 100K dataset is a massive, high-resolution dataset of traffic signs
created by Tsinghua University and Tencent [42]. The collection comprises 100,000 photos
with a resolution of 2048 x 2048, gathered from the Tencent Street View map under various
lighting and weather situations. The TT100K dataset represents a practical scenario for
traffic sign detection on mobile devices, containing 221 categories of Chinese traffic signs
and includes over 30,000 annotated occurrences of traffic signs across 10,000 pictures.
Sample images are shown in Figure 6. According to the experimental findings, the native
dataset contains a substantial amount of traffic signs, with a small proportion that cannot
be effectively learned. We analyzed the number of traffic signs in each dataset category to
address this issue. To mitigate the sampling variations induced by the diverse categories
of traffic signs in the dataset, we selected 45 categories with a count exceeding 100. The
chosen images depict traffic signs of various sizes, ranging from 8 x 8 to 400 x 400 pixels.
These signs constitute a small portion of the entire image, representing between 0.001%
and 4% of the total area.

Figure 6. Sample images of the TT100k dataset.
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Figure 7 depicts a sample from the dataset. Signs prefixed with “w” denote warning

“"_ 1

signs, while those starting with “p” represent prohibition signs, and those beginning with
“i” signify indication signs. Additionally, signs ending with an asterisk (*) signify numerical
values, such as pl50, pl60, and pl100. The dataset comprises 9457 images, divided into three

categories: 6598 for training, 970 for testing, and 1889 for validation.
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Figure 7. Forty-five categories of traffic signs selected from TT100k.
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4.2. Experimental Environment

Our experimental setup is detailed in Table 1. We used high-end hardware components,
including an Intel i5-13490F CPU and an RTX 4070Ti GPU, complemented by 12 GB of
VRAM and 16 GB of RAM. For software, we opted for Windows 11 as the operating system
and Python 3.9.12 as our primary programming language. The deep learning framework
employed is PyTorch 1.10.0, with CUDA 11.2 enhancing computational speed. The detailed
configuration is essential for ensuring the accuracy and reproducibility of our results. We
conducted 300 training epochs, and Table 2 summarizes the setup parameters for YOLO-
ADual. PyTorch facilitates model training with its comprehensive suite of tools and libraries
for constructing and training neural networks. Algorithm 1 outlines the training algorithm
used in this study.

Table 2. Experimental configuration environment.

Configuration Name Specific Information
CPU Intel(R) core(TM)i5-13490F

Hard Envi GPU NVIDIA GeForce RTX4070Ti
ardware Environment VRAM 12 GB
Memory 16 GB

Operating System Windows 11

Sof Envi Python Version 3.9.12
oftware Environment PyTorch Version 2.0.0
CUDA Version 11.8

4.3. Result Analysis

Figure 8 displays the comprehensive results of the road detection model proposed
in this study. Considering a range of performance metrics, our model demonstrates
outstanding performance across all parameters. To illustrate the effectiveness of our
proposed technique in traffic sign detection (TSD) tasks, we conducted a comparative
analysis between our YOLO-ADual model and several other models, including Faster
R-CNN, Zhang et al., YOLOv7-tiny, SSD, EfficientDet, YOLOX, YOLOv5n, and YOLOvb5s.
Among these, Faster R-CNN serves as a two-stage detector, whereas YOLO is the one-stage
detector. As depicted in Table 3, Faster R-CNN exhibits suboptimal performance as a two-
stage detector, achieving a mAP@0.5 of merely 53.1%. Conversely, our YOLO-ADual model



World Electr. Veh. ]. 2024, 15, 323 14 of 20

demonstrates commendable results on the TT100k dataset, with an accuracy of 71.8%, a
recall of 63.23%, and a mAP@0.5 of 70.1%. For two-stage detectors, our model’s mAP@0.5
surpasses EfficientDet by 18.8%, Faster R-CNN by 17% and SSD by 16.84%. Moreover,
relative to the YOLOvV5-s model, our model shows an enhancement of 2.46% in accuracy,
0.27% in recall, and 2.5% in mAP@0.5. In comparison with other YOLO variants, YOLO-
ADual exhibits competitive performance across all detection metrics. The improvements of
YOLO-Adual over other models in key performance are shown in Table 4.

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
0.0175 —e— results 06
0.10 0.08 06
0.0150
0.06
008 0.0125 04 o4
0.06 0.0100 0.04
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0.04 0.0075 02
: 0.02
0.0050
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0 200 0 200 0 200 0 200 0 200
val/box_loss val/obj_loss vallcls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.08 05
0.6
0.07 0.010 0.3 04
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0.008 02 04 0.3
0.05 ’
0.2
¥ 0.006 0.2
0.04 04 o
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0.004 S — 0.0 0.0
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Figure 8. The result of YOLO-ADual.

Table 3. Comparative experimental results between YOLO-ADual and other object lightweight
detection algorithms. Bold represents the best result.

Method Precision Recall mAP@0.5 Params GFLOPs
Faster R-CNN [43] 4791 53.79 53.1 - -
Zhang et al. [24] 56.10 52.10 55.5 6,655,232 8.6
SSD [44] 51.45 53.76 53.26 641,473 3.1
EfficientDet [45] 68.80 46.40 51.30 5,524,683 9.4
YOLOv7-tiny [31] 61.70 57.20 59.9 6,125,934 13.5
YOLOX [46] 64.47 58.27 65.4 5,044,797 15.30
YOLOvV5n 67.90 45.10 48.8 1,820,743 4.4
YOLOv5s 69.34 63.23 67.6 7,365,671 17.3
YOLO-ADual 71.80 63.50 70.1 3,817,609 11.2

In terms of network size, the parameter count and computational requirements of
YOLO-ADual are reduced to 51.83% and 64.73% of the original, respectively. YOLOv7-tiny,
a notable lightweight model, has its parameters and computational load reduced by 37.68%
and 17.03%, respectively, when compared to YOLO-ADual. Additionally, we compared
our model with Zhang et al., a lightweight network optimized for traffic sign detection.
YOLO-ADual outperforms Ghost-YOLO with a 37.68% reduction in parameters and a
14.6% improvement in mAP@0.5. YOLOX introduces an anchor-free approach divergent
from the anchor-based method used in YOLOv3, YOLOv4, and YOLOVS. It has a parameter
count and computational intensity that are comparable to YOLOV5s in terms of mAP@0.5.
However, our YOLO-ADual model still achieves a 24% reduction in parameter count and a
4.7% higher mAP@0.5 compared to YOLOX.
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Table 4. Percentage improvements of YOLO-ADual over other models in key performance metrics.
The table only shows the percentage with a lift; the percentage without a lift is blank.

Precision

Method Recall mAP@0.5 Params Reduction GFLO.PS
Improvement Improvement Improvement Reduction
Faster R-CNN [43] 49.88% 18.05% 32.0%
Zhang et al. [24] 28.08% 21.92% 26.12% 42.65%
SSD [44] 39.50% 17.87% 31.59%
EfficientDet [45] 4.36% 36.68% 36.61% 30.91%
YOLOV7-tiny [31] 16.30% 11.03% 17.07% 37.68% 17.03%
YOLOX [46] 11.37% 9.01% 7.25% 24.59% 26.80%
YOLOv5n 5.73% 40.77% 43.65%
YOLOV5s 3.55% 0.43% 3.7% 48.17% 35.26%
In addition to evaluating intuitive loss performance, this paper presents a classification
confusion matrix, as illustrated in Figure 9. The confusion matrix summarizes the results
of classification, serving as an accuracy assessment tool. Darker shades within the matrix
indicate a higher recognition rate for the respective targets.
Confusion Matrix
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Figure 9. YOLO-ADual confusion matrix on test set.
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4.4. Ablation Study

To further validate the efficacy of our proposed YOLOv5s-ADual model, we conducted
ablation experiments using the TT100K dataset, with the original YOLOV5s as the baseline
model. The results, presented in Table 5, compare performance metrics, including mAP@0.5,
parameters, and GFLOPs. Each innovation demonstrates improvement over the baseline.
Our implementation of the CBAM attention mechanism exhibits significant enhancements
across all evaluation metrics, notably increasing mAP@0.5 by 9.87% while simultaneously
reducing both parameters and GFLOPs. This underscores the suitability of CBAM for
detecting small traffic signs on mobile devices. Furthermore, employing solely the Adown
module and C3Dual led to a reduction of approximately two million arithmetic parameters
and GFLOPs, resulting in respective mAP@0.5 improvements of 4.6% and 9.5%. The YOLO-
ADual model, in contrast to the original, reduces approximately three and a half million
parameters and 6.1 GFLOPs, significantly diminishing computational demands within the
detection network. Notably, YOLO-ADual exhibits the lowest parameter count among the
ablation experiments, demonstrating a 2.5% improvement in mAP@0.5. These findings
affirm that YOLO-ADual not only reduces the number of operations and compresses model
size but also achieves superior accuracy.

Table 5. Comparison of ablation experiment results.

Method CBAM ADown C3Dual mAP@0.5 Params GFLOPs
YOLOv5s 67.6 7,365,671 17.3
YOLOvV5s v 77.47 7,156,265 16.2
YOLOvV5s Vv 72.2 5,468,903 12.9
YOLOv5s Vv 77.1 5,828,903 13.0
YOLOvV5s v Vv 67.87 5,501,769 12.9
YOLOvV5s v v 69.6 4,163,719 9.5
YOLOv5s Vv Vv Vv 70.1 3,817,609 11.2

4.5. Visualization Result

To comprehensively evaluate the detection capabilities of our model, we have vi-
sualized its outputs. Figure 10a presents the detection results for both YOLOv5s and
YOLO-ADual. Both models were initialized with the same learning rate and utilized the
Adam optimizer. The original image is displayed in the first column, followed by the
visual detection outcomes of YOLOv5s and YOLO-ADual in the second and third columns,
respectively. Given the small size of the traffic sign in the original image, an enlarged
version is provided in the corner to facilitate closer examination of the detection details.
Upon inspecting the first comparison row in Figure 10a, it is evident that YOLO-ADual suc-
cessfully detects the ‘pn’ traffic sign, whereas YOLOv5s does not. Similarly, in the second
comparison row, YOLO-ADual detects the ‘io” traffic sign, while YOLOv5s not only fails to
detect ‘io” traffic signs but also shows a significantly lower confidence level compared to
our model. Figure 10b illustrates the detection results of YOLO-ADual on small targets,
demonstrating the model’s proficiency in identifying distant and diminutive traffic signs
with high confidence, which is crucial for traffic sign detection (TSD) tasks and the safety
of autonomous vehicles. Additionally, as depicted in Figure 10c, the model showcases its
capability to detect traffic signs under challenging conditions, including occlusion and
shadows, and to accurately identify small targets. This highlights the model’s robustness
in recognizing traffic signs amidst complex surroundings.
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Figure 10. Visualization outcomes on the TT100K dataset include (a) a comparative analysis of
the results between YOLOv5s and YOLO-ADual, (b) detection outcomes for small targets, and
(c) detection performance in challenging conditions such as shadows, occlusions, and cloudy weather.

5. Conclusions

In this study, we present YOLO-ADual, an innovative and lightweight architecture
based on the YOLOVS5 framework, designed to overcome the challenges of traffic sign
detection while addressing the limitations of the original YOLOv5. We enhance the model’s
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ability to detect smaller objects by integrating the channel attention mechanism (CBAM).
Additionally, we replace the original model’s Cross-Stage Partial (CSP) module with Ad-
own, a downsampling component adapted from YOLOv9. We also introduce the dual
convolution technique within the C3 structure, creating a novel C3Dual module. This
innovation not only improves the model’s precision in identifying small objects but also sig-
nificantly reduces the computational and parameter requirements, achieving a lightweight
configuration. Evaluation of the TT100K dataset demonstrates that YOLO-ADual strikes a
commendable balance between accuracy and lightweight performance, showing resilience
in detecting small targets in complex environments. Our model improves accuracy by 2.46%,
recall by 0.27%, mAP by 2.5%, reduces parameters by 51.83%, and decreases computational
load by 64.73%. In future research, we aim to develop even lighter models and enhance
the model’s speed for mobile applications. To more closely match in-vehicle hardware
configurations, we plan to experiment with lower configuration devices or vehicle-specific
hardware, such as the NVIDIA Drive PX used by Tesla for the Autopilot system. We also
intend to explore the impact of diverse autonomous driving conditions, including extreme
weather scenarios (e.g., snow, fog, tornado) and varying levels of exposure or low light
environments. These conditions may influence detection accuracy, necessitating future
investigations into illumination invariant techniques and visual attention mechanisms.
Overall, this study contributes to reducing hardware dependency for target detection algo-
rithms designed for mobile devices, with significant implications for enhancing the safety
of autonomous driving.
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