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Abstract: Kalman filters have shown to be a very accurate and robust method for State of
Charge estimation. However, their performance depends heavily on the accuracy of the used
battery model and its parameters. These battery model parameters have shown to vary with
the State of Health, cell chemistry, temperature and load current. This paper studies a data
driven battery model parameter estimation technique based on the recursive least squares method
as an alternative to extensively characterizing every cell of interest with time-consuming test
procedures. The performance of two commonly used electrical models is compared and extensively
validated on three different cell chemistries (Nickel Cobalt Manganese, Lithium Iron Phosphate
and Lithium Titanate Oxide), under load conditions of varying dynamic nature representative for
electric vehicle (EV) applications, using a Dynamic Discharge Pulse Test (DDPT) and the Worldwide
harmonized Light vehicles Test Procedure (WLTP). The developed model is able to identify and
update battery model parameters online, for three different chemistries, potentially reducing offline
characterization efforts and allowing monitoring of battery electrical behavior and state estimation
over its entire lifetime.

Keywords: battery model; battery management system; electric vehicle; modeling; state of charge

1. Introduction

For the past few decades, increasing environmental awareness has led to the development and
slow adaptation of the electric vehicle (EV) and hybrid electric vehicle (HEV). Naturally, transportation
is a target for decarbonisation initiatives since it contributes one-third of total greenhouse gas
emissions [1]. The market share of electric vehicles is predicted to increase significantly in the
coming decade [2,3], which will demand increasing performance and reliability from the battery
pack and battery management system (BMS). While ensuring safe operation of the battery pack
by keeping the individual cells within their respective temperature and voltage intervals, another
vital aspect of the BMS’s function is state estimation [4,5]. The most important states are the state
of charge (S50C), the state of health (SoH) and the state of function (SoF) [5]. However, estimating
the SoC of a battery accurately poses a challenge, as it can’t be measured directly and is influenced
by various factors such as temperature and cell aging [4]. Furthermore, the very dynamic load
profile of batteries in automotive applications adds to the complexity of accurate SoC estimation.
Commonly, SoC estimations have been divided into five categories: conventional methods, adaptive
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filter algorithms, learning algorithms, nonlinear observers and others [4,6]. However, only a few of
the proposed methods in the literature are applicable in real time on the BMS, since limitations exist
on computational power [4-7]. Some of the most commonly used real-time SoC estimation methods
include coulomb counting, various applications of Kalman filters and model based methods [7-13].
Coulomb counting, the most straightforward method, has some major drawbacks: it is heavily
dependent on the initial SoC accuracy and, being an open-loop method, it is susceptible to accumulated
errors due to measurement errors on the load current [14]. Kalman filters, on the other hand,
have proven to be a very accurate and robust method for SoC estimation [10-13]. However, their
performance depends heavily on the accuracy of the used battery model and its parameters [7,15].
These battery model parameters have shown to vary with the aging level of the cell, cell chemistry,
temperature and load current [6,16]. It is common practice to determine these battery model parameters
by performing an extensive Hybrid Pulse Power Characterization (HPPC) test at different ambient
temperatures on the desired cell, which will correlate the parameter values to current rate and
temperature at a specific SoC [16,17]. This elaborate, time-consuming procedure has to be carried out
for every different cell of interest, which can have varying formats, designs, chemistries and aging
levels. Previous research has proposed several methods to determine the battery model parameters
of equivalent circuit electrical models online, such as Kalman Filters (KF), Genetic Algorithms (GA)
and Least Squares (LS) methods [4-7,18-23]. These methods allow model parameterization during
battery operation without extensive characterization testing, which allows the model to adapt to
variations influential factors such as temperature and battery aging. Even though the conventional LS
identification methods are less accurate and robust than others such as the EKF or GA, their required
computational effort is low, which makes them suitable for implementation in a BMS [6,21].

The purpose of this paper is to perform a comparative analysis of established battery models
and SoC estimation methods across three different cell chemistries. To this end, the extensive
characterization procedure is bypassed by implementing an online adaptive parameter estimation
technique based on the recursive least squares method with adaptive forgetting factor, which improves
the conventional LS methods significantly. This method is hereafter deployed for the parameter
identification of two commonly used electrical models: the first order model and second order model.
Combined with an EKEF, this model allows online SoC estimation independent of cell aging and
chemistry. Both the first and second order model with online parameter identification are validated
and compared for three different state-of-the-art cell chemistries, which, to the author’s best knowledge,
has not been presented in previous literature.

The structure of the paper is as follows: Section 2.1 presents both aforementioned models: the
first and second order model. Hereafter, the recursive least squares with the adaptive forgetting factor
parameter identification method is constructed for the second order model in Section 2.2. Section 3
then presents the specifications of the tested cells and the validation process of the proposed model.
In Section 3.2, the performance of the first and second order model is compared and extensively
discussed, and then the SoC estimation accuracy is addressed. Finally, Section 5 contains the
conclusions of this research.

2. Data Driven Battery Models

2.1. Battery Models

Modeling the electrical behavior of a battery accurately from its measurable values (i.e., voltage,
current and temperature) is paramount for model-based battery management systems, which often
implement SoC estimation algorithms based on Kalman filters. While Kalman filters have shown to
weaken the influence of white noise and initial SoC error, they cannot eliminate the existing error of
the battery model itself. Furthermore, it has been shown that the accuracy of SoC estimation is directly
related to the accuracy of the battery model [15]. In order to obtain a sufficient accurate battery model
with acceptable complexity, two commonly implemented battery models are investigated in this work:
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the second order Thevenin model or dual polarization model and the first order Thevenin model.
The equivalent circuit diagram of both electrical models is shown in Figure 1.

The first order model is fully described by Equation (1), where U, denotes the polarization voltage
over the RC network, Upc represents the open circuit voltage (OCV) and Uy,; is the terminal battery
voltage. Similarly,the electrical behavior of the second order model is characterized by Equation (2),
where Uy, denotes the polarization voltage over the first RC network, Uy, denotes the diffusion voltage
over the second RC network, Upc represents the OCV and Uy, is the terminal voltage.

The values of the aforementioned ideal electrical components (model parameters) define the
electrical behavior of the battery and have been shown to vary with cell chemistry, temperature, load
current and state of health (SoH). Thus, to captivate the electrical behavior of a cell under all these
varying conditions, numerous time-consuming characterization tests have to be performed. In order
to drastically reduce testing times, an online model parameter identification method is investigated in

this paper.
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Figure 1. Equivalent circuit diagram of (a) first order battery model and (b) second order battery
model [16].
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2.2. Parameter Identification Method

In order to obtain and maintain an accurate SoC estimation over battery lifetime, a data driven
adaptive electrical model is developed that is able to identify and update the model parameters from
the measurable values, i.e., voltage and current, during operation. The developed data driven model
is based on the well-known Recursive Least Squares (RLS) method with adaptive forgetting factor.
In order to implement the RLS method on both battery models introduced in Section 2.1, the auto
regressive exogenous (ARX) has to be constructed. Since this is more complicated for the second
order model, yet very similar for both models, only the second order model equations are shown.
Based on Equation (2), the transfer function H(s) of the electrical model in the frequency domain can
be obtained [17]:

Ros? + g—ede—e [(Ro + Rpe) RpaCpa + (Ro + Rpa) RpcCpels + o el
H(s) = 2 + RpaCpatRpcCpe o 1 ' ®)
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The transfer function is discretized using the bilinear transform shown in Equation (4), in order to
obtain the discretized transfer function H(z) in Equation (5):

segil_zil
Ts14+2z71
bo + bz + byz 2
H(z) = 23012+ 52 5)

1—ayz7l —apz 2"

(4)

This allows for rewriting Equation (2) as Equation (6), where U, j is the measured terminal voltage
at timestep k and I x is the measured current at timestep k. Hereafter, we can acquire the ARX form
of the battery model in Equation (7), where vy is the simulated terminal voltage at timestep k:

Ui = (1 —ay —ax)Uoc + arUp g1 + aaUy ko + bolpar k + b1lpar —1 + b2lpark—2, (6)
vk = 00 ¢, @)

where the measurement data vector ¢ and the parameter vector ¢y at timestep k are given by
¢x = [Uoc, Urk—1, Utk—2, Ipat k1, Ipat k2], ®)
Gk = [1 —a] —daz,ay,az, bO/ bl/ b5]

The recursive set of calculations of the RLS with adaptive forgetting factor are implemented as
shown in Equation (9). Where A represents the adaptive forgetting factor at timestep k, c is a constant
bigger than one, L represents the updated gain of the parameter vector at timestep k and Py represents
the covariance error of the parameter vector at timestep k. Finally, the battery model parameters can
be retrieved from the updated parameter vector 6y:

Ar=1-— m 1 —
D8 Pe—19%
= D19k
A+ O P1 ¢y 9)

- Peq — Lyl Py
Ak + ¢ Py
Or = 01+ Li(yx — oL 6;_1).

3. Methods

3.1. Cell Specifications and Testing

In order to validate the developed model’s capability to be deployed on multiple cell chemistries
with totally different characteristics, experimental data is required. To this end, three different cells
were selected and tested in this research: a 20 Ah NMC cell, a 14 Ah LFP cell and a 5 Ah LTO cell.
The main electrical characteristics of these cells are shown in Table 1. To gather the necessary input
data for the model, both capacity tests at five different c-rates and four temperatures are performed
and OCYV tests are performed at four different temperatures.
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Table 1. Cell specifications of tested cells.

NMC LFP LTO
Cathode Material Li(NiCoMn)O, LiFePOy NiCoMn
Nominal Capacity 20 Ah 14 Ah 5Ah
Nominal Voltage 3.65V 32V 22V
Charging/Discharging cut-off voltage  4.15V/25V  3.65V/2.0V 280V/1.50V
Energy Density 174 Wh/kg 120 Wh/kg 42 Wh/kg
Power Density * 2300 W/kg 2500 W/kg 2250 W/kg

* (Depth Of Discharge (DoD) 50%, 10 s discharge).
3.2. Validation Process

In order to validate the proposed data driven battery model parameter estimation technique,
several tests were performed using a 24-channel SBT0550 battery tester (PEC, Leuven, Belgium) on
three cells of different chemistries: a 20 Ah NMC cell, a 14 Ah LFP cell and a 5 Ah LTO cell. The battery
tester allows voltage measurements between —3 and 5 V DC with a resolution of 100 uV and an
accuracy of £0.03%. Current measurements are possible between 0 and 50 A DC with an accuracy of
£0.02%. The performed test cycles for the validation process are a Dynamic Discharge Performance
Test (DDPT) and the more dynamic Worldwide harmonized Light vehicles Test Procedure (WLTP).
Three variables were accurately logged throughout the duration of these tests using the SBT0550 battery
tester: current I, terminal voltage V and temperature T. Hereafter, the variables were used as an input
for the data driven parameter estimation model, which estimates the battery model parameters for a
second order Thevenin model, as can be seen in Figure 2, and a first order model. Electrical validation
is performed by observing the difference between measured and simulated voltage when applying
the validation current profiles. Hereafter, the performance of both electrical models is compared.
Finally, the performed SoC estimation is validated by comparison to the reference SoC estimated by
coulomb counting.

—h 2nd Order
o S
Model
Current

Adaptive
Temperature L parameter ot SoC

4 5 estimation
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II \ w
a
O

T;

Vmeas

Figure 2. Flowchart of complete data driven battery model parameter estimation model.

4. Results and Discussion

The implemented SoC estimator during the validation process, of which the results are presented
in this section, is based on the well-known Extended Kalman Filter (EKF) [24-26]. While the data
driven battery model has been shown to work with varying other SoC estimation methods, such as
coulomb counting and the Unscented Kalman Filter, it is preferred to show the results of only one SoC
method for the sake of clarity and compactness. Analogously, only the simulation results at 25 °C
are presented. The results shown in this section are structured as follows: Section 4.1 discusses the
validation results of the Dynamic Discharge Performance Test (DDPT) for the three tested chemistries,
followed by the validation results of the Worldwide harmonized Light vehicles Test Procedure (WLTP).
Hereafter, the simulation results of both the first order model and second order model are compared
and discussed. Finally, Section 4.2 presents the results of the SoC estimation.
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4.1. Comparison of the Battery Model Electrical Performance

Firstly, the Dynamic Discharge Performance Test validation profile at 25 °C is performed,
of which the simulated voltages and error on these simulations can be observed in the attached
Figures A1, A3 and A5 for the 20 Ah NMC, 14 Ah LFP and 5 Ah LTO cell, respectively. Furthermore,
detailed simulation results are provided in Figures A2, A4 and A6. While all three chemistries show
accurate simulation results with a mean relative error smaller than 0.2%, it is clear that the LFP
chemistry poses the biggest challenge to model accurately. This can be attributed to the characteristic
flat SoC-OCYV relationship of LFP cells in the middle SoC range, which also explains why the estimated
SoC shows a less linear trend, as can be seen in Figure A3. It is observed that the simulation for the
LFP cells is more accurate in the low SoC range, shown in Figure A4, where the SoC-OCV relationship
shows highly linear behavior. Furthermore, the OCV hysteresis is not negligible for LFP cells and
should be included in future models to improve simulation accuracy and the reliability of the SoC
estimation. Finally, it should be noted that models based on a black box approach, such as the electrical
models presented in this paper, have very limited physical meaning. In some cases, this limitation
might result in a transient simulated voltage response that is not physically attainable from the cell’s
electro-chemistry.

Secondly, the Worldwide harmonized Light vehicles Test Procedure (WLTP) was performed on the
three selected cell chemistries at 25 °C, of which the simulated voltages and error on these simulations
can be observed in the attached Figures A7, A8 and A9 for the 20 Ah NMC, 14 Ah LFP and 5 Ah
LTO cell, respectively. All three chemistries show accurate simulation results with a mean relative
error smaller than 0.2%. While it is observed that the data driven battery model benefits from a more
dynamic load profile to identify and update the model parameters, the more dynamic nature of the
profile also poses a bigger challenge to accurately simulate the voltage response. It is observed that the
LFP cell shows the least accurate simulation result out of the three tested cell chemistries. This can be
attributed to the fact that the WLTP was performed at 75% SoC, where the SoC-OCV relationship for
LEFP cells is nearly horizontal.

Similarly, both validation profiles were performed for the first order battery model in order to
compare their respective performance. A clear overview of the model accuracies for every validation
case is presented in Figure 3, where (a) presents the mean absolute error (MAE) on the simulated
voltage and (b) presents the mean relative error (MRE) on the simulated voltage. First of all, it should
be pointed out that absolute errors can be deceiving when not interpreted correctly—for example,
when comparing the MAE from the DDPT with the first order model performed on LTO cells to NMC
cells. These results might lead one to believe that the LTO simulation is more accurate, while relatively
speaking this is not the case due to the low nominal voltage of the LTO cells.

When comparing the results obtained by the first order model to the second order model, a clear
accuracy improvement is realized. For the LFP and LTO cells, the MRE on the DDPT load profile was
almost halved—while the NMC cell’s error wasn't, it still presented an improvement. With regards
to the WLTP load profile, both the NMC cell and the LTO cell displayed drastic improvements while
the LFP’s improvement was significantly smaller. Overall, it can be concluded that the second order
model improves the accuracy significantly for every condition, in accordance with findings in the
literature [27]. However, considering the importance of the model’s online implementability in a
battery management system (BMS) and the increased computational burden of the second order model,
the first order model’s accuracy is deemed sufficient.

4.2. State of Charge Estimation

To assess the model’s capability to estimate the SoC of the battery accurately, the estimated SoC
was studied. It was compared to a reference SoC value, obtained by coulomb counting, which was
used to calculate the root mean square error (RMSE) of the estimated SoC. This process is repeated
for every cell chemistry and for both validation profiles, the results of which are summarized in
Figure 4. The consistently higher error for the DDPT validation profile can be explained by the fact
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that it contains a complete discharge (100-0% SoC), which includes the highly nonlinear operation
ranges. Acknowledging that in real-life conditions these operation ranges are often avoided by car
manufacturers and that these conditions are simulated using the WLTP test, it is concluded that the
developed model can estimate the SoC of multiple cell chemistries accurately within an RMSE of 1.25%.

a) b)
10 T T T 0.35 T T ;
[ DDPT 1st order [ DDPT 1st order
[ WL TC 1st order | | o0l [ WL TC 1st order | |
[ DDPT 2nd order : [ DDPT 2nd order
[ JWLTC 2nd order | | [ JWLTC 2nd order
J 0.25F 1
o 1 w
Y 4
s 1 S 015F 1
1 0.1 ]
LFP LTO NMC LFP LTO NMC

Figure 3. (a) Mean Absolute Error (MAE) and (b) Mean Relative Error (MRE) on voltage simulation
for the first and second order battery model under Dynamic Discharge Pulse Test and Worldwide
harmonized Light vehicles Test Procedure load profile.

SoC RMSE of first order model

LFP LTO NMC

Figure 4. Root mean square error (RMSE) on the State of Charge estimation of the first order model.

5. Conclusions

A general electrical battery model parameter estimation method, based on the recursive least
squares identification method with adaptive forgetting factor, was developed for both the first order
and second order Thevenin model. The accuracy of these electrical models are paramount for the
developed symbiotic State of Charge (SoC) estimation model, which is based on the Extended Kalman
Filter. Both models were extensively validated on three different cell chemistries (NMC, LFP and
LTO), under load conditions of varying dynamic nature representative for EV applications, using a
Dynamic Discharge Pulse Test (DDPT) and the Worldwide harmonized Light vehicles Test Procedure
(WLTP). Furthermore, an elaborate comparison of both models’ performance is presented in this
research. It is concluded that while the second order model improves the accuracy significantly
for every test condition (Mean Relative Error < 0.18%), considering the importance of the model’s
online implementability in a battery management system (BMS) and the increased computational
burden of the second order model, the first order model’s accuracy (Mean Relative Error < 0.3%) is
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deemed sulfficient. To assess the model’s capability to estimate the SoC of the battery accurately, it was
compared to a reference SoC value obtained by coulomb counting, for all three cell chemistries and
for both validation profiles. The developed model can estimate the SoC of all three cell chemistries
accurately within a root mean square error of 1.25%. In conclusion, the developed model is able
to identify and update battery model parameters online, for three different chemistries, potentially
reducing offline characterization efforts and allowing monitoring of battery electrical behavior and
state estimation over its entire lifetime.
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Figure A1l. DDPT validation results on 20 Ah NMC.
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Figure A2. DDPT voltage response of 20 Ah NMC at 70% SoC.
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Figure A3. DDPT validation results on 14 Ah LFP.

9of 14



World Electric Vehicle Journal 2018, 9, 16 10 of 14

Voltage Response

205+ Measured Voltage
Simulated Voltage
2.9 : -
3.035 3.04 3.045 3.05

Time (h)

Figure A4. DDPT voltage response of 14 Ah LFP at 5% SoC.
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Figure A5. DDPT validation results on 5 Ah LTO.
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Figure A6. DDPT voltage response of 5 Ah LTO at 80% SoC.
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Figure A7. WLTC validation results on 20 Ah NMC.
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Figure A9. WLTC validation results on 5 Ah LTO.
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