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Abstract: Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome
acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in
leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials
for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic
interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets
and the combination strategies for these pathways. Specifically, the review focuses on combination
therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways.
From a literature review, combination therapies with the kinase inhibitors appear more promising
than monotherapies with individual agents. Therefore, the development of efficient combination
therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
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1. Introduction

Acute myeloid leukemia (AML) is a clonal disease that is derived from abnormally
and, occasionally, poorly differentiated cells of the hematopoietic system [1]. Improvements
in AML treatment in younger patients over the past 35 years have largely been due to
the dose escalation of chemotherapy and better supportive care [2]. Meanwhile, several
attempts to improve antileukemic activity, other than conventional chemotherapy, have
emerged. These are epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase
(IDH) inhibitors, and fms-like kinase 3 (FLT3) inhibitors [3,4], which have been employed
in clinical practices in these several years. These specific inhibitors were not necessarily
developed with the intent of manipulating cellular differentiation; however, they are a
central part of the mechanism for these drugs, including cellular differentiation [3].

Accumulated evidences suggests that abnormal activation of signal transduction path-
ways plays a pivotal role in leukemogenesis, through the blocking of differentiation and
abnormal cell proliferation [5]. Kinase inhibitors can serve as differentiation inducers, and
the author recently described the application of kinase inhibitors for differentiation therapy
in AML [6]. Therefore, targeting kinase activity is considered an attractive therapeutic
strategy to overcome AML. Differentiation therapy employing all-trans-retinoic acid for
acute promyelocytic leukemia (APL) dramatically improved the clinical outcome in the
1990s. Meanwhile, several attempts to improve antileukemic activity in older patients
with diseases other than APL by using hypomethylating agents with low-dose cytarabine
showed favorable results [7]. Therefore, the expansion of differentiation therapy for clinical
application outside of APL may be attractive for improving clinical outcomes [4]. The
author recently described the application of kinase inhibitors for differentiation therapy
in AML [6]. Clinical trials for kinase modulators as single agents remain scarce and have
shown limited effects [6]. For example, the potential efficacy of epidermal growth factor
receptor (EGFR) inhibitors was reported for non-small cell lung cancer, but it was con-
cluded that EGFR inhibitors were not appropriate as single agents for advanced AML [8,9].
Therefore, combination therapy is an area of therapeutic interest that is being pursued.
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To follow this issue in the present review, the author summarizes attractive kinase
pathways for therapeutic targets and the combination strategies for these pathways. During
a search of the literature on PubMed with the keywords “kinase”, “inhibitor”, “combi-
nation”, “AML”, “therapy”, and “clinical”, more than 500 papers were found to have
been published to date. Based on the search, the FLT3, PI3K/AKT/mTOR, MAPK, AXL,
CDK, and CHK1 pathways appear to be common pathways targeted by kinase inhibitor
combination therapies. In the present review, the author summarizes these attractive kinase
pathways for therapeutic targets and the combination strategies for these pathways.

2. Combination Therapy Targeting the FLT3 Signaling Pathway

Mutations of FLT3 comprise one of the most frequently identified types of genetic
alterations in AML [10]. As the biological role of FLT3 is important in the pathogenesis of
AML, through the activation of downstream kinase signaling pathways [10,11], the clinical
development of FLT3 tyrosine kinase inhibitors (TKIs) has been one of the most active
fields in precision medicine for AML [12,13].

Several resistance mechanisms for FLT3 inhibitor therapy have been shown, such as ad-
ditional mutations in the kinase domain in internal tandem duplication (ITD) patients [14],
or another kinase pathway activation [15]. To circumvent resistance, as well as to increase
efficiency, ongoing efforts are focusing on the development of combinational strategies. We
first discovered [16,17], followed by the others [18,19], who showed that FLT3 inhibitor, in
combination with arsenic trioxide, acts synergistically on primary AML cells or AML cell
lines with FLT3 mutations. Not only for these in vitro models, thus far, reported results
of trials combining FLT3 TKIs with induction and consolidation chemo- therapy in the
first-line setting have been encouraging [13,20]. Stone et al. [21] previously reported the
result of a phase 1b trial. They investigated several schedules and doses of midostaurin, in
combination with cytarabine and daunorubicin induction and post-remission therapy of
high dose cytarabine in newly diagnosed AML patients. They revealed that midostaurin,
in combination with standard chemotherapy, demonstrated high complete response and
overall survival (OS) rates in newly diagnosed younger adults with AML. Subsequently,
based on the findings of the RATIFY trial, the US Food and Drug Administration (FDA)
approved midostaurin in 2017. The FDA approved midostaurin to be used in combination
with standard induction therapy with cytarabine and daunorubicin and consolidation
therapy with cytarabine in FLT3-mutated newly diagnosed young (18–59 years) patients
with AML [22]. Ofran et al. [23] investigated the roles of midostaurin in patients’ survival
who were initially treated with intensive chemotherapy plus midostaurin and then proceed
to allo-stem-cell transplantation (SCT) in the first complete remission (CR) [23]. In a mul-
tivariate analysis, midostaurin use and allo-SCT in CR1 were the most significant factors
affecting overall survival (OS). Midostaurin incorporation into chemotherapy regimens
significantly improved CR + CR, with incomplete hematologic recovery rates (p = 0.002)
and reduced relapse rates (p = 0.02); it was also remarkably advantageous for FLT3-ITD
high-allelic ratio patients (2-year OS of 82%) [23].

FLT3 inhibitors are tyrosine kinase inhibitors and are classified into first- and second-
generation inhibitors based on their kinase specificity and potency [24]. First-generation
inhibitors include midostaurin and sorafenib. Second-generation inhibitors include quizar-
tinib and gilteritinib. First-generation inhibitors lack specificity to FLT3 and are therefore
not as potent as second-generation FLT3 inhibitors, which have been designed to only
target FLT3. However, first-generation FLT3 inhibitors can target downstream of FLT3
and may also be effective in parallel signaling and in other targets in AML at diagnosis,
which is characterized by the coexistence of multiple leukemic clones [25,26]. Meanwhile, a
dominant clone with FLT3 mutations tends to emerge at relapse [26], and it may be better
targeted by the second-generation FLT3 inhibitors.

As there are many excellent reviews on FLT3 inhibitors and their combinations [13,27–29],
in this section, the author introduces essential clinical trials other than FLT3 inhibition plus
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chemotherapy, such as the combination of the first-generation FLT3 inhibitor sorafenib
with the hypomethylating agent 5-azacytidine.

This combination was shown to be well tolerated in older patients with untreated
FLT3-ITD AML [30], or underwent a median of 2 prior regimens for treatment (range
0–7) [31]. The majority (53%) of patients experienced grade < 3 adverse effects attributable
to sorafenib, and the most common grade ≥ 3 adverse events were thrombocytopenia,
neutropenia, anemia, and neutropenia with fever or infection [31]. Another promising
combination with FLT3 inhibitor may be venetoclax with decitabine. Maiti et al. [32]
reported that the outcomes of newly diagnosed patients with a 2-year OS of 80% compare
favorably with prior reports [30] of sorafenib with low-intensity therapy, yielding overall
response rates of 78% and a median OS of 5.3–9.2 months.

3. Combination Therapy Targeting the PI3K/AKT/mTOR Signaling Pathway

The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/
mTOR) signaling pathway is one of the key aberrant intracellular axes in AML [33].
Chemotherapeutic combinations such as cytarabine with AKT inhibitor (MK-2206) have
been reported [34]. The PI3K/AKT/mTOR signaling pathway, related pathways, and
molecule-specific inhibitor combinations are depicted in Figure 1. Sandhöfer et al. [35]
demonstrated a broad range of cytotoxic activities for the inhibition of PI3K/mTORC1/2
(BEZ-235), MK-2206, and TORC1 (rapamycin), with high efficacies for cells carrying a
lysine methyltransferase (KMT) 2A rearrangement [35]. The pharmacologic inhibition of
lysine-specific demethylase 1 (LSD1) promoted a differentiation blockade especially in
AML cells with MLL chromosomal translocations [36]. Deb et al. [37] found that mTORC1
signaling was a target of LSD1. From a dropout screen of a genome-wide CRISPR-Cas9,
they revealed multiple components of mTORC1 signaling by LSD1 inhibition (LSDi). They
also demonstrated that mTORC1 pharmacologic inhibition with LSDi enhanced differentia-
tion in both the cell line and primary cell settings [37]. Abdel-Aziz et al. [38] found that
mTOR was involved in mediating the resistance of leukemic cells to LSDi. Of note, the
inhibition of mTOR unlocked the resistance of AML cell lines and primary patient-derived
blasts to LSDi both in vitro and in vivo [38].

Bertacchini et al. [39] investigated 80 samples of primary cells from AML patients and
found that inhibition of Akt and mTOR resulted in paradoxical activation of growth factor
receptor tyrosine kinases (RTKs). Accordingly, dual inhibition of RTKs and AKT displayed
synergistic potent cytotoxic effects in a pre-clinical model [39]. However, in a phase II
study on 23 AML patients with RAS mutations, combined MEK and AKT inhibition had no
clinical activity [40]. This may be explained by the fact that the maximum tolerated clinical
dose might not reflect the dosing necessary to produce the desired biological effect of this
combination [40].

Another kinase pathway related to AKT/mTOR signaling involves PIM kinases and
p38a (MAPK14) [41]. Signaling from Akt and PIM kinase converges to control output from
the mTOR signaling axis via regulation of upstream and downstream effectors [42]. PIM
kinases (PIM1, 2, and 3) are involved in cell proliferation and survival signaling and are
emerging as therapeutic targets for various malignancies. Dual inhibition with PIM kinase
and AKT inhibitors was reported to show synergistic cytotoxicity in AML [43].

Meja et al. [43] found that a significant portion of primary AML samples showed PIM1
and PIM2 expression, and thus examined the effect of pan-PIM inhibitor AZD1897 on AML
cell growth and survival. In their study, PIM inhibition had limited single-agent activity in
AML cell lines and primary AML cells, but significant synergy was seen when AZD1897 was
combined with Akt inhibitor AZD5363 [43]. PIM kinases are often overexpressed in AML
and other hematological malignancies, but the effect of single-agent PIM inhibitor treatment
is marginal. Brunen et al. [41] demonstrated that PIM inhibition induced reactive oxygen
species production, leading to activation of p38α and downstream AKT/mTOR signaling.
Accordingly, inhibition of p38α, combined with PIM kinase inhibition by AZD1208, had a
profound effect on AML cells [41].
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Recently, metformin, a classic hypoglycemic drug for diabetes, was reported to syner-
gistically sensitize AML cells to Ara-C through mTORC1/P70S6K pathway inhibition [44].

However, concerns about combinations with PI3K/AKT inhibitors have been raised.
Liang et al. [45] revealed that GLI1 overexpression in AML cells led to increased AKT
phosphorylation and decreased Ara-C sensitivity, which was attenuated by GLI1 inhibition.
PI3K inhibition profoundly affected GLI1 expression and co-inhibition of GLI1- and PI3K-
induced apoptosis of hematopoietic stem/progenitor cells, raising the possibility for serious
side effects of this treatment.

Clinical trials on mTOR inhibitors have been conducted. In the early 2010s, the results
of the phase Ib GOELAMS study of the mTOR inhibitor RAD001 [46] and the phase II
GIMEMA study (AML-1107) of temsirolimus [47] were published. Overall, these studies
revealed that the inhibitors had acceptable toxicity and led to improved outcomes after
treatment. The latter study examined the combination of an mTOR inhibitor, temsirolimus,
and low dose of clofarabine in older patients with AML as salvage therapy. The overall
remission rate (ORR) was 21% (8% complete remission (CR), and 13% CR without full
blood count recovery) in 53 evaluable patients. The median disease-free survival was
3.5 months, and the median overall survival was 4 months (9.1 months for responders). In
2018, a clinical trial combining an mTORC1 inhibitor (sirolimus) and MEC (mitoxantrone,
etoposide, and cytarabine) was performed in relapsed, refractory, or untreated high-risk
AML patients [48]. The ORR among patients with mTORC1 inhibition and baseline target
activation during therapy was 71% (12/17), compared with 20% (2/10) in patients without
target inhibition. These data provide clinical confirmation that activation of mTORC1
mediates chemotherapy resistance in AML patients.

4. Combination Therapy Targeting the MAPK Signaling Pathway

One of the most aberrantly activated oncogenic pathways in AML is the RAS-RAF-
MEK-ERK (MAPK) pathway [49]. However, in clinical trials, the targeting of this pathway
by MEK inhibitors was not proven to be effective. Jain et al. [50] previously demonstrated
the effect of selumetinib, an oral small-molecule inhibitor of MEK, as a modest single
antileukemic agent in advanced AML. In parallel, common drug-related toxicities were
mild, such as grade 1–2 diarrhea, fatigue, nausea, vomiting, and skin rash. Together with
these, a combination with drugs that target other signaling pathways than MEK should be
considered in AML.

MAPK-interacting kinases 1 and 2 (MNK1/2) are downstream effectors of this pathway
that control the activation of eukaryotic translation factor 4E (eIF4E) [51] (Figure 1). eIF4E
was reported to be overexpressed in AML and to play a role in AML pathogenesis [52,53].
Saurez et al. [54] demonstrated an effect of tomivosertib, the highly selective MNK1/2
inhibitor, on AML cells. The inhibition of Mnk was also reported to enhance the apoptotic
activity of cytarabine in AML cells [55]. Furthermore, eIF4E inhibition was shown to
enhance the effect of FLT3 inhibitors on both internal tandem duplication and tyrosine
kinase domain mutants [56]. Altman et al. [57] examined whether cercosporamide, an
antifungal agent that acts as a unique Mnk inhibitor, exhibits antileukemic properties.
They found that treatment of AML cells with cercosporamide resulted in dose-dependent
suppression of eIF4E phosphorylation and that the combination of cercosporamide with
cytarabine resulted in enhanced antileukemic responses in a xenograft mouse model
in vivo [57].

Antiapoptotic Bcl-2 family members are critical for the survival of AML cells. The
combination of venetoclax and tomivosertib showed synergistic anti-leukemic responses in
AML cells [54]. In a similar context, Tambe et al. [58] reported that pan-RAF inhibition, but
not MEK inhibition, caused cell death in 29% of AML samples. Pan-RAF inhibition was not
toxic to normal bone marrow cells. Furthermore, pan-RAF inhibition induced apoptosis
in AML cells and synergized with BCL2 inhibition [58]. Cremer et al. [59] conducted
a genome-scale open-reading-frame resistance screen and identified RAS-MAPK-ERK
pathway activation as a major mechanism of resistance to SYK inhibitors. They further
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demonstrated that an MEK and SYK inhibitor combination was synergistic in vitro and
in vivo [59]. Gefitinib, an EGFR inhibitor, was reported to induce differentiation [60]
through an off-target effect of Syk family kinase inhibition [61]. Recently, it was reported
that phosphorylated EGFR and EGFR ligand were expressed in 19% and 29%, respectively,
of blast cells from APL patients, but not in those from healthy controls [62]. The same study
further showed that the combination of gefitinib with ATRA and ATO promoted myeloid
cell differentiation in ATRA- and ATO-resistant APL cells [62].

5. Combination Therapy Targeting AXL

AXL, named after the Greek word “anexelekto”, meaning uncontrolled, is a member
of the TAM family of receptor tyrosine kinases. AXL potentially drives cell proliferation
through effector molecules in the PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, JAK/STAT,
and NF-kB signaling pathways [63]. Inhibition of AXL sensitized AML stem/progenitor
cells to venetoclax treatment, with strong synergistic effects in vitro and in xenotransplanta-
tion models [64]. It was reported that combined treatment with the DNA methyltransferase
inhibitor decitabine and histone deacetylase inhibitor vorinostat synergistically inhib-
ited AML cell viability and induced AXL expression [65]. Triple combination treatment
with AXL-specific inhibitor BGB324 further increased the sensitivity compared with the
decitabine–vorinostat combination treatment [65].

6. Combination Therapy Targeting the CDK Signaling Pathway

C Cyclin-dependent kinases (CDKs) 1, 2, 4, and 6 are mainly involved in regulation
of the cell cycle, while CDK7, 8, and 9 play roles in regulating transcription to further
influence survival and cell proliferation by driving the target gene expressions [66]. Among
the CDKs, CDK9 is probably the most attractive target, in combination with other inhibitors
or chemotherapy, for hematological malignancies [67–72]. Note that Zeidner et al. [72]
demonstrated that Alvocidib, a potent and nonselective CDK9 inhibitor, can be safely
administrated prior to 7 + 3 (cytarabine + daunorubicin) induction with encouraging
clinical activity. There was one dose-limiting toxicity of cytokine release syndrome. The
most common grade ≥ 3 nonhematologic toxicities were diarrhea (44%) and tumor lysis
syndrome (34%) [72].

CDK9 is a transcriptional regulator of myeloid cell leukemia-1 (MCL-1) that can
influence apoptosis induction [73,74]. CDK9 is also a global transcriptional regulator that
forms part of the super-elongation complex controlling RNA polymerase II phosphorylation
and elongation [73,75] (Figure 2). Several studies have reported effects of other CDKs,
such as CDK2 [76] and CDK6 [77,78]. CDK2 suppression was reported to synergize with
all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells [76].

Recently, histone methyltransferase EZH2 loss and the subsequent reduction in
trimethylation of histone H3K27 were reported to result in the de-repression of HOX
genes as a novel pathway for acquired resistance to tyrosine kinase inhibitors and cytotoxic
drugs in AML [79]. Specifically, CDK1 inhibition prevented the degradation of EZH2,
thereby restored drug sensitivity, suggesting the importance of CDK inhibition in leukemia
therapy [79].

7. Combination Therapy Targeting the CHK1 Signaling Pathway

The DNA damage checkpoint is regulated by two signaling pathways, ATM-CHK2-
p53 and ATR-CHK1-cdc25A, of which the ATM-CHK2-p53 pathway is impaired in many
cancers [80] (Figure 3). Consequently, agents that inhibit ATR-CHK1-cdc25A, especially
CHK1, are very attractive for the development of efficient therapies [81] (Figure 3). CHK1 is
a protein kinase that regulates cell cycle progression in response to checkpoint activation. It
was reported that cytarabine, a gold-standard chemotherapeutic agent for AML, activates
the replication checkpoint kinases CHK1 and ATR. In turn, cytarabine regulates a series
of cellular responses that aid survival during replication stress [82]. Indeed, a selective
CHK1 inhibitor was shown to enhance the cytotoxicity of cytarabine [82]. CPX-351 is
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a liposomal formulation encapsulating cytarabine and daunorubicin that has received
approval for treatment of AML. Recently, the addition of a CHK1 inhibitor, MK-8776
or CHK1 knockdown, was found to enhance CPX-351-induced apoptosis in multiple
AML cell lines and primary samples [83]. Although there are many promising results in
pre-clinical models, clinical success has not been achieved to date [84]. For example, a
randomized phase II trial of combination therapy with Ara-C and CHK1 inhibitor MK-
8776 produced somewhat disappointing results [85]. Thirty-two patients with relapsed or
primary refractory AML were randomized 1:1 to receive either AraC with MK-8776 (Arm A,
14 patients); or AraC alone (Arm B, 18 patients). Response rates and survival were similar
between the two groups in spite of evidence that MK-8776 augmented DNA damage in
circulating leukemic blasts. There was an increase in asymptomatic grade III prolongation
of the QTcF interval among patients receiving MK-8776, Arm B, which was also reported in
the phase I trial and is likely attributable to MK-8776 [86]. Di Tullio et al. [87] shed light
on another combination strategy involving granulocyte-colony-stimulating factor (G-CSF).
They reported that the CHK inhibitor GDC-0575 enhanced the cytotoxicity of Ara-C in
different AML cell lines and had effects on AML-cell-line-injected NOD/Scid gamma IL2Rγ
null mice. They further revealed that persistent residual leukemic cells became responsive
after treatment involving G-CSF administration [87].
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mTOR complex 1, TCP: tranylcypromine.
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Figure 3. Differences in the DNA damage checkpoint between normal cells and cancer cells. The
ATM-CHK2-p53 pathway is impaired in many cancers [80], and thus CHK1 inhibition is very effective
for cancers. The depicted figures are modifications from Smith et al. [80] and Goto et al. [81], with
minor modifications created with BioRender. Regulatory pathways in normal cells are shown in blue
lines and arrows, whereas these are abrogated in cancer cells, shown in red lines. Pathways shown in
gray, are inactivated in cancer cells.

A major cause of treatment failure is resistance to chemotherapeutic agents, and
one strategy to overcome such chemoresistance is to target the antiapoptotic Bcl-2 pro-
tein. The Bcl-2-selective inhibitor ABT-199 showed encouraging preclinical results [88,89].
Mcl-1, a member of the antiapoptotic BCL-1 protein family, is a key regulator of mitochon-
drial homeostasis [90]. Mcl-1 was demonstrated to contribute to ABT-199 resistance [91].
Zhao et al. [92] found that CHK1 inhibitor LY2603618 decreased Mcl-1. Simultaneous treat-
ment with LY2603618 and ABT-199 resulted in the synergistic induction of apoptosis in
both AML cell lines and primary patient samples [92].
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8. Concluding Remarks

Table 1 shows a summary of the agents described in this review. Combinations with
FLT3 have been the most attractive form of targeted therapy in AML [30–32]. One of
the most aberrantly activated oncogenic pathways in AML is the RAS-RAF-MEK-ERK
(MAPK) pathway, but in clinical trials, the targeting of this pathway by MEK inhibitors
was not proven to be effective [50]. Although there is no clinical activity for MEK and
AKT inhibition [40] or Ara-C and CHK1 inhibition [85], several combination therapies have
shown clinical efficacy for AML treatment [30–32,46–48,72]. Among the kinase pathways
described in this review (Figure 1), in my opinion, combination therapies that target the
FLT3 are the most promising therapies [30–32], and also the PI3K/AKT/mTOR signaling
pathway shows some efficiency, even in clinical settings [46–48]. In addition, at the pre-
clinical level, various combination therapies targeting PI3K/AKT/mTOR, MAPK, CDK,
and CHK1 pathways seem attractive [35,37,38,41,43,44,67,68,78,82,83]. In the short term,
these preclinical and clinical data continue to be rapidly generated—not only FLT3 but
others for successful targeted therapy for AML. Determining the optimal combinations
and clarifying the mechanisms of inhibitor effects may lead to the development of efficient
integrated therapies. The next stage is to decide in which phase of the treatment it should be
used, as a part of first-line induction therapy, as consolidation, in a relapse, or in refractory
setting. Based on these findings, early recognition of the genomic and prognostic subtype
of these gene aberrations, followed by individualized remission–induction or maintenance
therapy with kinase inhibitors, is a highly awaited next-generation therapy for AML.

Table 1. Combinations of the kinase inhibitors mainly described in this review.

Design of the Study Results Refs

Combination Therapy Targeting the FLT3 Signaling Pathway

Phase III study of whether the
addition of midostaurin to standard

chemotherapy would prolong
overall survival in patients with

FLT3 mutation.

Clinical

Overall survival was significantly
longer in the midostaurin group

than in the placebo group (hazard
ratio for death, 0.78; one-sided

p = 0.009), as was event-free
survival (hazard ratio for event or
death, 0.78; one-sided p = 0.002).

[22]

Phase II study of sorafenib and
azacytidine on 27 patients with
untreated FLT3 mutated AML

Clinical

The regimen was well tolerated in
elderly patients with untreated

FLT3 mutated AML with no
early deaths.

[30]

Phase II study of sorafenib and
azacytidine on 43 AML patients

(range, 24–87 years; median,
64 years) were enrolled; 37 were

evaluable for response

Clinical
The combination of AZA and

sorafenib is effective for patients
with relapsed AML and FLT-3-ITD.

[31]

Phase II study of gilteritinib, or
sorafenib, or midostaurin,

venetoclax and decitabine on
25 patients with FLT3 mutated,

newly diagnosed (ND) with
AML > 60 years (n = 12) and

relapsed/refractory (R/R)
patients > 18 years (n = 13).

Clinical

Triplet therapy with FLT3i,
venetoclax, and decitabine is safe

and an excellent frontline option for
older patients with ND FLT3mut

AML, and it is effective
for R/R AML.

[32]
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Table 1. Cont.

Design of the Study Results Refs

Combination Therapy Targeting the PI3K/AKT/mTOR Signaling Pathway

Specific allosteric AKT inhibitor
(MK-2206) and cytarabine in

AML cells.
Pre-clinical

MK-2206 is an active agent in AML,
and its efficacy in combination with

cytarabine is implicated.
[34]

Inhibition of mTORC1 (rapamycin),
AKT (MK-2206), and

PI3K/mTORC1/2 (BEZ-235) in
primary samples and cell lines.

Pre-clinical

Implicating a possible therapeutic
benefit in the MLL-mutated

subgroup of
PI3K/mTOR inhibition.

[35]

mTORC1 pharmacologic inhibition
or knockdown of mTORC1

components in combination with
LSD1 in both primary cell settings
and cell line in vitro and in vivo.

Pre-clinical

Dual LSD1 and mTORC1 inhibition
represents a possible combination

strategy for enhanced
differentiation in AML with

MLL-translocation.

[37]

Dual inhibition of Akt and RTKs on
AML cells Pre-clinical

Dual inhibition of Akt and RTKs
displays strong synergistic

cytotoxic effects in AML cells and
downmodulates Akt signaling to a

much greater extent than either
drug alone.

[39]

Phase II study of combined MEK
and AKT inhibition on 23 AML
patients with RAS mutations.

Clinical
Combined MEK and AKT

inhibition had no clinical activity in
patients with RAS-mutated AML.

[40]

p38α inhibitors and PIM kinase
inhibitor AZD1208 treatment on
hematological tumor cell lines

in vitro and in vivo.

Pre-clinical

p38α inhibitors sensitize
hematological tumor cell lines to
AZD1208 treatment in vitro and

in vivo.

[41]

Dual inhibition of PIM and AKT
kinase inhibitors in AML cell lines

and primary AML cells.
Pre-clinical

A significant synergy was seen
when AZD1897 was combined with
the Akt inhibitor AZD5363 in AML
cell lines and primary AML cells.

[43]

Metformin, Ara-C, and
mTORC1/P70S6K pathway

inhibition on AML cells.
Pre-clinical

Metformin could synergistically
sensitize AML cells to Ara-C via

inhibiting the
mTORC1/P70S6K pathway.

[44]

Efficacy of RAD001, an mTOR
inhibitor, combined with

chemotherapy for first-relapsed
AML patients.

Clinical

A 70 mg dose of RAD001 at d1 and
d7 of an induction chemotherapy
regimen for AML has acceptable

toxicity and may
improve treatment.

[46]

Efficacy of mTOR inhibitor
temsirolimus and low dose of
clofarabine in older patients as

salvage therapy in AML.

Clinical

The predictive value of target
inhibition and the acceptable safety

profile promote
further investigation.

[47]

Sirolimus, an mTORC1 inhibitor,
and MEC (mitoxantrone, etoposide,
and cytarabine) in high-risk AML
patients with untreated, refractory,

or relapsed condition.

Clinical

The ORR was 71% (12/17) among
patients with mTORC1 inhibition

and baseline target activation
during treatment, compared with

20% (2/10) in patients without
target inhibition.

[48]
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Table 1. Cont.

Design of the Study Results Refs

Combination Therapy Targeting the MAPK Signaling Pathway

Combination of MNK1/2 inhibitor,
tomivosertib, and Bcl-2 inhibitor

venetoclax in AML cell lines.
Pre-clinical

Combination of tomivosertib and
venetoclax resulted in synergistic
anti-leukemic responses in AML

cell lines.

[54]

Ara-C with either MNKI-8e, an
MNK inhibitor, or knockdown of

Mnks by short hairpin RNA in
MV4-11 AML cells.

Pre-clinical
In Ara-C-treated MV4-11 cells, the

MAPK-Mnk-eIF4E pathway plays a
critical role.

[55]

Combination of cercosporamide;
Mnk inhibitor, with cytarabine in
primitive leukemic progenitors

(CFU-L) from AML patients; and a
xenograft mouse model.

Pre-clinical
The combination of cercosporamide

with cytarabine resulted in
enhanced antileukemic responses.

[57]

Pan-RAF inhibitors and BCL2
inhibitor on AML samples and

AML cell lines.
Pre-clinical

Pan-RAF inhibition, alone or
combined with BCL2 inhibition, is
effective in primary AML samples

and AML cell lines.

[58]

MEK inhibitor (PD0325901) and
SYK inhibitor (entospletinib,

PRT062607) in AML cell lines,
primary AML samples, and AML

model mice.

Pre-clinical
MEK and SYK inhibitor

combination was synergistic both
in vitro and in vivo.

[59]

Combination Therapy Targeting AXL

Combined treatment with DNA
methyltransferase inhibitor

decitabine, histone deacetylase
inhibitor vorinostat, and

AXL-specific inhibitor BGB324 on
OCI-AML3 cells and

xenograft models.

Pre-clinical

Triple combination increased the
sensitivity of OCI-AML3 cells to

decitabine and vorinostat, as shown
through viability assays, and

significantly extended the survival
of mice xenograft models.

[65]

Combination Therapy Targeting the CDK Signaling Pathway

CDK9 inhibitor (A-1592668 or the
related analog A-1467729) and

venetoclax in a number of
hematologic cell lines and primary

NHL patient samples.

Pre-clinical

CDK9 inhibitor plus venetoclax
combination was well tolerated

in vivo and demonstrated efficacy
superior to either agent alone in

both lymphoma and AML
mouse models.

[67]

BET bromodomain inhibitor BI
894,999 effect on AML and

lymphoma cell line, ex vivo treated
AML, and MM primary patient
samples and AML xenografts.

Pre-clinical

BI 894,999 is active as monotherapy
in AML xenografts and, in addition,

leads to strongly enhanced
antitumor effects in combination

with CDK9 inhibitors.

[68]

CDK inhibitor alvocidib and BCL2
inhibitor venetoclax (ABT-199) on
AML cells, AML patient samples,

and AML xenograft model.

Pre-clinical

Alvocidib potentiates venetoclax
anti-leukemic activity in AML cells,

AML patient samples, and AML
xenograft models.

[69]

Effect of targeting CDK9 with
voruciclib in combination with

venetoclax on AML cell lines and
primary patient samples.

Pre-clinical

Targeting CDK9 with voruciclib in
combination with venetoclax results
in synergistic antileukemic activity
against AML cell lines and primary

patient samples.

[70]
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Table 1. Cont.

Design of the Study Results Refs

Combination Therapy Targeting the MAPK Signaling Pathway

Effect of CDK9 inhibitor, CDKI-73,
and BET bromodomain inhibitor

JQ1 on AML cell lines and
patient-derived xenograft

(PDX) model.

Pre-clinical

CDK 9, bromodomain, and
extraterminal inhibitors are

synergistic in
MLL-rearranged leukemia.

[71]

Phase I dose-escalation study of
alvocidib on days 1–3, followed by

7 + 3, was performed in newly
diagnosed AML ≤ 65 years.

Clinical

Alvocidib can be safely
administered prior to

7 + 3 induction with encouraging
clinical activity.

[72]

Combination Therapy Targeting the CHK1 Signaling Pathway

Effects of Chk1 inhibitor SCH
900776 and cytarabine were

examined using AML cell lines,
clinical AML isolates, and normal

myeloid progenitors.

Pre-clinical

CHK1 inhibitor SCH 900776
enhanced cytotoxicity of cytarabine
in AML lines, clinical AML isolates,
and normal myeloid progenitors.

[82]

Effect of Chk1 inhibitor MK-8776
and CPX-351 (a liposomal

formulation encapsulating a 5:1
molar ratio of cytarabine and

daunorubicin) in AML cell lines
and primary AML samples.

Pre-clinical

MK-8776 (CHK1 inhibitor;
rabusertib or prexasertib) or CHK1

knockdown enhanced CPX-351
effect and induced apoptosis in

multiple AML cell lines and
primary samples.

[83]

Randomized phase II trial of Ara-C
combined with CHK1 inhibitor

MK-8776. Patients with relapsed or
primary refractory AML were

randomized 1:1 to receive either
AraC with MK-8776 (Arm A: 14
patients) or AraC alone (Arm B:

18 patients).

Clinical Response rates and survival were
similar between the two groups. [85]

Effect of CHK1 inhibitor GDC-0575,
Ara-C, and G-CSF in human AML

cell line, primary AML cells, human
cord blood cells, and AML cell

xenografted mice.

Pre-clinical

Combination of CHK1 inhibitor
with G-CSF overcame cytarabine

resistance in human AML cell lines
and had effects on

AML-cell-line-injected NOD/Scid
gamma IL2Rγ null mice.

[87]

Effect of CHK1 inhibitor LY2603618
and Bcl2 inhibitor ABT-199 in

human AML cell line and primary
AML cells.

Pre-clinical

Simultaneous treatment with CHK1
inhibitor LY2603618 and ABT-199

resulted in synergistic induction of
apoptosis in both AML cell lines

and primary patient samples.

[92]
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