
sustainability

Article

Modeling the Land Use Change in an Arid Oasis
Constrained by Water Resources and Environmental
Policy Change Using Cellular Automata Models

Xiaoli Hu 1, Xin Li 2,3,4,* and Ling Lu 1

1 Key Laboratory of Remote Sensing of Gansu Province, Cold and Arid Regions Environmental and
Engineering Research Institute, Chinese Academy of Sciences, 320 West Donggang Road,
Lanzhou 730000, China; huxiaoli@lzb.ac.cn (X.H.); luling@lzb.ac.cn (L.L.)

2 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100049, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: lixin@lzb.ac.cn; Tel.: +86-931-496-7249

Received: 28 June 2018; Accepted: 8 August 2018; Published: 14 August 2018
����������
�������

Abstract: Land use and land cover change (LUCC) is an important issue in global environmental
change and sustainable development, yet spatial simulation of LUCC remains challenging due to
the land use system complexity. The cellular automata (CA) model plays a crucial role in simulating
LUCC processes due to its powerful spatial computing power; however, the majority of current
LUCC CA models are binary-state models that cannot provide more general information about
the overall spatial pattern of LUCC. Moreover, the current LUCC CA models rarely consider
background artificial irrigation in arid regions. Here, a multiple logistic-regression-based Markov
cellular automata (MLRMCA) model and a multiple artificial-neural-network-based Markov cellular
automata (MANNMCA) model were developed and applied to simulate complex land use
evolutionary processes in an arid region oasis (Zhangye Oasis), constrained by water resources and
environmental policy change, during the period 2000–2011. Results indicated that the MANNMCA
model was superior to the MLRMCA model in simulated accuracy. Furthermore, combining the
artificial neural network with CA more effectively captured the complex relationships between
LUCC and a set of spatial driving variables. Although the MLRMCA model also showed some
advantages, the MANNMCA model was more appropriate for simulating complex land use dynamics.
The two integrated models were reliable, and could reflect the spatial evolution of regional LUCC.
These models also have potential implications for land use planning and sustainable development in
arid regions.

Keywords: land use/cover change; land use model; Markov model; cellular automata; artificial
neural network; logistic regression; Zhangye oasis; Heihe River Basin

1. Introduction

Land use/cover change (LUCC) is a key factor to effect the Earth’s land surface system [1,2].
They impact regional and global climate [3], soil erosion [4], food security, and biodiversity by altering
biogeochemical and biophysical processes [5]. Simulating the evolution of complex land use can
provide scientific support to land use planning and decision-making, but also can serve regional
sustainable development [6–10].

Cellular automata (CA) is a common method to determine the spatial pattern and process of LUCC
by the transition probability of a cell (pixel) according to its initial state, the surrounding neighborhood
state, and a set of transition rules. Although very simple, CA models have strong capability for
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simulating complex nonlinear LUCC evolution processes [11–13]. At present, most LUCC CA models
are focused on binary-state modeling of the single primary land use types, such as simulating the
transition from non-urban to urban land, or the transition from cropland to non-cropland. However,
in many cases, the change processes of multiple land use types occur simultaneously and affect each
other. These binary-state models do not provide general information about the overall spatial pattern
of LUCC.

The multiple LUCC simulation is more difficult due to the use of numerous spatial variables
including social, political, and economic factors, among others, and the definitions of the complex
transition rules. The contribution of each spatial variable to the simulation is reflected by its associated
parameter or weight, which could significantly influence the result of the simulation [14]. Therefore,
the calibration of a CA model presents a significant challenge in terms of the identification of
appropriate parameters. Two approaches to calibrating the logistic regression and artificial neural
network were thus integrated into the CA model to accomplish this purpose. Logistic regression
analysis is a simple and practical statistical methodology that has been one of the most frequently
utilized approaches to defining the parameter values in CA models [12,15]. Artificial neural networks
provide an effective method of automatically retrieving the parameter values [13]. In addition, the
traditional CA models can only simulate spatial changes, but appear to be weak in their LUCC quantity
predictions. Markov chains have been widely used to study the dynamics of land use at different
scales [15–17] and can predict all multidirectional land use area changes among all land use types
based on a transition matrix of land use change between two different dates. However, a Markov
chain is not spatially explicit, and cannot provide the spatial distribution of land use change. Hence,
an integrated model combining logistic regression (or an artificial neural network), Markov chain, and
CA could improve the simulation results and generate a more realistic land use pattern.

In addition, there have been relatively few studies on multiple LUCC simulation in arid regions.
Moreover, most of them did not consider the impact of artificial irrigation on LUCC [18]. Here,
our study aims to simulate land use patterns of an arid oasis using two integrated CA models:
a multiple logistic-regression-based Markov cellular automata (MLRMCA) model and a multiple
artificial-neural-network-based Markov cellular automata (MANNMCA) model. We also hope that the
present study will provide support to land use planning and decision-making, and serve as a reference
for regional sustainable development.

2. Land Use Model

This study employed two integrated CA models to simulate LUCC and spatial distributions.
Firstly, transition matrices were established using Markov chain analysis to calculate the amount of
land use types in the two models. Secondly, the logistic regression approach and artificial neural
network approach were used to calculate the parameters of the spatial variables in the two CA models,
respectively. Thirdly, the spatial transition probability map was generated based on parameter values
of the spatial variables. Finally, the spatial distribution of land use was simulated using the land use
type number and transition probability map based on the transition rules. The first CA model in which
the logistic regression was adopted as a calibration approach was defined as the multiple logistical
regression Markov CA model (MLRMCA). The second CA model in which artificial neural network
was adopted as the calibration approach was defined as the multiple artificial neural network Markov
CA model (MANNMCA). The two CA models were realized in Matlab software. The structures of the
two CA models are shown in Figure 1.
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Figure 1. Structure of the multiple logistic regression cellular automata (MLRMCA) model and the
multiple artificial neural network cellular automata (MANNMCA) model.

2.1. Markov Chain

Markov chain is a discrete random process from one state to another state at each time step.
In the Markov random process, the probability distribution for a system at the next state is assumed to
depend only on the current state of the system and not on a previous state [19,20]. It is commonly used
in the prediction of geographical characteristics with after-effect events and has become an important
prediction method in geographical research. Based on the Bayes conditional probability formulae,
the Markov forecast model can be expressed as follows:

St+1 = P× St, where St, St+1 are land use statuses at times t and t + 1. P is the annual transition
probability matrix of land use type for a period of time, and was calculated as follows:

P = P1/Tt
t , where Tt is the interval of time in period t. Pt is the transition probability matrix of

land use type in period t, expressed as follows:

Pt =


p11 p12 · · · p1n
p21 p22 · · · p2n
· · · · · · · · · · · ·
pn1 pn2 · · · pnn

, 0 ≤ pij ≤ 1 and
n

∑
i=1

pij = 1 (1)

In the above matrix, pij is the transition probability from the ith type into the jth type during the
years from the start point to the target simulation period; n is the number of land use types.
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2.2. MLRMCA Model

The core idea of the MLRMCA model was trying to absorb the benefits of Markov, logistic
regression, and the CA model. The Markov chain was used to control the number of land use types,
while logistic regression and CA were used to manage the spatial pattern of land use change.

Logistic regression was used to establish the empirical relationships between the dependent
variable and independent variables [15,21,22]. In the MLRMCA model, the dependent variable here
represented land use change and was a binary presence (1) or absence (0) event. The independent
variables were spatial driving variables. While employing logistic regression to simulate LUCC,
the spatial dependence of spatial data should be considered to remove spatial autocorrelation.
The stratified random sampling technique can effectively represent population by a smaller sample
size, and can also reduce spatial dependence [16,23].

The global transition potential of a grid cell Cmn at the iteration time t for the lth type of land use
was defined as

log
(

Pg(Cmn, t, l)
1− Pg(Cmn, t, l)

)
= αl + β1,lX1,l + β2,lX2,l + · · ·+ βn,lXn,l (2)

where a is a constant to be estimated; β is the coefficient of the spatial explanatory variable; and Xi is
the spatial explanatory variable such as distance to roads and neighborhood influence of land use type.

The land use transition can also maintain its original state, i.e., inheritance (k). The value k is
defined as a constant between 0 and 1. According to the inheritance ability of land use, greater k values
indicate a stronger likelihood of maintaining the original state. The land use transition was also subject
to some constraints. In this study, k was defined on the basis of the understanding of the land use
change in the study area and on previous experience, and the exclusion region was the Heihe River
which was not allowed to transfer to another type of land use. The transition probability of cell Cmn at
the iteration time t for the lth type of land use was revised as

P(Cmn, t, l) = Pg(Cmn, t, l) + k(l) + Cons(Cmn, l). (3)

In addition, a stochastic perturbation term was added into the MLRMCA model for a more
realistic simulation [13]:

RA(Cmn, l) = (−Ln(r))α (4)

where γ is a random number within the range of 0 to 1, and a is a constant to control the size of the
stochastic perturbation.

The final transition probability was determined after adding model parameters generated by the
logistic regression, constraint factors, and stochastic perturbation into the MLRMCA model:

P(Cmn, t, l) = (Pg(Cmn, t, l) + k(l) + Cons(Cmn, l))× RA(Cmn, l) (5)

where P(Cmn, t, l) is the transition probability of the lth type of land use for cell Cmn at time t; k(l)
is the inheritance coefficient for the lth type of land use; Cons(Cmn, l) are constraint factors for the
lth type of land use for cell Cmn; and RA(Cmn, l) is a stochastic perturbation added into the land use
transition probability.

In each iteration loop, the transition probabilities of n types of land use were calculated using the
MLRMCA model. Thus, the land use type was determined according to the CA’s transition rules and
the land use type number predicted by the Markov chain.

2.3. MANNMCA Model

Similarly to the MLRMCA model, the MANNMCA model took into account the strengths of the
Markov, ANN, and CA. The Markov chain was also used to control the total number of land use types.
ANN and CA were used to manage the spatial distribution of land use types.
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In the MANNMCA model, the model parameters representing the relationship between input
spatial variable and land use change were generated using an ANN. In this ANN, the signal from the
input layer to the neuron i in the hidden layer for grid cell Cmn at iteration time t was calculated by

netj(Cmn, t) = ∑
i

wi,jxi
′(Cmn, t) (6)

where netj(Cmn, t) is the signal received by neuron j of cell Cmn at time t in the hidden layer; wi,j is
the weight between the input layer and the hidden layer; and x′ i(Cmn, t) are the spatial variables
associated with neuron i of cell Cmn at time t in the input layer.

The activation function for the signal in the hidden layer was generated by

1

1 + e−netj(Cmn ,t)
. (7)

The transition probability in the output layer was calculated by

P(Cmn, t, l) = ∑
j

wj,l
1

1 + e−netj(Cmn ,t)
(8)

where P(Cmn, t, l) is the transition probability for the lth type of land use for cell Cmn at time t; and wj,l
is the weight from the hidden layer to the output layer.

Similarly, after integrating the model parameters calculated by ANN, the inheritance coefficient,
constraint factors, and stochastic perturbation, the final transition probability was defined as:

P(Cmn, t, l) =

(
∑

j
wj,l

1

1 + e−netj(Cmn ,t)
+ k(l) + Cons(Cmn, l)

)
× RA(Cmn, l). (9)

The output layer had n neurons corresponding to n types of land use. At each iteration loop,
each neuron in the output layer generated a transition probability of a land use type. The land use
type was also defined according to the same CA transition rules and land use type number as in the
MLRMCA model.

2.4. Transition Rules

The transition rules mainly used the maximum transition probability and followed particular
priority sequence rules depending on the preliminary research as well as expert knowledge. During the
simulation, a cell can only be allocated to a land use type, and according to the maximum value of
the transition probability, the future type of land use in a cell is decided. That is, a land use type was
successively allocated into the cells as a descending sequence of transition probabilities of this land
use type in all the cells until the total demand of this land use type was satisfied. According to the
actual historical LUCC in the study area as well as expert knowledge, land use transition also followed
priority sequence rules of built-up land, wetland, water body, cropland, forestland, grassland, and
desert. In addition, the change of a cell state should not be considered once this cell was allocated to
a certain type of land use.

2.5. Model Validation

To validate and compare the reliability of the two models proposed by this study, the accuracy of
simulation results was analyzed in terms of the quantity and spatial distribution. To assess quantitative
accuracy, the percentage of area change accounting for the total amount of land for a land use type in
the initial year was applied. To assess spatial accuracy, an error matrix and a figure of merit were used.

The error matrix was a cross-tabulation of the simulated land use class versus the reference class.
Over accuracy, user and producer accuracies and Kappa coefficient were calculated from the error
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matrix. Kappa coefficient was used to measure the consistency of simulations and observation, and
was defined as [24]

Kappa =

N
n
∑

i=1
xii −

n
∑

i=1
(xi+ × x+i)

N2 −
n
∑

i=1
(xi+ × x+i)

(10)

where n is the number of rows in the transition matrix; xii is the number of observations in row i
and column i; xi+ and x+i are the sum of row i and column i, respectively; and N is the total number
of observations.

A figure of merit (FM) measured the accuracy of the model in simulating land use change. It was
computed as [25,26]

FM =
B

A + B + C + D
× 100% (11)

where A is the error area due to observed change predicted as persistence; B is the correct area due
to observed change predicted as change; C is the error area due to observed change predicted as the
wrong gaining class; and D is the error area due to observed persistence predicted as change.

3. Case Study: Simulating LUCC in the Zhangye Oasis, Northwest China

Zhangye Oasis was selected to simulate LUCC during 2000–2011. Zhangye Oasis belongs to
Gansu Province, China, and is located in the midstream areas of the Heihe River Basin (HRB) (Figure 2).
Its total area is 1.07 × 104 km2. The region is a typical irrigated agricultural oasis, and water resources
are scarce. The water resources in this region are mainly from precipitation, snowmelt, and glacier melt
in the Qilian Mountains. Water in the Heihe River is the determining factor for agricultural production
and ecosystem stability. Major changes in land use patterns have occurred in Zhangye Oasis, driven
by changes in the water environment and human activities over the past five decades [6]. In 2000,
the Chinese Government implemented the Ecological Water Diversion Project (EWDP) to prevent
further ecosystem deterioration and to restore the environment in the downstream areas of the HRB.
In the framework of the EWDP, a “grain for green” policy (GGP) was implemented in Zhangye Oasis
in 2002. Similarly, to restore wetlands along the Heihe River and to protect existing wetlands from
being converted into cropland or built-up land, the Wetland Conservation Project (WCP) was also
implemented in the midstream areas of the HRB in 2008. The agriculture and ecology in the Zhangye
Oasis were subjected to these major water and environment policy changes. For example, wetland
areas first decreased as a result of the pressure of the EWDP between 2000 and 2007, and then increased
with the implementation of the WCP between 2007 and 2011 [27]. However, the most significant LUCC
of this period in this region was still the substantial urban expansion and the continued reclamation of
cropland, attributed to economic interests [27]. These changes increased the stress on water resources
and the ecological environment. Therefore, potential risks are threatening the socio-economic and
sustainable development.
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3.1. Datasets

Spatial datasets were collected in order to build the proposed land use models and simulate
the LUCC process (Table 1). Among these datasets, land use datasets were generated by employing
the visual interpretation method based on 30 m resolution Landsat TM/ETM+ images in 2000 and
2011, which were downloaded from the U.S. Geological Survey (USGS) (http://glovis.usgs.gov/).
The classification accuracies of land use types for 2000 and 2011 were greater than 90% [27]. Following
the NLUD-C (National Land Use Database of China) classification system and land use characteristics
in the study area, the classification system in this study included seven primary land use types:
cropland, forestland, grassland, water body (referring to natural water bodies or lands with facilities
for irrigation and water reservation), built-up land (including urban and rural settlements, factories,
and transportation facilities), wetland, and desert (including sandy land, Gobi, saline, barren soil, and
bare rock) [27,28]. Taking into account the requirements of data accuracy as well as the operational
efficiency of the proposed models, the vector land use maps in 2000 and 2011 were separately converted
into raster format with a resolution of 100 m × 100 m.

Other spatial datasets included distance-based variables, neighborhood conditions, socio-economic
variables, and physical attributes (Table 1). Studies have also shown that the above driving variables
are closely related to probabilities of land use changes [29–31]. Based on preliminary logistic regression
analysis, these spatial driving variables were determined. These variables could well explain the
spatial distributions of various land use types in the study (0.84 < the Relative Operating Characteristic
value < 0.98). The raster maps for the distance-based variables, socio-economic variables, and
physical attributes were generated with the Spatial Analysis module in ArcGIS. The raster maps
of neighborhood influence were obtained through a standard 3 × 3 contiguity filter using Matlab
software. All the spatial driving variables were unified to the same projection and resolution as the
land use maps. Normalized values from 0 to 1 were then calculated using the maximum and minimum
values after scaling the original spatial driving variable datasets.

http://glovis.usgs.gov/
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Table 1. Spatial datasets for simulating multiple land use changes.

Category Data Calculation Method

Land use Land use data
(2000 and 2011)

Land use maps were generated using the visual interpretation method based on
Landsat TM/ETM+ images.

Distance-based
variables

Distance to town
The distance raster maps were generated using the distance analysis function of
the Spatial Analysis module in ArcGIS. The distance data for each cell were read
from the distance raster maps.

Distance to village
Distance to road
Distance to river

Distance to channel

Neighborhood
conditions

Amount of cropland

N(Cmn, l) =

m+1
∑

i=m−1

n+1
∑

j=n−1
classij

9
where N(Cmn, l) is the effect of the lth type of land use on the center cell Cmn in the
window, classij is the land use type in cell Cij.
If the land use type in cell Cij is l, then classij = 1; otherwise classij = 0.
The calculation of neighborhood effects was realized using Matlab.

Amount of forestland
Amount of grassland

Amount of water body
Amount of built-up land

Amount of wetland
Amount of desert

Topography
Elevation DEM with 90 m resolution was come from the Shuttle Radar Topography Mission

(SRTM) spearheaded by NASA and NIMA (ftp://e0mss21u.ecs.nasa.gov/srtm/).
Slope and aspect data were extracted based on the DEM.

Slope
Aspect

Socio-economic Population density

The population density with 25 m by 25 m resolution was obtained from the
Environmental and Ecological Science Data Center for West China
(http://westdc.westgis.ac.cn). The population data of each cell were read from the
raster maps.

3.2. Model Training

In order to train and compare the two proposed models, a pair of parallel simulations of LUCC
in Zhangye Oasis during 2000–2011 were designed. Firstly, the annual transition probability matrix
was obtained based on the actual historical development trend in the period 2000–2011, then the total
amounts of various land use types were calculated using Markov chain. Secondly, model training was
also essential before the simulation. The training data for the simulation period were extracted from
the land use map in 2000 by a stratified random sampling technique which could reduce the spatial
dependence of spatial data and avoid excessive data [23]. Each type of land use was sampled using a
random sampling procedure, and a total of 56,000 random samples were selected. Simultaneously, the
values of spatial driving variables were also obtained with randomly stratified sample points. In the
MLRMCA model, calculation of the regression coefficients and creation of the logistic regression model
were accomplished using these training data sets in SPSS software.

In the MANNMCA model, a three-layer ANN including the input layer, hidden layer, and output
layer was used to simulate multiple land use change. There was a total of 17 spatial variables for
each cell, and, consequently, there were 17 neurons in the input layer. In accordance with previous
studies [13,32], the number of neurons in the hidden layer was at least 2n/3 (n is the number of neurons
in the input layer). After many experiments, 12 neurons were used in the hidden layer. The 7 neurons
in the output layer represented 7 types of land use. The training of the ANN was performed using the
same sampling points based on a back-propagation (BP) algorithm. When a minimum mean square
error was obtained, the training of the ANN stopped.

The regression coefficients and ANN weights obtained by training were imported into the
MLRMCA and MANNMCA models, respectively, for simulation. The time interval for the simulation
was one year. Each iteration represented a year. In each iteration, the transition probability of each
land use type in each cell was calculated using the training model parameters mentioned above.
According to the transition rules, and under the constraint of the total number of land use types,
the land use patterns in the simulation period were simulated by the MLRMCA and MANNMCA
models. It should be noted that the neighborhood influence was dynamically updated in the iteration
loop in this study, unlike in previous studies [12,33].

ftp://e0mss21u.ecs.nasa.gov/srtm/
http://westdc.westgis.ac.cn
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3.3. Simulation Results

In order to assess the MLRMCA and MANNMCA model performances, their results were
compared with the actual land use map in 2011.

Table 2 showed that there was a strong agreement between the quantities of observed and
simulated LUCC. All land use types had low relative errors, lower than 1.1%. The best agreement
was shown in the desert type, where the actual area decreased by 3.11%, while the corresponding
simulated area decreased by 3.08%. This showed that the developed Markov chain in this study could
effectively simulate area change of land use.

Table 2. Observed and simulated land use change for 2000–2011 in the Zhangye Oasis.

Types
Actual Change Simulated Change Different between Simulated

and Observed Change

Number Percentage Number Percentage Number Percentage

Cropland 25539 11.97% 24864 11.66% −675 −0.32%
Forestland 962 7.16% 818 6.09% −144 −1.07%
Grassland −6926 −6.25% −6514 −5.88% 412 0.37%

Water body −1325 −8.61% −1230 −7.99% 95 0.62%
Built-up land 3160 24.05% 3280 24.97% 120 0.91%

Wetland −73 −0.46% −79 −0.5% −6 −0.04%
Desert −21337 −3.11% −21139 −3.08% 198 0.03%

Note: the percentage relates the amount of change to the total amount of land for a land use type in 2000.

The spatial accuracy of the simulation results was then analyzed quantitatively to evaluate the
ability of the two models (Tables 3 and 4). For the MLRMCA model, the user’s and producer’s
accuracies for cropland, water body, built-up land, and desert were greater than 80%, among which
cropland and desert were highest. This meant that the spatial locations with those four types in the
simulated map were relatively similar to those in the actual map. The over accuracy and the Kappa
coefficient of the MLRMCA model were 91.25% and 0.84. For the MANNMCA model, the user’s
and producer’s accuracies for the other five types in addition to forestland and wetland were also
greater than 80%. The over accuracy and the Kappa coefficient were 92.27% and 0.86, respectively.
These results indicated that although a certain bias was exhibited, more similarities were found
between the simulated results of the two models and the actual map. Figure 3 also indicated that
the spatial distribution of various land use types simulated by the two models were similar to the
actual, especially in farmland and desert types. However, there were still some discrepancies in the
simulated maps. For example, in the north of the Ganzhou District, some small wetland patches were
not simulated by the two proposed models.

Table 3. Error matrix between actual land use and simulated result in 2011 (MLRMCA).

Actual Land
Use in 2011

Simulated Land Use in 2011

Cropland Forestland Grassland Water Body Built-Up Land Wetland Desert Total PA (%)

Cropland 213,635 2565 4681 631 2704 927 13,690 238,833 89.45
Forestland 1661 8252 1725 65 28 187 2477 14,395 57.33
Grassland 6015 1839 81,202 423 9 1177 13,158 103,823 78.21

Water Body 416 238 462 11,773 6 410 764 14,069 83.68
Built-Up Land 2168 17 43 3 13,610 15 442 16,298 83.51

Wetland 1363 34 571 538 40 12,291 841 15,678 78.40
Desert 12,900 1305 15,551 731 21 665 634,227 665,400 95.32
Total 238,158 14,205 104,235 14,164 16,418 15,672 665,599 1,068,496

UA (%) 89.70 57.91 77.90 83.12 82.90 78.43 95.29

Note: Overall accuracy = 91.25%; Kappa coefficient = 0.84; UA is user’s accuracy, and PA is producer’s accuracy;
Bold numbers in diagonal are the correct simulations, and the off-diagonal numbers in rows and columns are errors.
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Table 4. Error matrix between actual land use and simulated result in 2011 (MANNMCA).

Actual Land
Use in 2011

Simulated Land Use in 2011

Cropland Forestland Grassland Water Body Built-Up Land Wetland Desert Total PA (%)

Cropland 215,943 2997 2910 598 1781 844 13,760 238,833 90.42
Forestland 1492 9320 1503 66 73 66 1875 14,395 64.74
Grassland 5040 1262 85,984 418 468 1002 9649 103,823 82.82

Water Body 498 62 160 11,714 7 800 828 14,069 83.26
Built-Up Land 1991 9 17 3 13,687 51 540 16,298 83.98

Wetland 1708 68 190 687 43 11,643 1339 15,678 74.26
Desert 11,486 533 13,471 678 359 1266 637,607 665,400 95.82
Total 238,158 14,251 104,235 14,164 16,418 15,672 665,598 1,068,496

UA (%) 90.67 65.40 82.49 82.70 83.37 74.29 95.79

Note: Overall accuracy = 92.27%; Kappa coefficient = 0.86; UA is user’s accuracy, and PA is producer’s accuracy;
Bold numbers in diagonal are the correct simulations, and the off-diagonal numbers in rows and columns are errors.
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It must be mentioned, however, that Kappa coefficient was an indication of the location agreement
between observed and simulated land use. This may lead to an overestimation of the model
performance when the area of the LUCC was relatively small. So, this study further analyzed the LUCC
between observation and simulation by pixel-by-pixel comparison. Figure 4 showed that the area of
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LUCC in Zhangye Oasis was relatively small, accounting for only about 6% of the total area. This is
mainly due to the fact that desert was the largest type of land use in the study area, the landscape
pattern of which is relatively stable and difficult to exploit and utilize. Thus, the FM values of the
two models proposed by this study were both relatively low (Table 5). For the MLRMCA model, the
FM values for cropland and built-up land were highest, at 32.17% and 14.44%, respectively. The FM
for water body was lowest. The overall FM of the MLRMCA model was 12.56%. Similarly, for the
MANNMCA model, the FM values for cropland and grassland were highest, at 32.93% and 21.54%,
respectively. The FM for water body was also lowest, at 0.85%. The overall FM of the MANNMCA
model was 22.32%. This result revealed that the ability of the two models to simulate changes was best
for cropland, and lowest for water bodies.

The above results show that the accuracies of the amounts and spatial distributions of the two
proposed models were both satisfactory. Therefore, the two proposed models were both able to
simulate and predict future land use evolution processes.
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Table 5. Figure of merit (FM) for simulated land use change (%).

Model Cropland Forestland Grassland Water Body Built-Up Land Wetland Desert Overall

MLRMCA 32.17 4.06 2.12 0.00 14.44 3.40 1.43 12.56
MANNMCA 32.93 1.22 21.51 0.85 16.79 3.89 20.04 22.32

3.4. Model Validation and Comparison

In order to validate the advantages and disadvantages of the two proposed models, the simulation
results of the MLRMCA model were compared with those of the MANNMCA model. Figure 3 shows
that the development direction of built-up land in the center of Ganzhou District and the landscape
pattern of grassland in the north desert area of the oasis simulated by the MLRMCA model were better
than those simulated by the MANNMCA model, and were closer to those in the true land use map.
However, on the edge of the oasis, the expansion trend in cropland simulated by the MANNMCA
model was closer to that of the true map. For example, on the eastern edge of the oasis, the actual
amount of cropland had increased by 40.39% during 2000–2011, while the increases simulated by the
MLRMCA and MANNMCA models were 10.13% and 29.38%, respectively. In addition, the simulation
results of the MLRMCA and MANNMCA models also showed little difference in the region for
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well-predicted change (Figure 4). The region for well-predicted change simulated by the MLRMCA
model was mainly located in the oasis. However, in addition to the internal distribution of the oasis,
the region for well-predicted change simulated by the MANNMCA model was located on the edge of
the oasis, the northwest corner, the western margin, and the northeast corner of the oasis.

From the accuracy of the simulation results (Tables 2–5), the amounts of all land use types which
were simulated based on the same historical data by Markov chain were the same in the MLRMCA
model and MANNCA model, and were close to the actual number in the simulation period. In terms
of spatial accuracy, the Kappa coefficients and the overall FM value in the MANNMCA model were
all higher than those of the MLRMCA model. The user’s and produce’s accuracies for another four
types in addition to water body and wetland in the MANNMCA model were higher than those in
the MLRMCA model. In addition to forestland, FM values for the other six land use types in the
MANNMCA model were higher than those in the MLRMCA model.

In short, the MANNMCA model showed relatively considerable improvement over the MLRMCA
model in terms of spatial accuracy. However, the MLRMCA model was better than the MANNMCA
model in terms of the spatial distribution in water body and wetland, and the temporal change trends
in forestland.

4. Discussion and Conclusions

This paper proposed two integrated CA models which combined Markov Chain and Logistic
Regression, and Markov Chain and ANN, respectively, into a multiple CA model to simulate a complex
and nonlinear land use evolutionary process. Compared with the traditional CA model, the two
integrated CA models not only took advantage of the Markov Chain for quantitative forecasting
and the CA model for simulating the spatial distribution of a complex system, but also employed a
full Logistic Regression and ANN model for determining the parameter values. On the other hand,
according to the characteristics of agricultural development in this arid oasis, the two CA models
considered the impact of artificial irrigation on the spatial pattern of land use, different from the
previous studies of CA models [34,35]. Therefore, the two integrated models can help improve the
analysis and prediction of LUCC.

The proposed two models were used in the simulation of land use patterns in Zhangye
Oasis, Gansu Province, China. The performances of the MLRMCA and MANNMCA models were
evaluated and compared using user’s and produce’s accuracies, Kappa coefficient, and FM indices.
Overall, the simulated maps showed better agreement with the corresponding observation data.
The MANNMCA model generally performed better than the MLRMCA model. However, the MLRMCA
model also showed some advantages over the MANNMCA model simulation. Differences between
the two proposed model performances were attributed to the differences in summarizing the complex
relationships between the transition probabilities of land use types and a set of spatial driving variables
in the calibration phase. The simulation accuracy for the CA model was largely influenced by the weight
value of the spatial variable. The MANNMCA model can generate more accurate model parameters
than linear approaches (MLRMCA model). This is because the ANN was able to capture nonlinear
complex features, although the “black box” operation of the ANN made the physical meaning of the
model parameters unclear. The MLRMCA model yielded a slightly lower simulation accuracy because
the logistic regression approach obscured the autocorrelation of the spatial variables. However, the
logistic regression approach could identify possible driving factors responsible for LUCC.

The FM value for water body in the two models was lowest compared with those for the other six
land use types. The reason for this was that the river was used as a constraint factor in the two models,
which limited the conversion of other types to water body. In addition, the user’s and producer’s
accuracies for forestland and wetland in the two models were lower. One reason for this could be that
the patches of forestland and wetland were small and scattered. The second reason for this was the
original data classification accuracy and the rate of change of the original land use types, which could
affect both the inputs and outputs of both models. The final reason might be the implementation of the
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water and environment policies (e.g., EWDP, GGP, and WCP), which was not included in this study
but should be considered in the future. These factors made it difficult for both models to simulate this
complex pattern.

Although there are some limitations, the two proposed models can meet the needs of simulating
and predicting regional LUCC trends, and can also provide a reference for water resource assessment,
ecological restoration, and sustainable urban development in arid areas.
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