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Abstract: The prime objective of biochar production is to contribute to nutrients recycling, reducing
waste and converting useful bio-wastes into carbon rich products in the environment. The present
study was intended to systematically evaluate the effect of pyrolysis conditions and characteristics of
feedstock influencing the generation of biochar. The study revealed the nutritional importance of
waste mushroom substrate (WMS) biochar which may elevate soil nutritional status and soil quality.
The results showed that the yields and properties of WMS biochar depended principally on the
applied temperature where pyrolysis at higher temperatures, that is, 600 ◦C and 700 ◦C produced
biochar having high ash, P and K contents. Moreover, numerous useful macro and micro nutrients
such as Ca, Mg, Fe and Zn were observed to positively correlate with the increase in temperature.
The WMS biochar in our study is highly alkaline which can be used to rectify acidic soil pH.
Overall our results suggest that WMS biochar being a rich source of nutrients can be the best remedy
to maintain and further enhance the soil nutritional status. Thus by interpreting biochar feedstock
characteristics and pyrolysis conditions, the regulation of tailored WMS biochar manufacturing and
application in soil can be facilitated.
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1. Introduction

The production of biochar has emerged as one of the most sustainable approaches to assist the issues
regarding soil fertility, especially in countries like China where ample of biological waste can be utilized
to generate biochar [1,2]. Biochar is a carbonaceous resultant product obtained from biomass of some
plants or animals pyrolyzed at high temperature under anoxic or hypoxic conditions [3–5]. There are
numerous ways in which biochar can potentially improve the soil quality. These include optimizing
water-holding capacity and cation exchange capacity (CEC) as well as reducing the susceptibility of soil
to erosion [6,7]. Furthermore, biochar can improve soil fertility through enhancing the availability of
essential nutrients such as nitrogen (N), carbon (C) and phosphorus (P) [8,9] and reducing bioavailability
of heavy metals [10] as well as acting as a source of carbon sequestration in soil [11]. However, pyrolysis
conditions and feedstock types are crucial determinants of biochar properties [12]. With gradual increase
in pyrolysis temperature polysaccharides constituents of the biomass are transformed to aromatic C
structures characteristic of biochar [13,14] which contributes to their stability in soils [15]. Biochar
obtained from pyrolysis of hard woods tends to have high N contents even when provided with
higher temperature as compared to soft wood plants [1]. Biochar produced at low temperature is
usually acidic in nature while a higher temperature tends to make it alkaline [16]. Moreover, a high
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temperature intensifies various nutrients in biochar as well as increasing biochar properties in terms of
its C percentage [17]. Feedstock is another critical factor to impact biochar characteristics. For instance,
biochar produced from municipal wastes and poultry litter have lower aromatic C contents but higher
ash contents than those produced from woody materials [18]. Biochar derived from animal and poultry
manure is characterized by high nutritional contents, such as chicken manure contains high N, P, Ca and
micronutrient contents, while coffee husk exhibits high K concentration [19]. Biochar obtained after
pyrolysis of sugarcane bagasse and wood wastes have low nutrients but high lignin and cellulose
contents [20,21].

Over the last 30 years, China has been making new breakthroughs and achieving domestic
developments to create a revolution in food production industry. Mushroom industry expanded
over more than 30 provinces in China, contributes a large amount of waste mushroom substrate
(WMS) which may pile up and produce unhygienic conditions in the environment. Hence, the heaps
of WMS need to be recycled or dumped properly in an efficient way to get the optimum useful
product from them. Keeping in view the above discussion, the present study was undertaken to
examine the effect of pyrolysis conditions on biochar derived from WMS and to evaluate what extent
of nutrient concentration in WMS biochar can be expected. The waste mushroom substrate of species
Pleurotus eryngii, commonly known as oyster mushroom, has been used as a feedstock to produce
biochar using variable pyrolysis temperatures and times. We hypothesized that being rich in nutrients,
WMS biochar can be a potential source to overcome nutrients dearth in soil. Many previous studies
regarding biochar pyrolysis and characterization reported the influence of pyrolysis temperature
on biochar properties but little are known about the effect of pyrolysis time on biochar properties.
Therefore, the present study was proposed (1) to investigate the effects of the pyrolysis temperatures
and times on the yield and physicochemical properties of biochar produced from WMS feedstock.
(2) To evaluate WMS biochar nutritional values (N, P, K, Ca, Mg contents) and suggest guidelines for
future research studies in biochar and its impact on soil fertility and environment.

It was expected that this research trial would provide useful data to reveal optimal pyrolysis
conditions to maximize the beneficial use of WMS biochar as soil amendment. It was also expected
that the study would help us to develop the best approach to properly manage the heaps of biological
wastes by recycling them into the environment.

2. Materials and Methods

2.1. Feedstock Collection

The WMS was used as a feedstock for biochar production, collected from Gutian, which is the
most famous county for producing edible fungus in China. The mushroom substrate selected to
pyrolysis belonged to species Pleurotus eryngii. WMS feedstock was air dried and meshed into small
pieces manually. The feedstock was then tested to evaluate primary contents in it (Table 1).

Table 1. Determination of chemical properties in waste mushroom substrate (WMS) feedstock.

Property Value/Unit Property Value/Unit Property Value/Unit

pH 6.34 N 2.18% Cr 5.581 (mg kg−1)
CEC 12 (cmol kg−1) Ca 33.48 (g kg−1) Cu 12.64 (mg kg−1)

Total P 3.72 (g kg−1) Mg 6.57 (g kg−1) Zn 96.58 (mg kg−1)
Total K 0.68 % Pb 25.26 (mg kg−1) Tl 0.076 (mg kg−1)

C % 35.69% Ni 5.36 (mg kg−1) Mn 1108.90 (mg kg−1)
– – – – Cd 0.40 (mg kg−1)

2.2. Preparation of Biochar

The pyrolysis of WMS feedstock was carried out in a fixed stainless steel reactor. Nitrogen gas
was fed from the top at a flow rate of 500 mL/min for about 5 min to produce oxygen free conditions



Sustainability 2019, 11, 277 3 of 14

during pyrolysis. Samples were pyrolyzed at various temperatures, that is, 400 ◦C, 500 ◦C, 600 ◦C and
700 ◦C for 1.5 h, 2 h, 2.5 h and 3 h, respectively. After certain hours of pyrolysis for each biochar the
power supply was turned off and the system was cooled over night to reach the room temperature.
The following day, biochar sample was removed, bagged, weighed and labeled for further analysis.

2.3. Determination of Biochar Properties

WMS biochar prepared under different pyrolysis conditions were then analyzed for various
chemical and nutritional properties.

Briefly, 1.0 g biochar sample was combusted at 600 ◦C ± 20 ◦C for 4 h in a muffle furnace whereas
the percentage of residual mass was calculated as the ash content. The pH (biochar: water; 1:20
suspension ratio) was measured by the standard method suggested by McLean (1982) using a portable
pH meter (INESA Scientific Instrument Co., Ltd., Shanghai, China) [22]. Cation exchange capacity
(CEC) was measured by using ammonium acetate solution using a flame photometer [23]. To determine
mineral nutrients (N, P, K, Ca, Mg, Fe, Mn) and heavy metals (Cu, Zn, Pb, Cr, Cd, Ni, Tl) in biochar,
WMS biochar samples were ground, sieved, weighed and put into triangular glass bottles. The weighed
WMS biochar samples were then added with 5 mL concentrated nitric acid, covered with small funnel
and left overnight. These samples were then digested in digestion blocks at 400 ◦C using a few drops
of chloric acid at regular intervals until colorless transparent solutions appeared in the glass bottles.
The transparent solutions were then used to make the respective dilutions for determination of mineral
and heavy metals contents in WMS biochar using different instruments. The total Phosphorous (TP)
was measured by molybdenum blue on a spectrophotometer (BioTek, Epoch2, Winooski, Vermont, USA)
against the absorbance wavelength of 880 nm. Total K was measured using flame photometer (Wolf, 1982).
Atomic absorption spectroscopy (AAS) was used to examine iron (Fe), calcium (Ca) and magnesium
(Mg) following standard protocol by Miyazawa (1984) whereas ICP-MS was used to determine heavy
metals (Cu, Zn, Pb, Cr, Cd, Mn, Ni, Tl) concentrations in biochar (EPA 3052 methods).

The surface area of WMS biochar samples was measured using Brunauer–Emmett–Teller (BET)
and its respective application (Micromeritics GeminiV). C percentage (%), N (%) and C: N ratio was
determined using elemental analyzer (LECO Corporation, St. Joseph, MI, USA).

2.4. Fourier Transform Infrared Spectroscopy Analysis

To perform Fourier transform infrared spectroscopy (FTIR), a small amount of WMS biochar
sample and dry KBr in a ratio of 1:100 or 1:200 were ground together in an agate mortar. After being
ground for 5 min the greyish white powder was pressed downward to form a delicate frame which
is used for laser scanning using FTIR spectrometer (Bruker vertex 70) to determine various aromatic
groups in biochar samples at different pyrolysis conditions. FTIR spectra for different WMS biochar
samples and feedstock were recorded with a resolution of 4 cm−1 in wavelength ranging between 500
and 4000 cm−1.

2.5. Statistical Analysis

Data are expressed as means ± standard errors of triplicate measurements. All data was analyzed
using one-way ANOVA and applying Duncan’s test at a 95% confidence interval (p < 0.05). IBM SPSS
Statistics 20.0 was used to determine the significance levels among various WMS biochar obtained
at different pyrolysis conditions. For surface area application of BET and t-plot analysis software
available with instrument (Micromeritics GeminiV) was used. Software Omnic 8.0 was used to analyze
FTIR spectra for biochar samples. Origin pro 8.5 was used to determine FTIR peaks and draw graphs.
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3. Results

3.1. Biochar Yield

The effect of pyrolysis temperature on the WMS biochar yield was shown in Figure 1. The increase
of pyrolysis temperature led to a decrease in the yields of WMS biochar. A decrease of 8.08% and 33.7% in
WMS biochar yield was found when temperature increased from 400 ◦C to 700 ◦C, respectively. The effect
of pyrolysis time on biochar yield also produced similar results (Figure 1). At 400 ◦C, yield decreased for
only 6.8% when time was increased from 1.5 h to 2 h but yield decrease was more when it was raised
up to 2.5 and 3 h. Results also indicated that pyrolysis time affected biochar yield at lower and higher
temperatures more than moderate temperatures such as at 500 ◦C and 600 ◦C, the yield decrease was
16.98% and 10.41% respectively while at 400 ◦C and 700 ◦C, yield decreased for 21.8% and 25.6% with
time increase from 1.5 to 3 h, respectively.
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Figure 1. Yield of WMS biochar produced at different pyrolysis temperatures and times.

3.2. pH and Ash Contents of WMS Biochar

The pyrolysis temperature proved to have a significant positive correlation with ash and pH.
Initially, an increasing trend in pH from lower to higher temperatures was observed. Ash contents were
found to be the highest when WMS biochar was pyrolyzed at 700 ◦C. Ash contents ranged from 54.34%
to 32.33% at temperature 700 ◦C to 400 ◦C, respectively (Table 2). The pH values of WMS biochar
obtained under different pyrolysis temperatures and times were given in Tables 2 and 3, respectively.
The highest pH value recorded for the WMS biochar was pH 10.63 (at 700 ◦C) for 3 h pyrolysis time.
The lowest value of pH was observed for WMS biochar pyrolyzed at 400 ◦C, that is, 8.66. The results
indicated that pyrolysis temperature had dominating effect on ash contents and pH of WMS biochar
than pyrolysis duration (Tables 2 and 3).

Table 2. Effect of different pyrolysis temperatures on ash contents, pH, CEC and BET surface area of
WMS biochar.

Temperature (◦C) Ash (%) pH CEC (cmol kg−1) Surface Area (m2g−1)

400 32.33 ± 0.79 d 8.95 ± 0.32 c 32.24 ± 0.95 a 3.36 ± 0.24 a
500 41.08 ± 1.31 c 9.24 ± 0.15 b 31.10 ± 1.72 ab 2.72 ± 0.13 b
600 47.08 ± 0.97 b 9.40 ± 0.18 b 28.24 ± 1.42 ab 1.97 ± 1.77 c
700 54.34 ± 0.81 a 10.28 ± 0.17 a 22.70 ± 1.73 b 1.71 ± 1.49 c

Readings are means of three treatment replicates. Means followed by the same letter within a line are not significantly
different at the 5% level.



Sustainability 2019, 11, 277 5 of 14

Table 3. Effect of different pyrolysis times on ash contents, pH, CEC and BET surface area of
WMS biochar.

Temperature (◦C) Time (h) Ash (%) pH CEC (cmol kg−1) Surface Area (m2g−1)

400

1.5 28.67 ± 0.88 b 8.66 ± 0.13 c 29.53 ± 0.39 a 3.86 ± 0.49 a
2 32.67 ± 1.2 a 8.67 ± 0.13 c 31.90 ± 0.97 a 4.04 ± 0.37 a

2.5 33.33 ± 0.88 a 9.10 ± 0.21 b 33.80 ± 3.36 a 2.95 ± 0.11 ab
3 34.67 ± 0.88 a 9.38 ± 0.04 a 34.56 ± 0.29 a 2.60 ± 0.32 b

500

1.5 35.67 ± 0.88 b 8.57 ± 0.06 c 29.28 ± 0.92 b 2.65 ± 0.37 a
2 38.67 ± 0.88 b 8.72 ± 0.17 b 32.40 ± 4.16 a 2.88 ± 0.24 a

2.5 43.67 ± 1.2 a 9.78 ± 0.16 b 32.25 ± 0.25 a 2.72 ± 0.28 a
3 46.33 ± 0.67 a 9.89 ± 0.17 a 30.5 ± 0.39 ab 2.57 ± 0.26 a

600

1.5 44.33 ± 1.33 b 8.69 ± 0.11 d 30.0 ± 0.64 a 2.45 ± 0.39 a
2 45.33 ± 0.33 b 9.10 ± 0.03 c 26.57 ± 0.53 b 2.27 ± 0.25 a

2.5 47.33 ± 0.67 ab 9.53 ± 0.037 b 25.69 ± 0.29 b 1.95 ± 0.42 ab
3 51.33 ± 2.02 a 10.26 ± 0.12 a 25.39 ± 0.26 b 1.19 ± 0.78 b

700

1.5 53.00 ± 1.76 a 9.37 ± 0.16 b 25.15 ± 0.67 a 2.04 ± 0.24 a
2 53.67 ± 1.76 a 10.52 ± 0.19 a 22.14 ± 0.148 b 2.00 ± 0.16 a

2.5 53.37 ± 1.88 a 10.60 ± 0.20 a 21.84 ± 0.256 b 1.74 ± 0.28 ab
3 55.33 ± 1.86 a 10.63 ± 0.15 a 21.69 ± 0.148 b 1.05 ± 0.12 b

Readings are means of treatment triplicates. Means followed by the same letter within a line are not significantly
different at the 5% level.

3.3. CEC and BET Surface Area of WMS Biochar

An inverse relationship between pyrolysis temperature and CEC of WMS biochar was predicted.
In our study, CEC of WMS biochar decreased from 32.24 cmolc kg−1 to 22.70 cmolc kg−1 as temperature
changed from 400 ◦C to 700 ◦C, respectively, whereas pyrolysis time did not show any significant
influence on CEC of WMS biochar (Tables 2 and 3). WMS biochar CEC values varied greatly and were
mainly dependent on the biomass and temperature used in the pyrolysis process (Table 2). In our study,
biochar produced at higher temperature showed the lower values of CEC (Table 2) whereas WMS
biochar obtained at lower temperatures (400 ◦C and 500 ◦C) showed higher CEC values.

The effect of pyrolysis temperature and time on the BET surface of the WMS biochar is shown in
Tables 2 and 3. When the pyrolysis was carried out at 400 ◦C for 2 and 1.5 h, the values of BET surface
area were maximum, that is, 4.04 m2g−1 and 3.86 m2g−1 respectively. However, at increasing pyrolysis
temperature and time, the trend was reversed. In case of BET surface area of WMS biochar, both time
and temperatures seemed affecting the values of surface area. At 400 ◦C, as time increases from 2 to
2.5 and 3 h, there is a slight decrease in surface area of WMS biochar. Similar trend was observed at
high pyrolysis temperatures, that is, when time was increased up to a certain point, surface area of
biochar was reduced (Table 3).

3.4. C, N Contents of WMS Biochar

Pyrolysis temperature exhibited a paramount effect on biochar elemental compositions rather
than pyrolysis time (Table 4). The statistical analysis of data reveals that resultant biochar C contents
are significantly correlated to pyrolysis temperature. With an increase in the pyrolysis temperature
from 400 to 700 ◦C, C contents of WMS biochar increased from 36.46% to 41.08 wt %. In general, high N
contents of biochar can provide nutrients to soil and improve crop productivity. Therefore N% was
determined using an elemental analyzer. N contents decreased from 2.36 wt % to 1.17% whereas as the
pyrolysis temperature rose, C/N ratios gradually increased (Table 4). Both pyrolysis temperature and
time seemed affecting N contents and C/N ratio of WMS biochar (Tables 4 and 5).
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Table 4. Effect of different pyrolysis temperatures on Total P, K, C, N contents and C:N of WMS biochar.

Temperature (◦C) C (%) N (%) C:N Total P (g kg−1) Total K (%)

400 36.46 ± 0.42 d 2.36 ± 0.08 a 15.68 ± 0.64 d 18.00 ± 0.56 a 1.97 ± 0.09 d
500 38.46 ± 0.13 c 1.76 ± 0.06 b 22.10 ± 0.79 c 18.01 ± 0.82 a 2.23 ± 0.05 c
600 39.98 ± 0.08 b 1.28 ± 0.01 c 32.55 ± 0.49 b 19.70 ± 1.25 a 2.39 ± 0.08 b
700 41.08 ± 0.16 a 1.17 ± 0.01 c 35.11 ± 0.91 a 19.75 ± 1.05 a 2.53 ± 0.07 a

Values are means of three replicates of each treatment ± SE using α = 0.05.

Table 5. Effect of different pyrolysis times on Total P, K, C, N contents and C:N of WMS biochar.

Temperature (◦C) Time (h) C (%) N (%) C:N Total P (g kg−1) Total K (%)

400

1.5 34.55 ± 0.11 c 2.58 ± 0.26 a 13.71 ± 1.54 b 16.83 ± 0.46 bc 1.37 ± 0.038 b
2 36.23 ± 0.35 b 2.46 ± 0.01 a 14.73 ± 0.13 b 18.09 ± 0.50 ab 2.14 ± 0.058 a
2 37.22 ± 0.60 ab 2.30 ± 0.08 a 16.22 ± 0.86 ab 18.32 ± 2.63 ab 2.16 ± 0.038 a
3 37.83 ± 0.51 a 2.09 ± 0.06 a 18.07 ± 0.76 a 18.78 ± 0.69 ab 2.23 ± 0.057 a

500

1.50 37.99 ± 0.11 b 2.01 ± 0.02 a 18.91 ± 0.22 b 16.95 ± 1.59 bc 2.07 ± 0.019 c
2 38.17 ± 0.05 ab 1.87 ± 0.06 b 20.48 ± 0.76 b 18.90 ± 1.13 ab 2.10 ± 0.038 c

2.5 38.71 ± 0.02 a 1.61 ± 0.03 c 23.93 ± 0.36 a 18.21 ± 0.40 ab 2.28 ± 0.019 b
3 38.60 ± 0.32 a 1.56 ± 0.03 c 25.09 ± 0.63 a 18.32 ± 0.19 ab 2.49 ± 0.057 a

600

1.50 39.59 ± 0.03 b 1.32 ± 0.01 a 29.91 ± 0.13 b 18.54 ± 1.79 bc 2.10 ± 0.03 c
2 39.98 ± 0.01 ab 1.35 ± 0.02 a 32.92 ± 0.71 a 19.02 ± 1.09 ab 2.18 ± 0.03 c

2.5 40.13 ± 0.11 a 1.25 ± 0.02 b 33.54 ± 0.09 a 19.70 ± 0.59 ab 2.51 ± 0.019 b
3 40.22 ± 0.11 a 1.21 ± 0.02 b 33.84 ± 0.15 a 21.55 ± 0.64 a 2.78 ± 0.00 a

700

1.50 40.76 ± 0.13 b 1.20 ± 0.01 a 25.14 ± 0.62 c 16.75 ± 1.70b c 2.12 ± 0.019 b
2 40.67 ± 0.45 ab 1.18 ± 0.02 a 29.05 ± 0.10 b 19.40 ± 3.018 ab 2.51 ± 0.07 b

2.5 41.16 ± 0.19 a 1.16 ± 0.05 b 30.19 ± 0.54 b 20.51 ± 0.64 ab 2.58 ± 0.019 a
3 41.74 ± 0.14 a 1.12 ± 0.01 c 33.38 ± 0.51 a 22.35 ± 1.28 a 2.92 ± 0.019 a

Values are means of three replicates of each treatment ± SE using α = 0.05.

3.5. Nutritional Analysis

Concentrations of P and K were increased slightly with the rise in temperature. The difference in
P contents at low and high pyrolysis temperature was non-significant though a significant difference
was observed in P contents at various pyrolysis times (Tables 4 and 5). In case of K, both pyrolysis
temperature and time had a significant effect on K concentration of WMS biochar and K% increased
from 1.97% to 2.53% when temperature was raised from 400 ◦C to 700 ◦C. Ca and Mg concentrations
also showed an increase with the rising pyrolysis temperature and these nutrients were the highest in
WMS biochar obtained at 700 ◦C. As compared to nutrient content in feedstock, the total contents of Ca
and Mg rose to 74% and 6% respectively, when pyrolysis process was conducted at a temperature of
700 ◦C. An increase in Fe and Mn contents was also observed with the increase in pyrolysis temperature
and times (Tables 6 and 7).

Table 6. Effect of different pyrolysis temperatures on Fe, Ca and Mg contents of WMS biochar.

Temperature (◦C) Ca (g kg−1) Mg (g kg−1) Fe (g kg−1) Mn (mg kg−1)

400 98.65 ± 8.38 a 5.16 ± 0.41 b 25.36 ± 1.76 b 586.07 ± 78.18 a
500 105.67 ± 7.98 a 5.19 ± 0.15 b 25.41 ± 1.30 b 643.11 ± 65.11 a
600 115.47 ± 3.14 a 5.81 ± 0.15 ab 26.25 ± 2.15 b 682.53 ± 28.25 a
700 117.47 ± 3.10 a 6.61 ± 0.13 a 31.97 ± 1.96 a 705.6 ± 19.312 a

Readings are means of treatment triplicates. Means followed by the same letter within a row are not significantly
different at the 5% level.
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Table 7. Effect of different pyrolysis times on Fe, Ca and Mg contents of WMS biochar.

Temperature (◦C) Time (h) Ca (g kg−1) Mg (g kg−1) Fe (g kg−1) Mn (mg kg−1)

400

1.5 72.038 ± 30.17 a 4.08 ± 1.58 b 20.50 ± 0.20 b 528.59 ± 22.27 b
2 101.68 ± 1.58 a 5.09 ± 0.08 b 24.80 ± 4.16 ab 570.3 ± 8.679 ab

2.5 102.90 ± 2.63 a 5.10 ± 0.22 a 23.26 ± 2.46 b 598.09 ± 22.18 a
3 117.93 ± 8.44 a 5.68 ± 0.52 a 32.85 ± 1.70 a 627.23 ± 212.7 a

500

1.5 81.65 ± 7.43 c 4.64 ± 0.07 b 19.8 ± 0.58 b 614.82 ± 15.58 a
2 97.58 ± 22.1 bc 5.08 ± 0.25 b 25.48 ± 1.80 a 624.49 ± 7.32 a

2.5 119.39 ± 3.24 ab 5.78 ± 0.086 a 26.24 ± 0.20 a 658.6 ± 22.49 a
3 124.09 ± 1.35 a 5.95 ± 0.019 a 30.12 ± 2.80 a 681.46 ± 45.07 a

600

1.5 102.70 ± 9.19 b 5.24 ± 0.18 b 19.38 ± 0.68 c 662.26 ± 20 b
2 115.84 ± 1.29 ab 5.64 ± 0.37 ab 22.346 ± 0.58 bc 684.32 ± 8.5 a

2.5 119.19 ± 2.29 a 6.18 ± 0.09 a 26.7 ± 3.47 b 690.65 ± 41.2 a
3 124.09 ± 1.35 a 6.20 ± 0.054 a 36.56 ± 2.19 a 692.91 ± 46.5 a

700

1.5 102.70 ± 9.19 b 6.19 ± 0.108 c 31.12 ± 4.60 a 621.67 ± 9.69 d
2 118.24 ± 1.23 ab 6.44 ± 0.21 bc 34.97 ± 0.75 a 681.5 ± 12.54 c

2.5 121.29 ± 2.26 ab 6.93 ± 0.048 ab 30.26 ± 5.00 a 726.25 ± 9.9 b
3 130.16 ± 1.81 a 7.02 ± 0.24 a 31.55 ± 5.50 a 792.97 ± 3.65 a

Readings are means of treatment triplicates. Means followed by the same letter within a row are not significantly
different at the 5% level.

3.6. Heavy Metal Analysis

The results revealed that concentrations of Zn, Cu and Ni increased in WMS biochar samples as
compared to the feedstock (Tables 1 and 8), while Cr, Pb and Tl contents were decreased in biochar
after pyrolysis (Tables 8 and 9). Pyrolysis temperature played a paramount role in determining the
properties of heavy metals contents in WMS biochar. It also showed that Pb and Tl in WMS biochar
were significantly lower than WMS feedstock which made WMS biochar safer to apply in soil.

Table 8. Effect of different pyrolysis temperatures on heavy metal contents of WMS biochar.

Temperature (◦C) Cu (mg kg−1) Zn (mg kg−1) Cr (mg kg−1) Ni (mg kg−1) Pb Tl

400 21.74 ± 3.71 b 150.32 ± 27.65 d 4.33 ± 0.57 b 6.15 ± 0.73 b
Below

detection
limit

Below
detection

limit

500 24.21 ± 1.59 ab 173.8 ± 26.18 c 5.24 ± 0.96 ab 8.33 ± 1.32 ab
600 24.76 ± 4.28 ab 222.27 ± 47.62 b 8.70 ± 1.30 a 9.05 ± 2.00 ab
700 29.52 ± 1.20 a 265.79 ± 10.33 a 9.84 ± 1.120 a 11.70 ± 1.66 a

Readings are means of treatment triplicates. Means followed by the same letter within a line are not significantly
different at the 5% level.

Table 9. Effect of different pyrolysis times on heavy metal contents of WMS biochar.

Temperature (◦C) Time (h) Cu (mg kg−1) Zn (mg kg−1) Cr (mg kg−1) Ni (mg kg−1) Pb Tl

400

1.5 19.49 ± 3.69 a 108.8 ± 23.41 b 3.63 ± 0.27 a 4.41 ± 0.25 b

Below
detection

limit

Below
detection

limit

2 22.23 ± 5.77 a 135.9 ± 4.3 ab 3.18 ± 0.85 a 4.59 ± 1.47 ab
2.5 22.77 ± 10.7 a 167.59 ± 9.8 ab 4.37 ± 1.47 a 6.89 ± 0.49 ab
3 22.47 ± 1.27 a 191 ± 20.48 a 6.16 ± 1.27 a 8.68 ± 1.82 a

500

1.5 19.82 ± 1.449 b 146.33 ± 23.14 b 3.64 ± 0.91 a 4.16 ± 1.08 c
2 21.23 ± 0.316 b 164.82 ± 9.38 ab 4.94 ± 1.50 a 5.44 ± 0.134 c

2.5 26.93 ± 1.62 ab 169.5 ± 17.14 ab 5.89 ± 0.88 a 8.78 ± 1.63 b
3 28.86 ± 4.33 a 211.73 ± 10.7 a 6.49 ± 3.75 a 14.92 ± 0.26 a

600

1.5 21.84 ± 0.42 c 148.00 ± 15 ab 4.56 ± 0.70 c 6.33 ± 2.38 c
2 23.23 ± 15.84 ab 217.9 ± 12.08 ab 5.11 ± 1.69 c 6.37 ± 0.07 c

2.5 24.96 ± 0.547 ab 219.7 ± 15.14 ab 12.50 ± 7.31 b 7.48 ± 3.96 b
3 29.03 ± 4.422 a 305.35 ± 17.10 a 13.09 ± 2.48 a 16.03 ± 5.82 a

700

1.5 28.46 ± 2.15 b 153.7 ± 21.43 c 6.44 ± 1.96 b 7.18 ± 0.49 b
2 29.18 ± 1.09 ab 230.9 ± 18.8 bc 6.55 ± 2.22 b 9.25 ± 1.51 b

2.5 29.68 ± 1.84 ab 338.4 ± 2.238 ab 13.20 ± 1.92 a 11.92 ± 1.74 ab
3 30.79 ± 0.47 a 341.09 ± 7.676 a 13.23 ± 1.98 a 18.48 ± 4.37 a

Readings are means of treatment triplicates. Means followed by the same letter within a line are not significantly
different at the 5% level.



Sustainability 2019, 11, 277 8 of 14

3.7. FTIR Analysis

The FTIR analyses of WMS biochar at different pyrolysis conditions indicate significant contrasting
results (Figures 2–5). The aromatic structure (C=C stretch) in FTIR of WMS biochar gradually lost its
strength as the temperature rose up to 700 ◦C. Both temperature and pyrolysis time seemed affecting the
FTIR spectrum of WMS biochar. Overall, aliphatic structure predominated only at low temperatures,
that is, 400 ◦C and 500 ◦C and the strength of aliphatic peaks (3100–3600 cm−1) was observed to
diminish with the increase in pyrolysis temperature.
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4. Discussion

4.1. Physicochemical Properties of WMS Biochar under Various Pyrolysis Temperatures and Times

The significant decrease in biochar yield with the increase in pyrolysis temperature is reported
in the literature, as in the case of oak, pine, sugarcane and peanut shell biochar [8]. The decrease in
biochar yields with increasing temperature could be due to deterioration of the basic primary structure
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of biochar after pyrolysis process. At low pyrolysis temperature, biochar was partially combusted
resulting in higher yield while high temperature caused biochar material to combust completely
consequently producing lower yield [4,7].

In the present research, ash contents of WMS biochar were observed to be higher than those of
safflower seed cake, sugarcane straw, rice hull, poultry litter and sawdust reported previously [4,24].
Whereas, pyrolysis time did not have a significant effect on pH but the pH of the WMS biochar increased
significantly with increasing pyrolysis temperatures. The pH of the WMS biochar ranged from 8.66
to 10.63 which was similar to values reported for biochar produced from sugar beet tailings, sewage
sludge and sugarcane bagasse at high pyrolysis temperature [25–27] (Tables 2 and 3). An increase in
biochar pH with increasing pyrolysis temperature has been reported for corn straw, pine, poultry litter,
sewage sludge and sugarcane straw biochar [13,28–31]. The effect of pyrolysis temperature on pH mainly
relates to two aspects: (1) with increasing temperature, there is an enrichment of basic cations in the ashes,
which may be associated with alkaline species, such as carbonates, oxides and hydroxides [28,32] and (2)
a reduction in the concentration of acidic surface functional groups [33]. The nature of the aromatic C
structures associated with acidic functional groups can affect biochar CEC and adsorption capacity [34].
Decrease in CEC of biochar with increased pyrolysis temperature can be explained by degradation in
volatile organic compounds and acid functional groups (-COO− and –O−) [29,35] which have been
associated to the negative surface charge of biochar [28,36]. At pyrolysis temperature 400 ◦C, the number
of micropores significantly increased with the removal of volatile matter, giving rise to an increase in the
pore volume and surface area. At high temperatures, modification in structural order, pore widening and
merging of neighboring pores seem to predominate, leading to a decrease in the surface area. Besides,
pores in the biochar might be constricted as a result of squeezing, softening, fusion and carbonization [37].

4.2. Nutritional Properties of WMS Biochar under Various Pyrolysis Temperatures and Times

C and N cycles are the most important nutrients in soil which are profoundly affected by pyrolysis
temperature of biochar. Considering these, it is expected a greater aromatic character for WMS biochar
produced at higher temperature. The use of these biochar with a possible high residence time may be
an important strategy to increase C sequestration in soils, acting to offset greenhouse gas emissions [38].

Our data revealed the obvious increase in C content of biochar with the increase in temperature
but the loss of N contents was recorded. The C content of WMS biochar was slightly higher than
that of straw and chicken manure biochar but less than that of conocarpus wastes, hard wood and
safflower seed cake biochar, which have been reported previously. In case of N, WMS biochar had more
N contents than hard wood (oak) and straw biochar [1,21,39,40]. It is implied that these properties
corresponded to their feedstocks instead of pyrolysis temperature and time which determine their
properties [30].

P and K contents in WMS biochar are higher than those of hard wood, sugarcane straw, rice husk and
poultry litter, wheat and rice straw biochar [8,24,41] reported previously. Macro nutrients (P, K) of WMS
biochar were greatly higher than animal and plants biochar feedstock which makes it a great substitute
to add in soil [24]. The results of the present study showed that Ca, Mg, Mn and Fe concentrations
increased with increasing pyrolysis temperature, which may be due to concentration of these elements in
biochar samples with temperature. Additionally, these elements might not be lost by volatilization [35].
Hence, the saturation of alkaline elements could be responsible for inducting liming effects in biochar
pyrolyzed at high temperatures [1,35]. Pb and Tl contents in WMS biochar were below the detection
limit of ICP-MS which support the nutritional reliability of WMS biochar to apply in soil.

C contents (%) and biochar FTIR configurations can be used as predictors of C persistence in
soils (Figures 2–5). High C content and FTIR spectrum features recorded for biochar derived from
high temperatures are key indices of the aromatic character, stability against degradation in soils, and,
consequently, high C residence time in biochar-treated soils. Generally, the effect of pyrolysis time
on the biochar FTIR profiles is not very pronounced. The increasing upward drift in the primary
baseline of the spectrum from low to high wave numbers at the high pyrolysis temperature was
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probably due to the increased aromatics compounds [8,42]. An observed increase in intensity in the
1600 cm−1 region with increasing pyrolysis temperature has been attributed to an increasing degree
of saturation of aromatic organic contents [21]. Stronger C=O stretching peaks in 1600 cm−1 region
may also indicate the formation of ketones, esters, anhydrides and carboxylic C [4,43]. In case of
C contents, WMS biochar produced at lower temperature exhibit intense FTIR peaks which can be
readily degraded by microbes in soil enhancing the soil fertility, whereas WMS biochar obtained at
high pyrolysis temperature can be good for soil C sequestration [18,44].

In our study, WMS biochar has the potential to increase soil acidity, buffering capacity and to
neutralize soil acidity. High pH of WMS biochar indicates the presence of alkaline chemical species
which can reduce Fe and Mn availability and increase soil CEC [28,31] which may decrease the
precipitation and adsorption of P, as well as enhancing the supply of Ca and K to plants [45]. It is
observed that P availability in biochar amended soil was initially lower than a similar manure amended
soil but that the availability in the manure amended soil declined gradually whereas it increased in the
biochar amended soil, in a long term experiment [46,47]. High immediate P availability, which can
be an advantage for crops with an instantaneous need for P is thus achieved using relatively low
pyrolysis temperatures. In our study, WMS biochar produced at low temperature can act as a good
source of P in soil whereas high temperature WMS biochar can provide nutrients in soil in long terms.
The high Ca and K contents in WMS biochar can significantly replace conventional sources of K and Ca,
which suggests the high nutritious value of WMS biochar.

5. Conclusions

The results of pyrolysis study of WMS biochar indicate that pyrolysis temperature is significantly
associated to biochar yield, pH, CEC and surface area and was found to be the most significant factor
determining WMS biochar properties. Pyrolysis temperature displayed a positive relationship with
pH, CEC, surface area and ash content. The surface area was significantly influenced by pyrolysis time,
which is often overlooked in the literature. The biochar derived from utilized mushroom substrate can
be used as a multi element supplement for soil and plants for being a highly valuable source of P, K, Ca,
Mg and Fe. The presence of innocuous concentration of heavy metals also provides ideal conditions
for application of WMS biochar in soil. WMS biochar mainly cannot be used as a C sequester in soil but
it can be a great remedy to avoid N leaching in soil and increasing nutrients (P, K, Ca, Mg) availability
in long terms. Furthermore, it is also concluded that biochar utilized for an application should match
the aim of the use in soil application.
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