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Abstract: Short message service (SMS) is the most widely adopted multi-factor authentication method
for consumer-facing accounts. However, SMS authentication is susceptible to vulnerabilities such as
man-in-the-middle attack, smishing, and device theft. This study proposes implicit authentication
based on behavioral pattern of users when they check an SMS verification code and environmental
information of user proximity to detect device theft. User behavioral pattern is collected by
using the accelerometer and gyroscope of a smart device such as a smartphone and smart watch.
User environmental information is collected using device fingerprint, wireless access point, Bluetooth,
and global positioning system information. To evaluate the performance of the proposed scheme,
we perform experiments using a total of 1320 behavioral and environmental data collected from
22 participants. The scheme achieves an average equal error rate of 6.27% when using both behavioral
and environmental data collected from only a smartphone. Moreover, it achieves an average equal
error rate of 0% when using both behavioral and environmental data collected from a smartphone and
smart watch. Therefore, the proposed scheme can be employed for more secure SMS authentication.

Keywords: implicit authentication; SMS authentication; behavior analysis; environment analysis;
autoencoder; dynamic time warping

1. Introduction

Short message service (SMS) is the most widely adopted multi-factor authentication method
for consumer-facing accounts. No additional tokens are necessary because it uses mobile devices
that are usually carried at all times. SMS authentication, however, is susceptible to vulnerabilities
such as man-in-the-middle (MTMA) [1,2], in which an attacker eavesdrops on the user’s verification
code, and smishing, in which an attacker intercepts the user’s verification code through malicious
applications installed carelessly by the user. Therefore, SMS authentication is excluded from the digital
authentication guideline issued by the National Institute of Standards and Technology (NIST) [3];
instead, one-time password (OTP)-generating applications such as Google Authenticator and Authy,
and biometric authentication such as fingerprint and iris authentication are recommended. However,
an OTP-generating application does not prevent device theft and biometric authentication is not
replaceable when leaked and is also vulnerable to smudge attacks [4,5]. To overcome these limitations,
behavioral-based authentication techniques such as those using arm gestures when responding to calls
or hand waving gestures have been studied.

Hand waving gesture-based behavioral authentication [6] uses a smartphone’s light and
accelerometer sensors to detect malicious applications that eavesdrop on sensitive information such as
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calls and SMSs. However, because Ref. [6] requires explicit and specific behavior that need conscious
participation of users. Ref. [7] proposed an authentication scheme that uses a behavioral pattern
collected from accelerometer and gyroscope of a smartphone when a user receives a phone call and
shape of the user’s ear collected from the front camera of the smartphone. This may be convenient for
the user because Ref. [7] authenticates using a user’s natural behavior when the user receives a phone
call and the shape of the user’s ear. However, the shape of a user’s ear is difficult to practically collect
when the user receives a phone call; moreover, this scheme does not explicitly state in which situations
it can be used.

This paper proposes an implicit secondary authentication scheme that uses a unconscious
behavioral pattern of users when they check an SMS verification code, and information about
the surrounding environment at that time. This behavioral pattern of users is collected by the
accelerometer and gyroscope of a smart device such as a smartphone and smart watch, and the
surrounding environmental information is collected using device fingerprints, wireless access points
(AP), Bluetooth, and global positioning system (GPS) information. We employ peak detection to detect
the behavioral starting point and use an autoencoder to generate an environmental model. We then
perform experiments using data collected from 22 participants for each location of the smartphone.
Unlike previous behavior-based authentication schemes, users can use this conveniently because the
proposed scheme does not require conscious behavior of the user.

The main contributions of the paper are summarized as follows:

• We propose a user authentication scheme that combines a behavioral pattern when a user checks
an SMS verification code, and environmental information using a device fingerprint, wireless AP,
Bluetooth, and GPS to detect device theft. In addition, we analyze the feasibility and applicability
of user authentication based on behavioral pattern and surrounding environmental information.

• The proposed scheme does not require any specific user behavior because user authentication is
performed using natural user behavior when checking an SMS verification code. Therefore, users
can use our authentication scheme without any inconvenience.

• We detect the behavioral starting point using peak detection to extract pure behavioral data when
a user checks an SMS verification code. Thus, the proposed scheme does not use behavioral data
until the user receives and checks the SMS verification code. To the best of our knowledge, this
study is the first to detect behavioral starting point for behavior-based authentication.

• This study systematically evaluates user authentication on smartphones by analyzing behavior
and environment; the proposed scheme can perform user authentication with high accuracy.
These results suggest that the proposed scheme is sufficient to detect device theft when using
SMS authentication.

The structure of the paper is as follows: Section 2 discusses related work. Section 3 describes
the proposed scheme, which includes data acquisition, data preprocessing, and user registration
and authentication. Section 4 describes the experiments conducted to evaluate the proposed scheme.
Section 5 discusses usability, security, and limitations about the proposed scheme. Section 6 concludes
the paper.

2. Related Work

Behavior-based authentication schemes have been employed in various studies; they use user
behavior such as hand gestures, keystroke dynamic, signature dynamic, and touch gesture. In addition,
we explore face recognition that can be applied to SMS authentication.

In 2013, Shrestha et al. [6] proposed an authentication scheme that uses hand gestures collected
from light and accelerometer sensors of a smartphone to prevent attackers from eavesdropping
using malicious software. Results of the experiment, in which data was collected from 20 participants,
showed a false positive rate (FPR) of 0.08% and false negative rate (FNR) of 9.5%. In 2015, Yang et al. [8]
proposed an authentication scheme that uses accelerometer of a smartphone to unlock the smartphone.
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Results of the experiment, in which a user model was generated using a support vector machine
(SVM) for 22 participants, showed an FPR of 15% and FNR of 8%. However, hand gesture-based
authentication schemes have a drawback that users are inconvenienced because they require specific
user behavior.

In 2013, Trojahn et al. [9] proposed an authentication scheme that uses pressure and finger size
for keystroke dynamics. Results of the experiment, in which multilayer perceptron was used from 16
participants, showed a false accept rate (FAR) of 2.52% and false rejection rate (FRR) of 3.0%. In 2014,
Kambourakis et al. [10] proposed an authentication scheme that uses movement and speed of fingers
when a user enters a password on a touch screen. Results of the experiment, in which a user model
was generated using k-nearest neighbors for 20 participants, showed an FAR of 23.7% and FRR of 3.5%.
Keystroke dynamic-based authentication schemes can be easily used in SMS authentication but have
a drawback of generated user behavioral model for various devices such as smartphones, desktops,
and laptops.

In 2014, Zheng et al. [11] proposed non-intrusive user verification that uses various sensors such as
accelerometer, gyroscope, and pressure sensors when a user enters an 8-digit personal identity number
(PIN). Results of the experiment using one-class classification algorithm for 80 participants showed an
equal error rate (EER) of 3.65%. In 2014, Saravanan et al. [12] proposed LatentGesture that uses pressure,
time, and touch coordinates when a user presses a button or check box. Results of the experiment using
Lib-SVM for 20 participants showed an average accuracy of 97.9% with a smartphone and 96.79% with
a tablet for single user classification. In 2013, Bo et al. [13] proposed a framework for smartphone
authentication based on the dynamics of touch and movement. They extracted features from touch
and movement behavior such as pressure, area, duration, position, velocity, and acceleration, and
employed an SVM to perform the user authentication task in a lab scenario. Experimental results for
100 volunteers show that the user identification accuracy is over 99%. Shen et al. [14] developed a
continuous smartphone authentication system based on user touch-sliding operations. The system
analyzed four types of touch behavior such as sliding up, down, left, and right, and employed an SVM
to learn the behavioral pattern of the user’s touch, which was later used for authentication decisions.
Experimental results for 70 participants in the real world showed an EER between 1.72% and 9.01%.
However, touch-based behavioral authentication schemes can only be used when a user enters an SMS
verification code on a smartphone.

Nam et al. [15] proposed a signature dynamic that uses a user’s signature information such as
accelerometer and signature coordinates. It generated a user model using an autoencoder after a
feature vector was extracted by a convolutional neural network. Experimental results to evaluate the
performance for 20 participants showed an EER of 2.7%. In 2014, Sun et al. [16] developed a two-factor
authentication system for multitouch mobile devices by asking a user to draw a signature on the
touchscreen with multiple fingers to unlock a smart device. Experimental results for 30 volunteers
showed a true positive rate (TPR) of 99.3% and FPR of 2.2%. However, because it requires specific user
behavior, a user may feel inconvenienced.

Mare et al. [17] proposed ZEBRA, which is a bilateral recurring authentication method. The signals
sent from a bracelet on a user’s wrist are correlated with the terminal’s operations to confirm the
continued presence of the user if the two movements correlate according to a few coarse-grained
actions. Results of the experiment that uses random forest showed an accuracy of 85%. Lee et al. [18]
proposed iAuth, which combined sensor information, such as that from accelerometer and gyroscope,
from a smartphone and wearable devices. Results of the experiment that uses kernel ridge regression
for 20 users showed an authentication accuracy of 92.1%.

In 2014, Taigman et al. [19] proposed a face recognition model using deep neural network, which
is called DeepFace. Experimental results for labeled faces in a wild dataset indicated an accuracy of
97.35%. Such results approach human performance under the unconstrained condition for the first time.
Since DeepFace [19], face recognition schemes using deep learning such as DeepID2 [20], DeepID3 [21],
FaceNet [22], VGGFace [23], and SphereFace [24] have been studied. Although the accuracy of
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face recognition is high, a user’s face may not be captured when SMS authentication is performed.
Furthermore, it is vulnerable to an adversarial example, which may result in misclassification through
minimum modulation of the input image.

Unlike related works, we propose an implicit authentication scheme that does not depend on the
device and does not require the user to perform a specific behavior.

3. Proposed Scheme

We propose an implicit secondary authentication scheme to prevent device theft in SMS
authentication. The proposed scheme can be divided into data acquisition, data preprocessing, and
user registration and authentication. Figure 1 shows the architecture of the authentication scheme
proposed in this paper. In step 1, a user enters personal information such as name and phone number
to use SMS authentication when identification is required. In step 2, an authentication server sends an
SMS verification code to the user’s phone number and requests user’s behavioral and environmental
data. In step 3, the user enters the SMS verification code, and the user’s smartphone sends behavioral
and environmental data to the authentication server. The authentication server generates a user
behavioral model for every location of the smartphone after preprocessing the previously collected
behavioral data. The smartphone may be located on a table, in the user’s hand, or the user’s pocket.
The authentication server generates a user environmental model by using the extracted feature vector.
The authentication server verifies the SMS authentication code sent by the user and determines the
location of the smartphone by inputting the first vector of the received behavioral data into the location
decision classifier to determine the location of the smartphone. The received user behavioral data
are compared with the user behavioral model of the determined location saved in the authentication
server. The extracted feature of the user’s surrounding environmental data is input into the user
environmental model. The confidence value output by the user environmental model is combined
with the difference between the received user behavioral data and behavioral model. The combined
score is compared with a predefined threshold. If the combined score is less than or equal to the
threshold, authentication is successful; otherwise, authentication fails. In step 4, the authentication
server sends the authentication result to the user. The proposed scheme is not different from the
normal SMS authentication process. In addition, it does not make any additional requests to the user.

Figure 1. Architecture of the proposed authentication scheme to detect device theft in
SMS authentication.

3.1. Data Acquisition

Behavioral and environmental data of a user are collected when identifying the user through SMS
authentication. The behavioral and environmental data are collected for five seconds from the time the
user receives an SMS verification code.

3.1.1. Behavioral Data Acquisition

Figure 2 shows the behavioral pattern when a user checks an SMS verification code on his/her
smartphone, which is on a table. Users naturally pick up the smartphone for checking the code when
the code the received. Figure 2a,b show that the speed with which and height at which users lift a
smartphone are different. As shown in Figure 2c, a user with a smart watch checks the SMS verification
code on the smart watch because the smart watch also receives the code. Table 1 provides a list of
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sensors used for user behavioral data acquisition. We collect accelerometer and gyroscope data from a
smart device such as a smartphone and smart watch. The smartphone and smart watch have a built-in
accelerometer and gyroscope. The smart watch is connected to the smartphone and behavioral data
collected from the smart watch are sent to the smartphone through Bluetooth.

(a) (b)

(c)
Figure 2. Example of user behavior when a smartphone is on a table.

Table 1. Collected behavioral data.

Devices Sensors Axes

Smartphone Accelerometer

x, y, zGyroscope

Smart Watch Accelerometer
Gyroscope

3.1.2. Environmental Data Acquisition

The proposed scheme collects environmental information about a user to verify whether the user
is at a place where he/she has stayed for a long time at the time of authentication. Users are likely
to perform identity verification at a place where they are staying for a long time such as home or
workplace. Table 2 provides a list of used environmental information. We collect device fingerprints,
wireless AP information, Bluetooth information from a smart device such as a smartphone and smart
watch, and GPS information, which includes the latitude and longitude. The device fingerprint is
a character string that includes brand, manufacturer, and model of the device. The wireless AP
information includes the basic service set identifier (BSSID), which is the media access control (MAC)
address, and received signal strength indication (RSSI), which is the measurement of power of a
received signal. The GPS information includes latitude and longitude measured by a network sensor
based on the location of the base station. The Bluetooth information of a smart device is collected as
the Bluetooth MAC and RSSI of each device.
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Table 2. Collected environmental data.

Devices Modalities Contents

Smartphone

Fingerprint
Brand

Manufacturer
Model etc.

Wireless AP BSSID
RSSI

Bluetooth MAC
RSSI

GPS Latitude
Longitude

Smart Watch Bluetooth MAC
RSSI

3.2. Data Preprocessing

3.2.1. Scaling Sensor Data and Detecting Behavioral Starting Point

We perform data scaling and detect the starting point of user behavior for preprocessing behavioral
data when the user checks an SMS verification code. Because accelerometer and gyroscope sensor data
on this behavior are different for each axis, we must perform data scaling. We preserve the shape of
sensor data using min-max scaling and sensor data is transformed from a value of 0 to 1. It can be
represented as follows:

SBsensors
axes = MinMaxScaling (Bsensors

axes ) , (1)

where SBsensors
axes represent scaled sensor data and Bsensors

axes represent sensor data before scaling. The
SBsensors

axes is separated as follows:

SBsensors =
[
SBsensors

x , SBsensors
y , SBsensors

z

]
, (2)

where SBsensors
x represents the x-axis of each sensor, SBsensors

y represents the y-axis of each sensor,
and SBsensors

z represents the z-axis of each sensor. Figure 3 shows accelerometer data before and
after scaling.

Figure 3. Examples before and after scaling the accelerometer data collected from smartphones.
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A static part exists in the sensor data starting from when the SMS verification code is received
until checked by the user. To remove static data and use only dynamic data, we use peak detection [25]
based on a threshold to detect the behavioral starting point. The peak detection based on the threshold
is a method of detecting points where the rate of change of the time series data is equal to or higher than
a pre-defined threshold value. We set the threshold value for peak detection as 0.01. It is represented
as follows:

indicespeaks = f indpeaks(SBgyro
y ), (3)

where f indpeaks returns indices of the detected peaks using the y-axis of the gyroscope sensor.
We set the starting point as four indexes ahead of the index of the first peak because sensor values
corresponding to the first peak index are already in progress. Pure sensor data on user behavior is
when static sensor data, before the set starting point, is removed. It is represented as follows:

pointstart = indicespeaks [0]− 4, (4)

PBsensors
axes = SBsensors

axes [pointstart :] . (5)

Figure 4 shows sensor data before and after detecting the behavioral starting point.

Figure 4. Before and after detecting behavioral starting point.

3.2.2. Extracting the Feature Vector for Environmental Data

First, environmental data to be used for training are registered in the authentication sever to
extract the feature vector. The information to register with the authentication server includes the
smartphone fingerprint of the user, BSSIDs of the top three wireless APs with a strong RSSI, and
Bluetooth MAC address of the smart device. After registering environmental information, a feature
vector is extracted by comparing the registered environmental information and inputted environmental
data. For the smart device fingerprint, we assign 100 to the feature vector if the inputted fingerprint
matches the registered fingerprint, and 0 if it does not. For the wireless AP information, we assign
the average of RSSIs corresponding to BSSIDs if inputted BSSIDs are a part of the registered BSSIDs,
and −100 if they are not. For Bluetooth information, we assign the average of RSSIs corresponding to
MAC addresses if the inputted MAC address is a part of the registered MAC addresses, and −100 if it
is not. For GPS, we assign the latitude and longitude values.
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3.2.3. User Registration and Authentication

To register the user behavioral pattern, we use three behavioral data points to yield the average
of each axis value at the same time for each location of the smartphone. Given three x-axis pieces of
accelerometer data, corresponding to three different behavioral data, at time t, Axt is calculated as
mean

(
x1

t , x2
t , x3

t
)
. At time t, the average of each axis value from the accelerometer of the smartphone is

represented as follows:
SPacc

t = [Axt, Ayt, Azt] . (6)

At time t, the average of sensor data of the smartphone is represented as follows:

SPt =
[
SPacc

t , SPgyro
t

]
. (7)

Figure 5 shows scaled sensor data after calculating the average of three behavioral data points
over the entire time period. The average of the sensor data obtained three times over the entire time
period is calculated and then data scaling and the behavioral starting point calculation are performed
as described in Section 3.2.1. As shown in Figure 4, sensor data, obtained after detecting the behavioral
starting point, is registered as a behavioral model in the authentication server.

Figure 5. Example of scaling sensor values after calculating the mean of three behavioral data points.

The user environmental model is trained by an autoencoder [26,27] after extracting the feature
vector as described in Section 3.2.2. The autoencoder trains to reconstruct an output vector similar to
the input feature vector and minimize losse, which is the mean square error between the output vector
and the input feature vector. losse is represented as follows:

losse =
∣∣X− X′

∣∣2 , (8)

where X is the input feature vector and X′ is the reconstructed output vector. The trained user
environmental model is saved in the authentication server.

In the user authentication phase, we determine the location of the smartphone using the location
decision classifier for the newly inputted sensor data. The saved user behavioral model of the
determined location is then loaded in the authentication server. The newly inputted sensor data is
compared with the loaded user behavioral model after min-max scaling and detecting a behavioral
starting point as described in Section 3.2.1. We use the dynamic time warping (DTW) algorithm [8,28]
to measure the similarity between the newly inputted sensor data and the loaded user behavioral
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model. The reason for using the DTW algorithm is that the similarity can be measured effectively
even though the lengths of the two behavioral data are different. In this approach, suppose we
have two x-axis pieces of accelerometer data points measured for users represented in time series
R = r1, r2, . . . , ri, . . . , rm and S = s1, s2, . . . , si, . . . , sn. Then, we need to construct an m-by-n matrix
where the (ith, jth) element of the matrix contains the distance d

(
ri, sj

)
between the two points ri

and sj. Each element (i, j) in the matrix corresponds to the alignment between the points ri and sj.
A warping path P exists as a contiguous set of matrix elements that defines the mapping between
R and S. The kth element of P is defined as pk = (i, j)k such that we have P = p1, p2, . . . , pk that
satisfies max(m, n) ≤ K ≤ (m + n− 1). There are many warping paths, but we will consider the path
minimizing the warping cost as follows:

DTW (R, S) = min

 1
K
×

√√√√ K

∑
k=1

pk

 . (9)

K in the denominator is used to compensate for the fact that warping paths may have different
lengths. This path can be found very efficiently using dynamic programming to evaluate the following
recurrence which defines the cumulative distance D (i, j) as the distance di,j found in the current call
and the minimum of cumulative distances of adjacent elements as follows:

D (i, j) = di,j + min
{

di−1,j−1, di−1,j, di,j−1
}

. (10)

We use cumulative distance in Equation (10) when we try to find and match loaded user behavioral
model and newly inputted sensor data. The sum of the DTW cumulative distances of all axes for each
sensor is represented as scoreb.

The feature vector for newly inputted environmental data is extracted as described in Section 3.2.2
The feature vector is inputted in the user environmental model and the confidence score of the user
location is calculated as follows:

scoree = 1− lossc

max (losse)
, (11)

where lossc is losse of the inputted feature vector using Equation (8), max (losse) is maximum losse that
can be obtained from the user environmental model by inputting the extracted feature vector into the
model when all the newly inputted environmental data do not match the environmental information
registered in the authentication server. scoreb and scoree are combined as follows:

score = scoreb × (1− scoree) . (12)

Successful user authentication occurs if the score is less than or equal to the predefined threshold;
the user fails authentication if the score is greater than the predefined threshold.

4. Experiments

In this section, we describe the details of the experiments performed to evaluate the proposed
scheme. We describe the data collection method, experimental method, which includes metrics to
evaluate the performance of the proposed scheme, and experimental results.

4.1. Data Collection Method

For data collection, we recruited 22 students (8 females and 14 males; aged 18–24), who use an
Android smartphone, from our university. Of those 22 participants, 18 used smartphones manufactured
by Samsung, such as Galaxy S7, Galaxy S6 Edge, Galaxy Note 4, and Galaxy Note 5; the remaining four
participants used smartphones manufactured by LG, namely the G3, V10, and V20. All participants
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were skilled smartphone users with an experience of at least one year. After obtaining prior approval
from the 22 participants, an application for data collection was installed on their smartphone.

Before collecting behavioral data, we explained the way the application works for the data
collection to all participants. We explained to the all participants that when the “Delay” button is
pressed on the app screen, the smart device vibrates after 5 s, after which the participants were
requested to check their smart watch first and then the smartphone to collect behavioral data from
both devices at once. The sensor values from the accelerometer and gyroscope were collected at 20 ms
intervals. The sensor values were collected for 2 s on the smart watch and 5 s on the smartphone.
For each participant, two sets of the behavioral data were collected, with 10 iterations per set, for
each smartphone location (table, hand, and pocket). The total number of the behavioral data points
collected was 1320 for all participants. For collecting environmental data, we requested all participants
to collect data at home three times a day for 20 days. The total number of the environmental data
points collected was also 1320 for all participants.

4.2. Experimental Setting

Because the behavioral data of participants is registered for each location of the smartphone, three
behavioral models are stored in the authentication server for each participant. To register the user’s
behavior, we used the first three behavioral data collected for each location of the smartphone. To store
the user environmental model, we used the first nine pieces of environmental information collected.

To perform the authentication experiment, we used the remaining data. To evaluate the security
of the proposed scheme, we used all behavioral and environmental data for the 21 remaining people.
We performed four experiments based on the set assumptions. The first experiment was performed
using only behavioral data of participants who only have a smartphone. We performed the second
experiment using both behavioral and environmental data of participants who only have a smartphone.
The third experiment was performed by using only behavioral data of participants who have both
a smartphone and smart watch. We performed the fourth experiment using both behavioral and
environmental data of participants who have both a smartphone and smart watch.

The metrics to verify the performance of the proposed scheme include FAR, which is the
percentage of other participant’s data misclassified as legitimate user data, FRR, which is the percentage
of legitimate user data misclassified as other people data, EER, which is the point at which FAR and
FRR cross. In addition, we used receiver operating characteristic (ROC) curve and area under the ROC
(AUROC) value to compare the performance by the location of the smartphone. If the ROC curve rises
rapidly towards the upper-left-hand corner of the graph, it means that the FAR and FRR values are
low; the closer the AUROC value is to 1.0, the better will be the performance.

4.3. Experimental Results

4.3.1. Experiments Using Only Behavioral Data Collected by a Smartphone

Experimental results showed an EER of 38.984% when the smartphone was on a table, EER of
46.66% when in the user’s hand, and EER of 25.33% when in the user’s pocket. The average EER for all
locations of the smartphone was 36.99%. When the smartphone was in the user’s pocket, the EER was
measured to be the lowest. Figure 6a shows the ROC curve for comparing performance based on the
location of the smartphone in the experiments. The AUROC values were measured as 0.6503, 0.5542,
and 0.8057 when the smartphone is on a table, in the user’s hand, and in the user’s pocket, respectively.
The AUROC value was also measured to be the highest when the smartphone was in the user’s pocket.

4.3.2. Experiments Using Behavioral and Environmental Data Collected by a Smartphone

Experimental results showed an EER of 7.3% when the smartphone was on a table, EER of 6.24%
when in the user’s hand, and EER of 5.26% when in the user’s pocket. The average EER for all locations
of the smartphone was 6.27%. The EER was measured to be the lowest when the smartphone was in a
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user’s pocket. Figure 6b shows the ROC curve for each location of the smartphone when both behavioral
and environmental data are used. The AUROC values were measured as 0.9695, 0.9802, and 0.9796
when the smartphone was on the table, in the user’s hand, and in the user’s pocket, respectively. Unlike
EER, the AUROC value was measured to be highest when the smartphone was in the user’s hand. We
can see that performance is better when environmental data is used along with behavioral data.

(a) (b)

(c)
Figure 6. (a) ROC curve when using behavioral data collected from only a smartphone; (b) ROC curve
when using behavior and environmental data collected from only a smartphone; (c) ROC curve when
using behavioral data collected from both a smartphone and smart watch.

4.3.3. Experiments Using Only Behavioral Data Collected by a Smartphone and Smart Watch

We assumed that a user who wears a smart watch checks the SMS verification code on the smart
watch itself because the code is sent to the smartphone and smart watch at the same time. Experimental
results showed an EER of 36.16% when the smartphone was on a table, EER of 26.66% when in the
user’s hand, and EER of 33.45% when in the user’s pocket. The average EER for all locations of the
smartphone was 32.09%. The EER was measured to be the lowest when the user holds the smartphone
in his/her hand. Figure 6c shows the ROC curve for this experiment. The AUROC values were
measured as 0.6904, 0.8059, and 0.7289 when the smartphone was on the table, in the user’s hand, and
in the user’s pocket, respectively. The AUROC value was also measured to be highest when the user
holds a smartphone in his/her hand.
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4.3.4. Experiment Using Behavioral and Environmental Data Collected by a Smartphone and
Smart Watch

Experimental results showed all EERs of 0.0% when the smartphone was on a table, in the user’s
hand, or user’s pocket. An EER of 0.0% means that the actual user can be completely distinguished
from others. All AUROC values were also measured as 1.0.

4.4. Performance Comparison

The proposed scheme has higher EER when using both behavioral and environmental data
collected by a smartphone than that in the study by Shrestha et al. that used a user’s hand
gesture. However, the performance of the proposed scheme when using both behavioral and
environmental data collected by both a smartphone and smart watch is better than that in the study by
Shrestha et al. [6]. In the method proposed by Shrestha et al. [6], the users may feel inconvenienced
because it requires specific user behavior. The proposed scheme shows better performance than
that in the study by Andrea et al. [7] that used a behavioral pattern obtained when a user receives
a phone call and the shape of the user’s ear. The study by Andrea et al. [7] is not suitable for SMS
authentication because the behavioral pattern of a phone call is not applicable for SMS authentication.
Table 3 summarizes the EER of the proposed scheme and other similar methods.

Table 3. Performance comparison.

Research Error

Proposed Scheme Averaged EER: 6.27%, smartphone
Averaged EER: 0.0%, smart watch

Shrestha et al. [6] EER: 4.79%
Andrea et al. [7] EER: 9.94%

5. Discussion

In this paper, we proposed an authentication scheme that uses a behavioral pattern when a user
checks a SMS verification code and surrounding environmental information of the user for detecting
device theft. In this section, we discuss the usability, security, and limitations of the proposed scheme.

In terms of usability, the proposed scheme uses the most natural behavior of a user when checking
an SMS verification code for SMS authentication. Therefore, the user is authenticated similar to the
usual SMS authentication by inputting the received SMS verification code when the code is received
on his/her smart device. Because the behavioral and surrounding environmental information of the
user is automatically collected and transmitted in the background during SMS authentication, the user
does not need to exhibit any specific behavior. Moreover, the user can select one of two registration
methods. The first method is that an authentication server collects behavioral and environmental data
when the user performs SMS authentication. The authentication server registers the user behavior
model when three sets of behavioral data are collected for each location of the smartphone. The second
method is that the authentication server sends an SMS verification code to the user three times for
each location of the smartphone to register the user behavior model. The authentication server also
generates a user environment model when nine or more sets of environmental data are collected.

In terms of security, an identity theft attack caused by device theft can result in the attacker
performing SMS authentication using the user’s identity information. The attacker can obtain the
user’s identity information on social networking services such as Facebook and Instagram. Therefore,
in the case of applying the proposed scheme in SMS authentication, the attacker’s behavioral and
environmental data will be collected during SMS authentication using the user’s smart device. If the
attacker’s behavioral pattern is not the same as that of the user, the attacker will not be authenticated.
Even if the attacker’s behavioral pattern is similar to that of the user, the attacker will be authenticated
only when the user is at a place where they have stayed for a long time.
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In terms of limitations, the average EER was measured to be higher than 30% when users
were authenticated using only behavioral data. It means that the possibility that the user will fail
authentication is approximately 30% if the user tries to authenticate at places other than where he/she
stays for a long time. Therefore, it is necessary to improve the performance when using only behavioral
data so that a user can be authenticated well at other places. In addition, we could see that the
performance was significantly improved when environmental data was used along with behavioral
data. This was because the places at which the participants stay for a long time are different. Therefore,
it is necessary to collect environmental information to detect attackers that stay in similar places as the
user.

6. Conclusions

In this study, we proposed an authentication scheme that uses typical behavioral data of a user
checking an SMS verification code, and surrounding environmental information of the user at that
time. The performance of our scheme was better when environmental data were used along with
behavioral data rather than using behavioral data alone. Experiments with data collected using only a
smartphone showed the lowest EER when the smartphone was in the user’s pocket; all EER measured
was 0.0% when using data collected from both smartphones and smart watches. If the proposed
scheme is applied for SMS authentication, it is expected that it will be more secure.
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