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Abstract: Detection and isolation of burst locations in water distribution networks (WDN) are
challenging problems in urban management because burst events cause considerable economic, social,
and environmental losses. In the present study, a novel monitoring and sensor placement approach is
proposed for rapid and robust burst detection. Accordingly, a hybrid principal component analysis
(PCA) and standardized exponential weighted moving average (EWMA) system is proposed for
WDN monitoring and management. In addition, the optimal sensor configuration is obtained using
PCA, k-means clustering, and a sensitivity analysis considering the diurnal patterns and the noises of
pressure and flowrate data in the WDN. The proposed system is applied to a branched WDN, and the
results are compared to those obtained with conventional monitoring systems. The results show that
the proposed system detected the burst occurrence regardless of noise size with a detection rate of
93%. Compared to conventional systems, the isolation ratio improved by 10%, indicating that the
bursts were isolated more accurately. In addition, the corresponding sensor configuration was 40%
less expensive than the conventional systems.

Keywords: burst isolation; burst monitoring; optimal sensor location; pipe burst; water
distribution network

1. Introduction

Public access to high-quality freshwater has accounted for successful development in the last
century. With rapid urbanization, water distribution networks (WDNs) spread over cities to supply
freshwater to residential, industrial, and commercial districts. Over time, design approaches for water
distribution networks improved, and more efficient facilities were employed in complicated WDNs [1].
The quality of the end-pipe product was also controlled more strictly by environmental departments.
However, in the present century, monitoring of complicated water networks has become a serious
concern as WDNs age. Thus, advanced monitoring techniques need to be developed to meet the
contemporary challenges in WDN maintenance.

One of the most common problems in WDN maintenance is a burst event in pipelines [2]. Pipeline
bursts, which can be caused by aging, corrosion, and deterioration of facilities, lead to significant
economic, social, and environmental costs. The burst causes negative effects on the conveying pipes
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and other instruments of WDN, and this is directly or indirectly associated with additional economic
costs due to water loss, diagnosis and repair of the WDN, and interruption in the water supply [3,4].
In the aspect of the social costs, a pipe rupture in a WDN results in potable water loss and disruptions
of customer service [5]. Moreover, corrosion in the surrounding soil, leakage to underground water
resources, and risks to public health are environmental impacts of water leakage due to pipe burst [6].
Thus, prevention of water loss caused by bursts in WDNs has become a critical challenge in urban
management in the recent two decades [7].

Rapid detection of bursts is a promising remedy to the problem because it reduces the
above-mentioned costs [2]. A burst can occur for several reasons, including poor pipe conditions,
inappropriate operation of the system, extreme weather conditions, and extraordinary environmental
pressure. Hence, detecting the exact time and location of the burst is a sophisticated problem
involving complicated factors. Conventional burst detection and isolation techniques are often lengthy
procedures. In the conventional methods, a candidate area of analysis is uncovered by digging after
visual inspection. This conventional technique entails extra costs due to the associated ground digging,
traffic jams, and water losses [4,8]. Therefore, research has been recently devoted to developing faster
and more accurate burst detection approaches to decrease these costs [8].

Statistical computation techniques based on observation of transient changes in recorded data
have been extensively implemented to detect bursts. The statistical techniques extract information
from a system, monitor data variations, and continuously reflect dynamic conditions of the system [9].
Misiunas et al. suggested pressure-based cumulative sum (CUSUM) control charts to detect burst
occurrence. They showed that outliers of the CUSUM indicated that pressure drop was induced by
burst occurrence [10]. Palau et al. used a principal component analysis (PCA) to extract key information
from flow data sets measured by an supervisory control and data acquisition (SCADA) system. Control
charts driven by the PCA identified anomalous behavior in the extracted flow data [11]. Loureiro et al.
implemented a region-based outlier statistical process control method to detect abnormal parameters
in flowrates [12]. It should be noted that monitoring burst occurrence using only pressure or flowrate
in the pipelines does not lead to rapid detection [13]. In this way, a multi-objective optimization
sectorization method was proposed that considered the hydraulics, water quality, and economic factors
together [14]. Romano et al. obtained significantly accurate results on leakage detection using statistical
process control [15]. While their univariate statistical technique was easy to apply, a single variable
was not sufficient to interpret the complex problem [16]. However, a multivariate monitoring system
can be used to overcome the limitations of the univariate burst monitoring systems and to improve
accuracy on burst detection [17].

When a burst is detected with a monitoring system, the burst location should be identified to
hinder water leakage prior to repair of the WDN. However, WDN-related detection methods mainly
concentrate on finding optimal sensor placements to develop early warning systems (EWSs) and
improve data quality [18,19]. A Fisher Discriminant Analysis was applied to identify the leakage
location by sensor measurements. The results were satisfactory in a case study. However, the burst
monitoring system could not provide comprehensive guidelines to detect burst locations [17,20]. Thus,
burst monitoring systems should be developed to not only detect accurate burst occurrence time,
but also to isolate the exact burst location. Sarrate et al. proposed sensor locations for leak detection
using a structural model and a clustering technique [21]. Costanzo et al. suggested a model calibration
tool to monitor and isolate sensor’s location using multivariate data [22]. While both temporal and
local detection were considered in their approach, hydraulic fluctuations were restricted. Pressure and
flowrate time series have diurnal patterns as a result of diurnal water consumption patterns in the
WDN. Moreover, the daily patterns of pressure and flowrate obtained from nodes are similar because
of the geometric location of the nodes and demands in a WDN. Due to these complex dynamic patterns
in WDNs, a burst isolation system with optimal sensor location is necessary.

The aim of the present study was to detect burst occurrence, determine optimal sensor
configuration, and isolate burst location in a comprehensive monitoring and maintenance system.
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Accordingly, multivariate statistical and analytical techniques were applied to detect burst occurrence
using flowrate and pressure data simultaneously. The results of the multivariate monitoring system were
compared to those obtained by conventional univariate monitoring systems. The novel multivariate
monitoring system consisted of standardized exponential weighted moving average (EWMA) and
PCA to overcome the weaknesses of the conventional monitoring systems. The optimal sensor
configuration was detected using the PCA and a k-means clustering algorithm. A sensitivity analysis
was conducted to consider hydraulic and diurnal characteristics of the WDN. Finally, the proposed
monitoring system and optimal sensor locating were interlinked to isolate the burst location in the
WDN. The comprehensive system was compared with conventional systems using burst scenarios for
the simulated WDN.

The present paper consists of four major parts. First, we present a branched WDN simulation
that verifies monitoring systems and optimizes sensor configurations. Second, a novel standardized
EWMA-PCA monitoring system is detailed for burst detection in the WDN. Two conventional systems
using CUSUM charts and standardized EWMA were employed to compare the performance of the
novel methodology in 10 burst scenarios. Third, optimal sensor configuration using PCA, k-means
approach, and sensitivity analysis is discussed. The results are then compared with those of other
methods. Fourth, a burst identification approach that minimizes an objective function in a mathematical
model is presented.

2. Materials and Methods

2.1. Research Framework

One of the goals of this study was to obtain optimal sensors’ location by detecting and isolating
a burst event in a WDN for continuous monitoring of the burst and maintaining a robust WDN.
For this, a WDN needed to be simulated to verify the novel monitoring approach. Accordingly,
the research framework is graphically shown in Figure 1. The proposed method can be divided into
three parts: WDN simulation, detection of burst occurrence and determination on optimal sensor
location, and identification of the node in which the burst occurs.
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The first step was WDN modelling to simulate burst occurrence in pipes, as shown in Figure 1a.
For this, EPANET software, which is widely used for WDN simulation, was employed. The EPANET
is a powerful and effective tool to simulate natural and engineering water systems such as a WDN.
Accurate simulation framework of the EPANET facilitates its application for simple networks on flat
terrains. Therefore, it has been globally implemented in the field of design and operational analysis
of WDN [23,24]. The EPANET simulated the modeled WDN for an operational period of two days
(48 h) in one-minute time intervals to reflect diurnal variations in the WDN. Ten scenarios were
generated during the simulation to validate robust performance of the proposed system. Pressure
and flowrate were continuously monitored in the proposed system at the entrance of the modeled
WDN. When a burst event occurs, a hybrid standardized EWMA-PCA system at the entrance of the
WDN detected the event based on monitored data. Then, the system started estimating the burst
information (occurrence time of the burst and discharge flowrate in the pipe), as shown in Figure 1b.
According to the monitoring system responses, the optimal pressure sensor location was determined
with respect to the greatest sensitivity of responses to variations of pressure. A k-means clustering
algorithm was applied in this step and is graphically shown in Figure 1c. The optimal pressure sensors
were selected in each cluster with common characteristics of the WDN on considered nodes. The third
step, shown in Figure 1d, was identification of the burst location based on the information obtained
in the second step. The pressure sensors found to obtain the burst location comparing measured
pressure by the sensors and the estimated pressure by the monitoring system. All nodes were burst
location candidates in the WDN. These nodes were individually calculated to locate the burst using an
objective function. The node with the smallest difference between measured and estimated pressure
was selected as the burst location. Since a burst causes pressure decrease in the WDN, the variation
in pressure was detected by the pressure sensors, and the estimated pressure drop from the selected
node by the monitoring system coincided with the measured pressure drop on an actual busted node.
The performance of the proposed standardized EWMA-PCA-based monitoring system equipped with
k-means clustering for burst detection and burst isolation was compared with other monitoring systems.
Two systems were applied for comparative performance evaluation with the proposed system. In the
first system, a cumulative sum (CUSUM) chart was applied for monitoring, and a sensitivity analysis
was used for burst detection. In the second system, standardized EWMA and k-means clustering were
applied for system monitoring and burst detection, respectively.

2.2. Burst Monitoring System

The proposed hybrid standardized EWMA-PCA system was anticipated to enhance the burst
detection performance because the standardized EWMA detects slight variations in the process,
and the PCA considers the correlations between pressure and flowrate simultaneously to detect burst
occurrence. First, measured data at the entrance of the WDN were filtered by mean trajectory removal
to eliminate strong diurnal characteristics of flowrate and pressure. Second, the filtered data were
converted to weight average values zi using the standardized EWMA. Third, burst occurrence was
detected using a Hotelling T2 chart of the PCA model according to the weighted average values zi.

2.2.1. Standardized Exponential Weighted Moving Average (Standardized EWMA)

An EWMA is an advanced statistical tool to monitor small shifts in processes [25]. It uses both the
information in the last sample observation and any information in the previous sample observations
based on a weighting factor. The weighting factor is iteratively multiplied by sample observations in
terms of time to represent reduced significance related to the present sample observation. EWMA is
mathematically represented as follows [26]:

zi = λxi + (1− λ)zi−1, (1)

z0 = µ0 or z0 = x, (2)
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where zi is the weighted average of the measured data at time i, xi is the current data, zi−1 is the
previous weighted average, and λ is the weight of the EWMA that varies between 0 and 1. 0.4 was
selected as the weight value of the EWMA since this value was recommended for the EWMA using the
3σ [27]. At time step 0, it is assumed that a population mean (µ0) or a sample mean (x) is equal to the
first weighted average value (z0). For the standardized EWMA, the sample (xi) is normalized before
calculating the weighted average zi using Equation (3).

normalized xi =
xi − µ0

σ
, (3)

where σ is the standard variation of the samples. The standardized EWMA is used to generate input
data from measured pressure and flowrate quantities, and the calculated weighted average value is
used as the input of the burst monitoring system.

2.2.2. Principal Component Analysis

Principal component analysis (PCA) is a statistical linear transformation that is widely used in
data analysis, model compression, and multivariate process monitoring [28]. The dimensionality
of the data is reduced in the PCA to form a meaningful data structure [29]. In PCA, the data
matrix, X, is decomposed into a number of principal components (PCs) that are new axes to explain
variance-covariance in the data. The data are divided into two parts; the first part is explained by
the PCA and represents the sum of outer production of vector ti by vector pi. The second part is the
residual part (E) [9].

X = TPT + E =
m∑

i=1

tipT
i + E, (4)

where m is the number of PCs determined by cumulative percent variance, ti is the orthogonal score
vector that contains information on the relationship between observations, and pT

i is the orthonormal
loading vector that includes information on the relationship of variables. To monitor a multivariate
process in accordance with time, a T2 chart is generally used because it converts multivariate data into
statistical values (T2 statistic). T2 is given in Equation (5).

T2 = xTPΛ−1PTx = xTDx, (5)

where Λ is the diagonal matrix of the eigenvalues. The lower confidence limit for T2 is equal to zero,
and the upper confidence limit is obtained based on χ2 with degree of freedom d and probability α,
as presented in Equation (6).

UCL = χ2
α(d) (6)

Here, a T2 chart is used to monitor pressure and flowrate measured at the entrances to detect burst
occurrence in the WDN. The T2 chart reduces detection time based on EWMA as an input variable to
the PCA, and it can determine the relationship between induced variations of pressure and flowrate
caused by the burst.

2.3. Optimal Pressure Sensor Placement

Optimal sensor location should address similarities of pressure variations at adjacent nodes.
In addition, the sensor location should be sensitive enough to represent neighboring nodes. Therefore,
in this study, a sensitivity analysis-based optimal pressure sensor placement was performed using
clusters. A k-means clustering algorithm was employed to classify the WDN. Here, the k-means
algorithm clusters the WDN into several classes that contain nodes with similar pressure and flowrate.
The nodes in the same cluster represent candidates for optimal sensor location. Subsequently, the node
that has the highest sensitivity value in the cluster was selected as the optimal sensor location. k-means
clustering formed groupings within the WDN using seven variables obtained at each node: three
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parameters of the second-order regression model, mean and standard deviation of flowrate, and mean
and standard deviation of pressure. Three parameters of the second-order regression model were used
to characterize patterns of pressure and flowrate, which have a second order relationship represented
by Bernoulli’s Equation [19]. The second-order regression model and parameters p1, p2, and p3 are
expressed in Equation (7).

pressure = p1 · f low rate2 + p2 · f low rate + p3 (7)

Since the seven data sets had different scale and variation, the k-means clustering algorithm
was not efficient. The mean values of flowrate and pressure had a large scale and could be the
major influences on similarity among the nodes. That is why a pretreatment method was required
to normalize the data and reduce dimensionality of the input data. In this study, PCA was used to
modify the input data to the k-means algorithm.

2.3.1. K-Means Clustering Approach

Clustering analysis is a method to identify natural characteristics of data based on similarities
among them. It is extensively used in various research fields, including statistics, engineering,
and electronics [30,31]. There are two major types of clustering algorithms: Hierarchical clustering and
partitioned clustering. Hierarchical clustering obtains nested clusters by merging adjacent data points
into larger clusters or by separating each cluster into smaller clusters continuously [32]. On the other
hand, partitioned clustering can obtain all clusters simultaneously. Among the portioned clustering
methods, the k-means clustering algorithm is a mature and effective clustering approach [30,31].
The k-means algorithm is a well-known approach that clusters the observations or variables according
to the highest similarities and lowest dissimilarities among them [33,34]. k-means clustering starts
by selecting a random number of centroids for desired clusters. Then, all data are allocated to the
closest clusters based on Euclidian distance from centroids. These two steps are iterated to minimize
the objective function given in Equation (8).

J(C) =
K∑

k=1

∑
xi∈ck

‖xi − µk‖
2, (8)

where xi (i = 1, · · · , n) is an observed dataset that has a d-dimensional vector, µk is the mean of cluster
ck, ck (k = 1, · · · , K) is an index of each cluster, and K is the number of clusters. In this study, k-means
clustering analysis was used to classify the data, and the number of groups was equal to the number
of desired sensors based on the similarity of hydraulics at the nodes. Thus, the clustering approach
was referred to as a supervised method in which the final number of clusters was initially determined.
Based on the results of clustering, the most sensitive node in each cluster was selected as the optimal
sensor location that represented the dynamics of pressure and flowrate in the cluster.

2.3.2. Sensitivity Analysis

The sensitivity of the nodes with respect to any possible burst location in the WDN was derived
using the estimated average value of the burst flowrate, as given in Equation (9).

Si, j ≡

∣∣∣∣ δH j
δQD,i

∣∣∣∣ = ∣∣∣∣∣H j(QD,i)−H j(Q∗D,i)

QD,i−Q∗D,i

∣∣∣∣∣ ∀i ∈ [1, N], ∀ j ∈ [1, N] , (9)

where H j(QD,i) is the simulated head at node j for the demand discharge QD,i at node i, H j(Q∗D,i) is the
simulated head at node j for Q∗D,i is the sum of QD,i and estimated burst flow rate, and N is the number
of nodes in the WDN. The variable QD,i was assumed to be the average flowrate according to the daily
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demand pattern. Then, the cumulative sensitivity of each node was calculated as an indicator of the
system’s sensitivity, as shown in Equation (10).

Si =
N∑

j=1
(Si, j)

2
∀i ∈ [1, N], ∀ j ∈ [1, N] , (10)

where Si is the cumulative sensitivity of node i. The optimal pressure sensor location in each cluster
was determined as the node that had the greatest amount of cumulative sensitivity.

2.4. Burst Identification

As the burst was detected by the proposed monitoring system, the burst flowrate and occurrence
time were estimated. At the same time, the pressure was measured by the selected optimal pressure
sensors. Based on the estimated flowrate and the related burst information obtained from the monitoring
system, the pressure (Hest

Mi
) was estimated assuming that the burst could occur at all candidate nodes.

Thus, the node minimizing the objective function given in Equation (11) was identified as the burst
location [18].

OFi =
k∑

j=1

(∆Hm
Mi
− ∆Hest

Mi
)

2, (11)

where i is the node number, ∆Hm
Mi

is the measured pressure change recorded by the pressure sensor,
∆Hest

Mi
is the estimated pressure change obtained by the monitoring system, and k is the number of

pressure sensors.

3. Results and discussion

3.1. Simulation of a Water Distribution Network

A branched water supply network in a single district metering area (DMA) was simulated to
evaluate the performance of the proposed system. A layout of the WDN is graphically shown in
Figure 2. The WDN consists of 14 nodes, 14 pipes, and one reservoir. The pipe diameters and lengths
varied between 150 mm and 400 mm and between 300 and 1200 m, respectively. The cast-iron pipes
were assumed to have a Hazen-Williams roughness coefficient of 100. The node elevation varied from
105 m to 125 m, and the demand discharge fluctuated between 86 m3/day (0.9954 l/s) and 173 m3/day
(2.0023 l/s). The total water demand of the network was supplied from a fixed head reservoir at
250 m altitude.Sustainability 2019, 11, x FOR PEER REVIEW 8 of 17 
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Specific properties of the WDN are summarized in Table 1. The daily pattern of demand load at
the nodes of the WDN was a function of living pattern. The periodic daily flowrate and pressure at
node 1 are shown in Figure 3a,c, respectively. According to Figure 3a, the diurnal flowrate reaches
two peak points: in the morning between 06:00 and 09:00 and in the evening between 18:00 and
22:00. The peak hours result in pressure drop in the WDN, which can be seen in Figure 3c. Since the
measurement equipment had noise, signal, and noise ratios were assumed to be 0.5% and 0.25% of
the flowrate and pressure data, respectively. The diurnal flowrate diagram and pressure diagram
(including noise) are shown in Figure 3b,d, respectively.

Table 1. Properties of nodes and links in the simulated WDN.

Node Number Elevation (m) Demand (m3/day) Link Length (m) Diameter (mm)

N1 125 86 L1 1200 400
N2 120 130 L2 1400 150
N3 121 86 L3 500 150
N4 120 86 L4 700 350
N5 110 173 L5 400 150
N6 116 86 L6 400 125
N7 117 86 L7 600 350
N8 115 173 L8 300 250
N9 110 173 L9 400 200

N10 111 130 L10 500 200
N11 114 173 L11 400 200
N12 110 173 L12 400 250
N13 105 173 L13 350 200
N14 110 86 L14 500 150

Figure 3. Periodic daily patterns at node 1: (a) flowrate, (b) noisy flowrate, (c) pressure, and (d)
noisy pressure.
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3.2. Monitoring of Burst Occurrence in the WDN

To evaluate the proposed system, 10 burst scenarios were generated with varying size and
occurrence time. The flowrate, location, time, and duration of the bursts are summarized in Table 2.
All scenarios were simulated using EPANET software in a 48 h period with respect to the diurnal
demand pattern. The burst size varied from 10 m3/day to 100 m3/day, and the burst location, occurrence
time, and duration were randomly selected. The burst events occurred two times in the first and the
second 24 h during the simulation at the same time interval. As an instance, the burst appeared at
384 min (in the first 24 h) and 1824 min (in the second 24 h) in scenario 6. Table 3 shows the three
monitoring and detection systems applied in this study, as described in Section 2. System 1 employed
CUSUM and a sensitivity analysis, as detailed in [10]. The sensitivity analysis was used to measure
a perturbation in demand changes at each node, and the most sensitive node was selected as the
location of the burst sensor. In system 1, the burst was detected by the CUSUM charts using time
series data sets. The CUSUM chart detected demand fluctuations in the water distribution network.
In system 2, k-means clustering and a sensitivity analysis were employed to determine the sensor
location, and standardized EWMA charts were used to detect burst occurrence. The standardized
EWMA diagnosed the burst using the upper and lower control limits of the algorithm. In system 3,
the PCA was used, and the results were compared to system 2. The PCA was applied to pre-treat
the data used for sensor location and to monitor the burst according to the data converted by the
standardized EWMA. System 3 was compared to systems 1 and 2 in terms of efficiency and robustness.
Performance evaluation involved detection and isolation of burst occurrence, and the robustness was
evaluated by allocating the signal and noise ratios.

Table 2. Burst occurrence scenarios.

Scenario Burst Flowrate
(m3/day) Burst Location Occurrence Time (min) Duration (min)

S1 10 N14 902 2
S2 20 N6 685 5
S3 30 N7 551 7
S4 40 N10 62 8
S5 50 N2 589 7
S6 60 N4 384 4
S7 70 N7 348 3
S8 70 N14 540 7
S9 80 N1 744 4
S10 100 N7 980 5

Table 3. Three burst monitoring and sensor placement systems.

System Burst Monitoring Method Sensor Placement Approach Reference

System 1 CUSUM chart Sensitivity analysis [9]
System 2 Standardized EWMA chart k-means clustering and sensitivity analysis This study
System 3 Standardized EWMA and PCA PCA, k-means clustering, and sensitivity analysis This study

The systems were evaluated using the scenarios, and the results for scenario 6 are shown in
Figure 4. In scenario 6, the burst flowrate, time, and duration were assumed to be 60 m3/day, 384 min,
and 4 min at N4, respectively. Figure 4a,b show the variations in flowrate and unit head loss at the
entrances of the WDN. The unit head loss was used instead of pressure at the entrance because the
entrance was directly linked to the reservoir, and the pressure was not changed. Two small peaks,
highlighted by circles in Figure 4a,b, show the variations of flowrate and unit loss. However, it is
hard to identify these two peaks (which are induced by the burst at N4) in the measured data set due
to the considerable variations in the daily pattern and the noise of the flowrate and unit head loss.
This shows that a method to remove strong diurnal patterns in the WDN is necessary to identify the
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burst in the measured data set. Therefore, a mean trajectory removal technique was implemented prior
to applying the monitoring system to remove the periodic pattern from the measurements. Figure 4c,d
show the data set on which mean trajectory filtering was implemented. This data was input to the
monitoring system.
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Three monitoring systems, the CUSUM, the standardized EWMA, and the standardized
EWMA-PCA, were applied to the cleansed dataset according to scenario 6. The obtained results with
the monitoring limit lines are shown in Figure 5a–c. The flowrate and unit head loss were used in
the standardized EWMA-PCA simultaneously. However, only the flowrate was used in the CUSUM
and the standardized EWMA because these monitoring systems were developed based on univariate
statistical techniques. The monitored burst times were similar to the real burst times of 384 and 1824 min.
The burst detection times obtained from applying all monitoring systems to the 10 scenarios are
summarized in Table 4. According to the table, shorter detection time was obtained with the CUSUM
chart system compared to the standardized EWMA and the standardized EWMA-PCA systems.
However, the burst in S1(10 m3/day) and S2(20 m3/day) was not detected by the CUSUM chart system.
Moreover, the system 2 could not detect the burst in S2. This indicates that the systems 1 and 2 have
limitations in detecting small burst flow rate despite of fast detection time. In addition, the detection
time of the CUSUM and standardized EWMA systems increased as the burst size decreased from
100 m3/day in S10 to 10 m3/day in S1. This means that the univariate statistical monitoring systems were
not efficient in detecting small bursts, and their monitoring performance was affected by noise, which
hid small bursts. On the other hand, the standardized EWMA-PCA could detect bursts in all generated
scenarios of which burst flowrates were from 10 m3/day to 100 m3/day, and the detection time was
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relatively fast, even for small bursts. This is because the detection performance of the proposed system
improved by considering unit head loss alongside flowrate.
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Table 4. Detection times of the burst monitoring systems in each scenario.

Scenario CUSUM
(system 1)

Standardized EWMA
(system 2)

Standardized EWAM-PCA
(system 3)

S1 - - 0.88 s
S2 - 47.72 s 1.63 s
S3 4.11 s 30.27 s 6.04 s
S4 3.32 s 35.52 s 12.98 s
S5 1.83 s 20.87 s 4.62 s
S6 1.15 s 27.51 s 2.59 s
S7 1.01 s 25.99 s 1.56 s
S8 0.95 s 25.36 s 5.33 s
S9 1.09 s 17.41 s 2.84 s
S10 0.83 s 25.84 s 4.10 s

Average 1.79 s 28.50 s 4.26 s

3.3. Robustness of the Three Monitoring Systems

To evaluate robustness of the three monitoring systems against noise, detection performance
was compared based on detection time and detection ratio. The comparative results are shown in
Figure 6a,b. The detection ratio is the ratio of correct detection time to the whole period, and it
decreased as noise increased in the CUSUM, although the average detection time was less than that of
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the two other monitoring systems. The detection ratio of the standardized EWMA was not significantly
affected by the increase in noise; however, more time was required to detect the burst occurrence as the
noise increased. This indicates that the standardized EWMA was more robust than the CUSUM chart.
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Control limits should be established in CUSUM and standardized EWMA to differentiate between
normal and abnormal process conditions. This limit was obtained according to the average quantity of
burst size in the CUSUM. However, the limit was obtained with respect to the variance quantity of
normalized data instead of using the measured data in standardized EWMA. Therefore, the control
limit of standardized EWMA was more flexible than in CUSUM with respect to dynamic noise.
Consequently, standardized EWMA would be more suitable than CUSUM if the measured data
showed a relatively large noise ratio or dynamic noise size regardless of the detection time. Moreover,
standardized EWMA-PCA detected the burst using the measured noise more rapidly and stably than
CUSUM and standardized EWMA. Using the weighted average values as input data in PCA, an abrupt
change was clearly identified in the measured data according to noise. Furthermore, PCA enhances
the peak size due to burst occurrence by considering the flowrate and unit head loss simultaneously.
Thus, the standardized EWMA-PCA monitoring system was very effective in identifying abnormal
conditions in the measured data with a high noise ratio.

3.4. Optimal Sensor Placement

Sensitivity analysis was applied to determine the optimal pressure sensor placement to isolate
burst location using Equations (10) and (11). It was assumed that the average burst size was 50 m3/day,
and the burst occurred on an individual node at a time interval. The sensitivity analysis was performed
under steady state conditions. The results of cumulative sensitivity of all candidate nodes were obtained
and are summarized in Table 5. The cumulative sensitivity varied in a range between 5.16 × 10−7

and 1.10 × 10−5. The most and the least sensitive sections in the WDN were, respectively, N2 and
N1 according to variation in pressure drop. Having conducted the sensitivity analysis in all nodes,
the clustering algorithm was implemented to classify the nodes according to hydraulic similarities.
Thus, the optimal sensor location was obtained in a node that had the highest sensitivity among all
nodes in the same cluster.

Table 6 summarizes input data employed in the k-means clustering algorithm. The PCA was
preliminarily conducted on raw data prior to k-means implementation to reduce dimensionality of the
raw data and to harmonize the data from difference scales. Input data to the PCA were obtained using
three parameters of the regression model (Equation (8)) and mean and standard deviation of the flowrate
and pressure. Two PCs were obtained by the PCA and explained 92.4% of the variance in the raw data.
The PCs were then used in the k-means clustering algorithm. The average flowrate versus the average
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pressure, as well as the score plots of the PCA are graphically shown in Figure 7. The flowrate-pressure
plot shows a different distribution of nodes compared to the PCA score plot. As an instance, the location
of N5 was considerably different in the score plot than in the flowrate-pressure plot. The N5 was very
close to N9 and N12 in the flowrate-pressure plot, and it was hard to distinguish it from the adjacent
nodes. However, N5, N9, and N12 were separately located in the score plots. Thus, the PCA efficiently
extracted key information from seven data sets and reflected co-relationships between flowrate and
pressure in the distribution of all nodes.

Table 5. Cumulative sensitivity of all candidate nodes.

Node N1 N2 N3 N4 N5 N6 N7

Cumulative
sensitivity (Si)

5.16× 10−7 1.10× 10−5 1.53× 10−6 1.88× 10−6 2.35× 10−6 3.78× 10−6 1.88× 10−6

Node N8 N9 N10 N11 N12 N13 N14

Cumulative
sensitivity (Si)

2.12× 10−6 2.76× 10−6 4.14× 10−6 3.76× 10−6 2.48× 10−6 2.76× 10−6 4.09× 10−6

Table 6. k-means input data according to regression model.

Node
Parameters of Regression Model Flow Rate Pressure

p1 p2 p3 Mean Standard Deviation Mean Standard Deviation

N1 −1.94·10−5
−3.46·10−4 225 88.6 35.34 224.79 0.11

N2 −1.70·10−5
−5.73·10−4 230 134.0 53.43 229.58 0.23

N3 −2.26·10−5
−4.51·10−4 229 88.6 35.34 228.75 0.13

N4 −3.36·10−5
−8.12·10−4 230 88.6 35.34 229.63 0.20

N5 −1.09·10−5
−4.52·10−4 225 178.3 71.10 239.52 0.26

N6 −4.05·10−5
−8.83·10−4 234 88.6 35.34 233.56 0.24

N7 −4.21·10−5
−9.16·10−4 233 88.6 35.34 232.54 0.25

N8 −1.16·10−5
−4.45·10−4 235 178.2 71.10 234.50 0.27

N9 −1.20·10−5
−5.10·10−4 240 178.3 71.10 239.47 0.28

N10 −2.09·10−5
−6.85·10−4 239 134.0 53.43 238.48 0.28

N11 −1.10·10−5
−4.80·10−4 236 178.3 71.10 235.51 0.26

N12 −1.16·10−5
−4.67·10−4 240 178.3 71.10 239.49 0.27

N13 −1.20·10−5
−5.26·10−4 245 178.3 71.10 244.47 0.28

N14 −5.06·10−5
−9.67·10−4 240 88.6 35.34 239.46 0.29

Notes: p1, p2, and p3 indicate parameters in the second-order regression model expressed by Equation (7).
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The nodes were clustered according to the desired number of sensors using the score matrix
obtained by the PCA. The differences in the distribution of nodes were not reflected if a small number
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of clusters (such as two) were employed in the k-means approach. However, four clusters included
characteristics of the nodes in detail. The optimal pressure sensor locations are given in Table 7 based
on the number of sensors. The optimal pressure sensor configuration was obtained when isolating the
burst location. The optimal measurement locations were obtained among all probable configurations
for each number of sensors.

Table 7. Optimal sensor placement according to number of sensors.

Number of Sensors Number of Probable Configurations Selected Measurement Points

1 14 2
2 91 2, 10
3 364 2, 10, 14
4 1001 2, 6, 10, 14
5 2002 2, 3, 6, 10, 14
6 3003 2, 3, 6, 9, 11, 14
7 3432 2, 3, 4, 9, 10, 11, 14
8 3003 2, 3, 4, 6, 9, 10, 11, 14
9 2002 2, 3, 4, 9, 10, 11, 12, 13, 14
10 1001 2, 3, 4, 5, 6, 9, 10, 11, 13, 14
11 364 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14
12 91 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14
13 14 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
14 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

3.5. Burst Isolation

The burst was detected using the optimal sensor location as described in the previous sections.
The performance of the three burst monitoring systems in isolating the burst event is graphically
compared in Figure 8. As shown in the figure, the sensitivity analysis-assisted CUSUM chart-monitoring
system employed nine sensors (more than half the number of nodes) and had an isolation ratio of 10%.
Furthermore, 8.57% of burst events in 10 scenarios were successfully detected and isolated using this
monitoring system. Despite the CUSUM chart rapidly detecting the burst occurrence, it failed in burst
monitoring in many cases. The sensitivity analysis-based method for selecting the optimal sensor
location could not describe the dynamics of pressure and flowrate in the nodes. Therefore, system 1
was not appropriate to monitor the burst in the presence of dynamic noises. System 2, in which the
standardized EWMA chart was employed to monitor the burst, and the k-means clustering algorithm
and sensitivity analysis were used to locate the pressure sensors, improved the isolation ratio (14.29%)
significantly. Thus, the standardized EWMA was accurate and robust against dynamic noise, though it
needed longer computation time to detect the burst. In addition, the k-means clustering approach was
acceptable to determine the optimal sensor location considering the dynamics of pressure in the nodes.
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System 3 (in which the standardized EWMA and the PCA were employed to monitor the burst,
and PCA, k-means clustering, and sensitivity analysis were used to select the sensor locations) had an
isolation ratio of 18.57%. The detection time decreased in system 2 by applying a multivariate statistical
monitoring method (PCA), and the isolation ratio was enhanced by adding a periodic pattern of the
pressure and flowrate in the nodes through the PCA. As shown in Figure 8, system 3 improved both
monitoring and isolation of the burst in comparison with systems 1 and 2. When applying six pressure
sensors at N2, N3, N6, N9, N11, and N14, system 3 improved the isolation ratio by 20% compared
to systems 1 and 2. It should be noted that the performance of six sensors in system 3 corresponded
to employing 10 sensors in system 2 and 11 sensors in system 1. Thus, the third monitoring system
was the most economic. This system is anticipated to have better performance than other two systems
considering more complicated WDNs. However, the novel system was validated considering a simple
WDN for the restrictions in applying real world data in this study. The research can be extended taking
various burst scenarios in different locations of a complex network into account.

4. Conclusions

A novel burst monitoring, isolation, and sensor placement system was proposed for water
distribution networks based on multivariate statistical and analytical techniques. In the proposed
method, a hybrid standardized EWMA-PCA approach and PCA, k-means, and sensitivity analyses
were employed for burst monitoring and sensor placement, respectively. The proposed system was
validated in a simulated branched WDN in 10 scenarios, and its performance was compared to those
of conventional monitoring systems. The proposed system efficiently improved burst monitoring
regardless of noise pattern and isolated the burst location. The average monitoring performance
considering the noise was 93%, and the isolation ratio improved by 10% compared to the conventional
systems because both pressure and flowrate were considered in the multivariate monitoring system,
and the hydraulic characteristics of the nodes were included in the approach. Furthermore, the system
could monitor small burst events that were not detected by the conventional monitoring systems.
The sensitivity analysis results showed that the proposed system was robust to diverse burst events.
In addition, the proposed system used optimal pressure sensors that were more economic than the flow
sensors. The installation ratio improved by 20%, while the optimal number of sensors decreased by
40%. Alongside the economic benefits, the proposed burst detection and isolation system is anticipated
to detect and isolate burst events in WDNs much faster than conventional systems.

Complex real WDNs are required to validate the proposed burst detection and isolation monitoring
system in industrial settings. Furthermore, more scenarios including burst occurrence along the pipes
need to be mentioned to compare the performance of the system in detecting the burst by the nodes
and far from them. For this, big datasets should be employed using open source data generated in
complicated networks. A deep learning model can be applied to the proposed system to predict,
interpret and analyze the big-data in the WDNs. The application of deep learning algorithms to the
proposed system can enhance the performance of burst monitoring and isolation in the complex real
WDNs. It is anticipated that the monitoring system can be improved by these changes in the future in
terms of the system’s efficiency and economic-social-environmental costs.
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22. Costanzo, F.; Morosini, A.F.; Veltri, P.; Savić, D. Model calibration as a tool for leakage identification in WDS:
A real case study. Procedia Eng. 2014, 89, 672–678. [CrossRef]

23. Sayyed, M.A.; Gupta, R.; Tanyimboh, T. Modelling pressure deficient water distribution networks in EPANET.
Procedia Eng. 2014, 89, 626–631. [CrossRef]
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