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Abstract: Hydropower is one of the most important renewable energy sources. However, the safe
construction of hydropower stations is seriously affected by disasters like rockburst, which, in turn,
restricts the sustainable development of hydropower energy. In this paper, a method for rockburst
prediction in the deep tunnels of hydropower stations based on the use of real-time microseismic (MS)
monitoring information and an optimized probabilistic neural network (PNN) model is proposed.
The model consists of the mean impact value algorithm (MIVA), the modified firefly algorithm (MFA),
and PNN (MIVA-MFA-PNN model). The MIVA is used to reduce the interference from redundant
information in the multiple MS parameters in the input layer of the PNN. The MFA is used to optimize
the parameter smoothing factor in the PNN and reduce the error caused by artificial determination.
Three improvements are made in the MFA compared to the standard firefly algorithm. The proposed
rockburst prediction method is tested by 93 rockburst cases with different intensities that occurred in
parts of the deep diversion and drainage tunnels of the Jinping II hydropower station, China (with
a maximum depth of 2525 m). The results show that the rates of correct rockburst prediction of the
test samples and learning samples are 100% and 86.75%, respectively. However, when a common
PNN model combined with monitored microseismicity is used, the related rates are only 80.0% and
61.45%, respectively. The proposed method can provide a reference for rockburst prediction in MS
monitored deep tunnels of hydropower projects.

Keywords: energy; rockburst prediction; microseismicity; probabilistic neural network; Jinping II
hydropower station

1. Introduction

With the rapid growth of the global population and economic development worldwide, the need
for clean energy sources is increasing. Energy security is undoubtedly one of the main building blocks of
economic development and social and political stability [1]. Hydropower is one of the most important
renewable energy sources. Of all renewable energy sources, hydropower produces the most energy,
contributing ~16% to global electricity production. Hydropower also has a positive effect on water
supply, irrigation, flood control, and ice prevention, if properly handled [2]. According to statistics from
the International Renewable Energy Agency, over the past decade, global installed hydropower has
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increased from 926,340 MW to 1,245,708 MW, making a great contribution to energy transformation. It is
expected that hydropower will continue to dominate more than half of the worldwide installed capacity
of renewables in the future [3–5]. Therefore, an increasing number of hydropower stations have been
constructed, such as the Jinping II, Xiluodu, Baihetan, Shimen, Jilebulake, Sinan River, and Pankou
stations in China, and the Neelum-Jhelum station in Pakistan [2,4–8]. There are many deep tunnels in
these hydropower projects. Many rockbursts occurred during the tunnel excavation due to high in
situ stress at some of the hydropower stations. A rockburst is defined as damage to an excavation
that occurs in a sudden or violent manner and is associated with a seismic event [9,10]. It is a type of
dynamic disaster encountered in deep, hard rock underground engineering. With the expansion of the
scale of deep underground engineering operations, rockbursts occur more frequently and with greater
severity [8–21]. Two rockburst examples are shown in Figure 1. The safety of hydropower station
construction is seriously affected by rockburst disaster, which restricts the sustainable development of
hydropower energy. Therefore, how to predict rockburst so as to reduce casualties and equipment and
economic losses during hydropower station construction urgently needs to be addressed.
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one injury and total destruction of a tunnel boring machine. (b) Extremely intense rockburst on 4 
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shakes [20]. 
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Figure 1. Examples of rockbursts in tunnels of the Jinping II hydropower station, China. (a) Extremely
intense rockburst on 28 November 2009 in drainage tunnel that caused seven deaths and one injury
and total destruction of a tunnel boring machine. (b) Extremely intense rockburst on 4 February 2010
in headrace tunnel #2 that created three fissures in the floor. A truck was severely damaged and its
windshield was shattered. Three workers in the truck were injured by the violent shakes [20].
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Microseismic (MS) monitoring techniques involving the three-dimensional monitoring of MS
events produced by the microcracking of rocks have been widely used around the world for many
years to monitor and predict rockbursts, with different degrees of success [8,14–26]. For example,
Feng et al. [14] proposed a dynamic method of warning of rockburst development processes in tunnels
based on monitored microseismicity. The method has been successfully applied to rockburst warning
in deep tunnels of the Jinping II hydropower project. Xu et al. [21] found that the MS source cluster of
one extremely intense rockburst was the result of the combined effects of movement in the geological
structure. The concentration of MS events before strainburst was found to be a significant precursor in
a deep rock tunnel of the hydropower project. Liu et al. [22] studied the temporal and spatial variations
in MS activities in an attempt to predict ground pressure hazards in the Hongtoushan copper mine in
China. MS data contain enormous amounts of information; however, the problem of how to utilize the
data to make accurate rockburst predictions remains to be solved.

Other researchers have suggested a combination of artificial intelligence and rock mechanics.
For example, neural networks, fuzzy comprehensive evaluation methods, analytic hierarchy processes,
random forest methods, Bayesian models, support vector machines, cloud models, multivariate time
series reconstruction, abstraction ant colony clustering algorithms, etc. [8,27–34], have been used to
study rock mechanics problems. Therefore, we can try to predict and can warn of rockburst risk
by using the intelligent method and MS data together. Neural networks derived from modeling of
the human brain can display good performance in signal restoration [33]. Feng et al. [8] used MS
information and a neural network to predict rockburst risk in deep tunnels of the Jinping II hydropower
project. Zhou et al. [34] successfully predicted the risk of rockburst in the construction of Tongyu and
Qinling tunnels by using the probabilistic neural network (PNN) model; however, when using PNN
for rockburst prediction, if the dimension of variables in input samples is large or there is a correlation
between the variables, the prediction performance will be reduced [35], and the parameter smoothing
factor in PNN affects the classification performance [36].

PNN is used for rockburst prediction in this paper. However, in order to reduce the correlation
between MS parameters and determine the smoothing factor accurately in the PPN model used for
rockburst prediction, an optimized PNN model is proposed. In this model, the mean impact value
algorithm (MIVA) is used to reduce the dimension of the input index (monitored MS parameters)
in the PNN, and a modified firefly algorithm (MFA) is used to optimize the parameter smoothing
factor therein (MIVA-MFA-PNN model). Then, a rockburst prediction method in the deep tunnel
of the hydropower station using real-time MS monitoring information and the optimized model is
established. The prediction accuracy and applicability of the method are verified by 93 rockburst cases
in the diversion and drainage tunnels of the Jinping II hydropower station, China (with a maximum
depth of 2525 m). The proposed method can provide a reference for rockburst prediction in MS
monitored deep tunnels of hydropower projects.

2. An Optimized PNN Model for Rockburst Prediction: MIVA-MFA-PNN

The MIVA-MFA-PNN model proposed in this paper consists of MIVA, MFA, and PNN. The MIVA
is used to reduce the interference from redundant information in the multiple MS parameters in the
input layer of the PNN. The MFA is used to optimize the parameter smoothing factor in the PNN
and reduce the error caused by artificial determination. There are three improvements in the MFA
compared to the standard firefly algorithm.

2.1. PNN Model

The PNN is a type of adjusted radial basis function network and is a feed-forward neural network.
It is a supervised network classifier based on Bayesian decision theory with the advantages of a simple
learning process, high accuracy of pattern classification, strong fault tolerance, and generalizability [33].
The topological structure of the PNN is shown in Figure 2.
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Figure 2. Probabilistic neural network (PNN) block diagram.

In Figure 2, the first layer is the input layer. The input vector is X = (z1, z2, . . . , zk), k is the number
of neurons, and zk is the kth neuron. The second layer is the pattern layer. The output from the second
layer is given by

f (X,wk) =
1

(2π)p/2σp
exp(−

(xk−wk)
T(xk−wk)

2σ2 ) (1)

In Equation (1), wk is the weight of the neuron in the input layer, p is the dimension of each sample,
and σ is the smoothing factor. The third layer is the summation layer, in which the output probability
of the implicit neurons belonging to the same class in the pattern layer is accumulated. In the third
layer, a weighted result is obtained by using Equation (2):

vm =

Q∑
l=1

f (X, wi)l

Q
(2)

In Equation (2), m denotes the number of classes to be identified and vm denotes the class output.
Q denotes the total number of neurons of class m and l is the lth neuron in the pattern layer. The fourth
layer is the output layer. The maximum median value in the summation layer is 1 and in the others
is 0. The class related to 1 in the summation layer is the class of the sample. As shown in Equation (3),
y is the output category:

y = argmax(vm) (3)

2.2. MIVA

Duda et al. [37] found that when the dimension of the feature vector exceeds the threshold,
the accuracy of the classifier will decrease, and if the eigenvectors are mutually correlated, the performance
of the classifier decreases. If the dimension of the parameter in the MS information is large, and there are
multiple collinearities among the parameters, the prediction result of rockburst by the PNN will be poor.
Therefore, the MIVA is used to reduce the dimension of each parameter, thus solving the problem of data
redundancy in input samples.

The MIVA, which was proposed by Dombi et al. [38], is a single factor sensitivity analysis method.
The specific calculation method is as follows; data pertaining to one parameter in the original training
sample I varies by ±10% (which can be adjusted) and the other parameter values remain unchanged.
New input samples (I1 and I2) are then obtained. After inputting the new input samples in the trained
neural network model, we can get the outputs O1 and O2. The difference between O1 and O2 is the
impact value (IV), which comes from the change in the independent variable. After dividing the IV by
the total number of samples, we can get the effect of the parameter fluctuations on the output of the
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neural network; this is, in essence, the MIV. The same operation is performed on each parameter in the
input sample to get the MIV for each parameter; the MIV of each parameter can be taken as the rate of
contribution to the output result, and parameters with strong correlations can be combined into a new
parameter according to the proportion of contributions. This can reduce the dimension of the input
sample and the linear correlation among the parameters.

2.3. MFA

An improved firefly algorithm is used to determine the smoothing factor in this PNN. The firefly
algorithm [39] is a swarm intelligence optimization algorithm based on the luminescence of fireflies
and their mutually attractive group behavior. It has been successfully applied to solve optimization
problems in many fields [40,41]. It offers the advantages of simplicity and few required parameters
and has better performance than a genetic algorithm or particle swarm optimization algorithm in
optimizing some test functions.

Assuming that the solution space of the objective function to be optimized is d-dimensional,
a group of fireflies (x1, x2, . . . , xn) is initialized randomly, where n is the number of fireflies and
(xi1, xi2, . . . , xid)

T represents a possible solution of the objective function to be optimized, denoting the
position of firefly xi in the solution space. The absolute brightness of firefly i is recorded as Ii, and its
value is equal to that of the objective function of firefly xi, that is,

Ii= f (xi) (4)

The relative brightness of firefly i to firefly j is recorded as Iij, with a value of

Ii j= Iie
−γri j (5)

where γ is the light absorption coefficient within the range [0.01, 100] and rij is the Euclidean distance
from firefly i to firefly j.

The attractive force βij of firefly i to firefly j is given by

βi j= β0e−γri j
2

(6)

where β0 is the largest attraction force of fireflies in the light source (generally β0 = 1). A firefly is
attracted to another firefly with greater brightness. The location updating formula is as follows

x j(t + 1) = x j(t) + βi j(xi(t) − x j(t)) + αε (7)

In Equation (7), t is the number of iterations; xi and xj are the spatial positions of fireflies i and j;
and αε is a random disturbance term, where α is generally a constant within [0, 1]; and ε is a uniformly
distributed random number vector. By updating the position and brightness, fireflies will gather
around other fireflies with higher brightness, and the optimal solution of the objective function can
be obtained.

The standard firefly algorithm tends to find a local optimum solution, and the phenomenon
of “precocity” arises, which leads to poor global search ability. Convergence of the algorithm is
slow when a large-range function is optimized. Therefore, considering the properties of smoothing
factors in the PNN, the following three improvements are used to improve the ability of the standard
firefly algorithm.

(1) Optimization of the initial positions of fireflies
When the smoothing factor of the PNN is optimized by the standard firefly algorithm, the position

of the firefly represents the value of the smoothing factor. In the standard firefly algorithm, the initial
position of the firefly is determined randomly. Considering that the value range of the smoothing
factor is generally (0, 1], to reduce the search range and convergence time and improve the global
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search ability of fireflies, the initial positions of fireflies are uniformly distributed on (0, 1]. The initial
position of the firefly is given by

xi =
i
q

(8)

where q is the number of fireflies.
(2) Improvement of the perturbed term in the position updating formula
If the random perturbation term in the position updating formula has a large step size in the early

iterations of the algorithm, the fireflies can search for the optimal solution in the global range. If the
step size decreases gradually in later iterations of the algorithm, a firefly can fine search in a local area.
In order to obtain the performance above, αε in Equation (7) is optimized as follows

αε = (1−
t

MaxGegeration
)(2rand−1)rij (9)

where MaxGeneration is the maximum number of iterations, t is the number of the current iteration, and
rand is a random number of uniform distribution on [0,1]. When the distance between fireflies is large,
the second term (attractive force) in the position updating Equation (7) is affected slightly on the renewal
of a firefly’s position. At this point, the random perturbation term makes the firefly move autonomously
within [−rij, rij]. Therefore, the algorithm can search in a larger space. (1–t/MaxGeneration) is the
number of random perturbation terms, which decreases with the iteration. Therefore, the MFA has
better global search ability in the early stage of iteration and better local search ability in the later stage.

(3) Improvement of the attractive force formula
From Equation (6), it can be found that when the distance rij between fireflies tends to be positive

infinity, that is, when the distance is big enough, the attractive force βij tends to be zero. This is not
good for the renewal of its position. In order to solve this problem, the minimum attraction βmin is
proposed and used. βmin guarantees that even if the distance between fireflies is large, there is still
a certain attractive force to make the positions of fireflies update normally. The improved formula for
attractive force is given by

βi j= (β0−βmin)e
−γri j

2
+βmin (10)

The error rate of the predicted results of test samples based on the PNN is regarded as the objective
function in the MFA. Then the smoothing factor in the PNN model can be obtained and optimized
by searching the minimum error rate in the solution space. This will reduce the error caused by
determining the smoothing factor based on the trial method in the PNN model. The pseudocode of the
smoothing factor search in the PNN model is shown in the Appendix A.

To sum up, in the proposed MIVA-MFA-PNN model, the MIVA is used to reduce the dimension
of the original evaluation index in the PNN. This will reduce interference from redundant information
in the sample, and the input layer neuron in the PNN and complexity of the PNN structure are both
reduced. Considering the properties of the smoothing factor in the PNN, three improvements are made
in the standard firefly algorithm and the MFA is proposed. It will improve the global search ability and
the rate of convergence. The error caused by empirical determination of the smoothing factor will be
avoided. Therefore, when the new model is combined with the real-time monitored MS information,
a good prediction result of rockburst in the tunnel of the hydropower project can be obtained.

The process of rockburst prediction based on the monitored MS information and the proposed
MIVA-MFA-PNN model is as follows; first, a correlation analysis of the MS parameters is carried out.
If the correlation among parameters is strong, the mean influence value of each parameter will be
calculated by using the MIVA. The parameters with strong correlation will be combined with each other
to form a new evaluation index for rockburst prediction. Second, the smoothing factor in the PNN
is optimized by the MFA to reduce the error caused by experience determination. Finally, the data
pertaining to the new evaluation index are used as the input sample of the MIVA-MFA-PNN model to
output the rockburst prediction result.
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3. Application of the Rockburst Prediction Method to Deep Tunnels of Hydropower Stations:
A Case Study

3.1. Engineering Overview

The deep tunnels of the Jinping-II hydropower project (located on the Yalong River, Sichuan
Province, Southwest China) are illustrated in Figure 3. It has a total installed capacity of 4800 MW,
which provides an average annual generation of 24.23 TWh. The station relies on the water flowing
along a 150 km reach of the Yalong River and uses a 310 m natural fall to generate power. This station
has the highest waterhead (288 m) and the largest installed capacity of stations along the river. Seven
main tunnels were excavated: four are diversion tunnels (#1–4) and two are auxiliary tunnels (A and B).
Between the diversion and auxiliary tunnels, there is a drainage tunnel that is used to discharge excess
water. The eastern ends of the tunnels are mainly buried in the T2y marble of the Yantang group,
whereas the western ends are in the T1 chlorite schist, T3 sand slate, and T2z marble of the Zagunao
group and the middle of the T2b marble of the Baishan group. Approximately 80% of the rock mass
the tunnels pass through is of marble lithology. The strata that the headrace tunnels pass through are
all Triassic: lower Triassic (T1), salt tang group (T2y), Baishan group (T2b), miscellaneous valley brain
group (T2z), and upper Triassic (T3). The sections of the headrace tunnels are mainly composed of
moderately thick T5

2y marble, thin-layered T6
2y marble, and a thick layer of T2b marble. The T5

2y and
T2b strata have typical features of high-strength compact rock structures, and the strainburst hazard is
high when tunneling through these strata. More than 75% of the tunnel sections have an overburden
depth greater than 1700 m. Most of the tunnel’s rock consists of marble, which is characterized by
its brittleness and high strength (uniaxial compressive strength is ~100 MPa and tensile strength is
3–6 MPa). Rockbursts with different intensities occurred frequently in the construction of the tunnels.
MS monitoring was conducted in some of the tunnels [18]; MS monitoring and microseismicity data
analysis have been described in detail elsewhere [5,9,18–22].
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Figure 3. Deep tunnels of Jinping II hydropower station, China. (a) Map of China and location of
the station, (b) plan of the station, (c) geological cross-section along the tunnels, and (d) layout of the
tunnels [19].

3.2. Input and Output Layers in the MIVA-MFA-PNN Rockburst Prediction Model

The input layer is the real-time MS monitoring information in the deep tunnels of the Jinping
II hydropower project. Considering that the selected evaluation index should be closely related
to microfracture activity in the rockburst development process and can reflect the evolution of
the rockburst, six MS parameters reflecting the accumulation of total rupture time, strength, and
deformation of the rock mass are selected. Originally, the cumulative number of MS events (N),
cumulative MS energy (E), and cumulative MS apparent volume (V) were considered for rockburst
prediction in the drilling and blasting tunnel. To account for the temporal evolution factor, three MS
parameters pertaining to time were added: event rate (n), energy rate (e), and apparent volume rate (v).

The output layer is the rockburst intensity. Because there is no extreme rockburst in the collected
rockburst cases, the output rockburst intensities are intense, moderate, slight, and no rockburst.
Considering that the output of a PNN is 0 or 1, the output data are set as follows; [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,1,0], representing intense, moderate, slight, and no rockburst, respectively.
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3.3. Samples

Some 93 events in part of the diversion and drainage tunnels were used as samples (13 intense,
25 moderate, and 21 slight rockbursts, and 34 nonevents). The number of rockbursts with different
intensities approximately obeys a Gaussian distribution. A total of 10 cases were selected from the 93
cases as test samples. The remaining 83 cases were used as learning samples to verify the prediction
result. Some cases are listed in Table 1 as examples. The values of the six MS parameters and the
rockburst intensity of the cases are shown in Table 1, where IV, III, II, and I represent intense, moderate,
slight, and no rockburst, respectively.

Table 1. Learning and testing samples.

Sample
Category No.

MS Monitoring Information Rockburst Intensity

N Lg (E/J) Lg (V/m3) n (1/d) Lg (e/J/d) Lg (v/m3/d) IV III II I

Learning
sample

1 45 4.803 4.838 4.091 3.762 3.796 1 0 0 0
2 11 4.110 3.624 2.200 3.411 2.925 1 0 0 0
3 49 6.419 4.995 12.250 5.817 4.393 1 0 0 0
4 29 5.513 4.777 5.800 4.814 4.078 1 0 0 0
5 70 6.147 5.152 7.000 5.147 4.152 1 0 0 0
6 58 7.094 4.975 3.625 5.890 3.771 1 0 0 0
18 17 4.754 4.397 1.889 3.800 3.443 0 1 0 0
19 6 5.008 4.627 1.148 3.577 3.195 0 1 0 0
20 11 4.966 4.154 2.750 4.364 3.552 0 1 0 0
21 18 5.295 4.703 1.800 4.295 3.703 0 1 0 0
22 10 5.322 4.238 1.429 4.477 3.393 0 1 0 0
23 3 5.060 4.438 0.429 4.215 3.593 0 1 0 0
43 10 4.614 4.611 1.111 3.660 3.657 0 0 1 0
44 29 3.882 4.156 2.900 2.882 3.156 0 0 1 0
45 20 4.760 3.843 1.250 3.556 2.639 0 0 1 0
46 4 4.530 4.557 0.667 3.752 3.779 0 0 1 0
47 12 3.543 4.223 4.000 3.066 3.746 0 0 1 0
48 3 4.610 3.732 1.000 4.133 3.255 0 0 1 0
66 7 4.300 3.018 0.778 3.345 2.064 0 0 0 1
67 1 2.970 4.164 0.333 2.493 3.687 0 0 0 1
68 5 3.996 3.279 1.000 3.297 2.58 0 0 0 1
69 2 1.210 4.146 0.500 0.608 3.544 0 0 0 1
70 5 3.154 3.309 2.500 2.853 3.008 0 0 0 1
71 4 5.820 3.728 0.308 4.706 2.614 0 0 0 1

Test
sample

7 41 5.968 4.694 3.727 4.926 3.653 1 0 0 0
13 44 5.459 4.865 2.933 4.283 3.689 1 0 0 0
17 20 5.982 4.453 2.500 5.079 3.550 0 1 0 0
27 23 4.408 4.873 2.556 3.454 3.918 0 1 0 0
35 12 5.098 3.516 1.714 4.253 2.671 0 1 0 0
42 7 4.834 4.116 0.538 3.721 3.002 0 0 1 0
51 6 5.561 4.043 1.000 4.783 3.265 0 0 1 0
65 3 3.668 3.609 0.500 2.890 2.831 0 0 0 1
76 4 4.737 4.173 0.800 4.038 3.374 0 0 0 1
82 5 2.435 3.878 0.455 1.393 2.836 0 0 0 1

3.4. Rockburst Intensity Prediction

3.4.1. MIVA Processing of Input Data

It is necessary to reduce the dimension of the evaluation indices in the input when the correlation
among some evaluation indices is strong. The correlation between input variables can be measured by
the correlation coefficient r (Table 2) [42]. Correlation analysis of the evaluation indices was conducted,
and the result is shown in Table 3.

Table 3 shows a strong correlation among some evaluation indices. For example, the correlation
between the cumulative number of MS events and the MS event rate is 0.788 (a strong positive
correlation). The correlation between the cumulative MS apparent volume and the MS apparent
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volume rate is 0.888. The correlation between the cumulative MS release energy and the MS energy
rate is 0.974. Therefore, dimensionality reduction of the six evaluation indices used as input should be
carried out. In order to eliminate the large difference caused by different dimensions of the parameters
in MS monitoring information, regularization transformation was conducted to normalize all the data
(Equation (11)):

x∗ab =
xab − xmin

xmax − xmin
(11)

where a is the dimension of input data (a = 1, 2, . . . ,6), b is the total number of samples (b = 1, 2, . . . ,93),
xab represents the value of the MS parameter before normalization, x∗ab represents the normalized value
of the MS parameter, and xmax represents the largest and xmin the smallest values of the MS parameter.
After the transformation, the range of values of the sample data is [0,1].

Table 2. Relationship between the size of |r| and the degree of relevance.

Range of Values of |r| 0 (0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1) 1

Degree of relevance Irrelevance Very weak Weak Medium Strong Extremely strong Relevance

Table 3. Correlation of evaluation indices.

Evaluation Index N LgE LgV n Lge Lgv

N 1 – – – – –
LgE 0.524 1 – – – –
LgV 0.543 0.576 1 – – –

n 0.788 0.408 0.385 1 – –
Lge 0.467 0.974 0.519 0.449 1 –
Lgv 0.415 0.400 0.888 0.453 0.439 1

After the value of each evaluation index with transformation in the total sample was changed by
±30%, it was put into the PNN. The actual prediction results were obtained and were compared with
the expected prediction results. The related change rates between the actual and expected prediction
results are the MIVs, shown in Table 4. We find that some MIVs are large. For example, the MIV of the
cumulative MS event number N is 0.2796, which indicates that the fluctuation of N has a big influence
on the output prediction result.

Table 4. Mean impact values (MIVs) of the six evaluation indices.

Evaluation Index N LgE LgV n Lge Lgv

MIV 0.2796 0.0430 0.0215 0.0108 0.0323 0.0108

Form the results of Table 4, N and n, LgE and Lge, and LgV and Lgv are synthesized to form new
parameters based on their MIVs, as shown in Equation (12). Then, new samples based on the new
parameters can be obtained:

PN = MIVN
MIVN+MIVn

×N+ MIVn
MIVN+MIVn

× n

PE =
MIVLgE

MIVLgE+MIVLge
× LgE+

MIVLge
MIVLgE+MIVLge

× Lge

PV =
MIVLgV

MIVLgV+MIVLgv
× LgV+

MIVLgv
MIVLgV+MIVLgv

× Lgv

(12)

where PN, PE, and PV are the new parameters used for rockburst prediction and MIVN, MIVn,
MIVLgE, MIVLge, MIVLgV, and MIVLgv are the MIVs of the evaluation indices N, LgE, LgV, n, Lge, and
Lgv, respectively.
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3.4.2. Determination of Smoothing Factor Based on the MFA

The parameters in the MFA are set as follows; number of fireflies n = 20, maximum number of
iterations MaxGeneration = 50, maximum attractive force β0 = 1, minimum attractive force βmin = 0.2,
and optical absorption coefficient r = 1. The data after dimension reduction are used as input in the
PNN. The results based on the PNN optimized with the MFA and with the firefly algorithm are shown
in Figure 4.

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 17 

Form the results of Table 4, N and n, LgE and Lge, and LgV and Lgv are synthesized to form new 
parameters based on their MIVs, as shown in Equation (12). Then, new samples based on the new 
parameters can be obtained: 

N n
N

N n N n

LgE Lge
E

LgE Lge LgE Lge

LgV Lgv
V

LgV Lgv LgV Lgv

MIV MIVP = N+ n
MIV +MIV MIV +MIV

MIV MIV
P = LgE+ Lge

MIV +MIV MIV +MIV

MIV MIV
P = LgV+ Lgv

MIV +MIV MIV +MIV


 × ×


 × ×


 × ×
   

(12) 

where PN, PE, and PV are the new parameters used for rockburst prediction and MIVN, MIVn, MIVLgE, 
MIVLge, MIVLgV, and MIVLgv are the MIVs of the evaluation indices N, LgE, LgV, n, Lge, and Lgv, 
respectively. 

3.4.2. Determination of Smoothing Factor Based on the MFA 

The parameters in the MFA are set as follows; number of fireflies n = 20, maximum number of 
iterations MaxGeneration = 50, maximum attractive force β0 = 1, minimum attractive force βmin = 0.2, 
and optical absorption coefficient r = 1. The data after dimension reduction are used as input in the 
PNN. The results based on the PNN optimized with the MFA and with the firefly algorithm are 
shown in Figure 4. 

 
Figure 4. Result of predictive error rates by using PNN with modified firefly algorithm (MFA) and 
firefly algorithm. 

From Figure 4, we find that when the firefly algorithm is used to optimize the smoothing factor 
in the PNN, it falls into a local optimum. The error rate in rockburst prediction in test samples stayed 
at the locally optimal result of 0.2. However, by using the MFA, it reached a global optimum at the 
third iteration. This shows that convergence speed and global search ability are improved by the 
MFA. By using the MFA, the smoothing factor in the PNN is optimized, with a value of 0.0143. 

3.4.3. Rockburst Prediction 

Results of rockburst prediction of the 10 test samples based on the MS monitoring information 
and the MIVA-MFA-PNN model are shown in Table 5. In Table 5, the expected output is the actual 
intensity of the rockburst and the actual output is the prediction result. The rockburst intensity 
predicted by the MIVA-MFA-PNN model is exactly the same as the actual results in the study 
sample. All 10 cases of test samples are predicted correctly. The error rate of rockburst prediction 
based on real-time MS monitoring information and the MIVA-MFA-PNN model is zero.  
  

Figure 4. Result of predictive error rates by using PNN with modified firefly algorithm (MFA) and
firefly algorithm.

From Figure 4, we find that when the firefly algorithm is used to optimize the smoothing factor in
the PNN, it falls into a local optimum. The error rate in rockburst prediction in test samples stayed
at the locally optimal result of 0.2. However, by using the MFA, it reached a global optimum at the
third iteration. This shows that convergence speed and global search ability are improved by the MFA.
By using the MFA, the smoothing factor in the PNN is optimized, with a value of 0.0143.

3.4.3. Rockburst Prediction

Results of rockburst prediction of the 10 test samples based on the MS monitoring information and
the MIVA-MFA-PNN model are shown in Table 5. In Table 5, the expected output is the actual intensity
of the rockburst and the actual output is the prediction result. The rockburst intensity predicted by
the MIVA-MFA-PNN model is exactly the same as the actual results in the study sample. All 10 cases
of test samples are predicted correctly. The error rate of rockburst prediction based on real-time MS
monitoring information and the MIVA-MFA-PNN model is zero.

Table 5. Result of rockburst prediction based on MS monitoring information and the proposed
optimized probabilistic neural network model.

No.
Expected Output Actual Output

IV III II I IV III II I

7 1 0 0 0 1 0 0 0
13 1 0 0 0 1 0 0 0
17 0 1 0 0 0 1 0 0
27 0 1 0 0 0 1 0 0
35 0 1 0 0 0 1 0 0
42 0 0 1 0 0 0 1 0
51 0 0 1 0 0 0 1 0
65 0 0 0 1 0 0 0 1
76 0 0 0 1 0 0 0 1
82 0 0 0 1 0 0 0 1

A comparison of predictions based on non-preprocessed original data and the PNN model with
a smoothing factor of 0.1 was studied, and the result is shown in Figure 5.
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Figure 5. Comparison of prediction results between PNN and MIVA-MFA-PNN models.

It can be seen from Table 5 and Figure 5 that the MIVA-MFA-PNN model performs better for
rockburst prediction than the PNN model. The rockburst predictions for the test samples using the
MIVA-MFA-PNN model are all correct, while only 80% are correct using the PNN model. Two samples
(42 and 51) were originally moderate rockbursts but were wrongly predicted as nonevents.

The results of rockburst prediction of the learning samples based on the MIVA-MFA-PNN model
are shown in Figure 6. There are 11 rockburst cases with incorrect predictions (correct prediction rate
of 86.75%). The learning samples with incorrect predictions are summarized in Table 6. The reasons
for the few incorrect predictions are as follows; (1) in some samples, there is a large dispersion of MS
parameter values. For example, microseismicity of rockburst case 2 greatly differs from the statistical
characteristics of rockbursts of that intensity. (2) In order to ensure good generalizability, the neural
network tries to avoid overfitting. In this case, the best generalization error is achieved by sacrificing
the training error. (3) The number of samples is not large enough. In this case, the characteristics of the
rockburst cannot be learned very well by the MIVA-MFA-PNN model.

When the common PNN model is used to predict the rockburst of the learning samples, the correct
rate is only 61.45%. Once again, the proposed MIVA-MFA-PNN model is better for rockburst prediction.Sustainability 2019, 11, x FOR PEER REVIEW 13 of 17 
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Table 6. Incorrectly predicted learning samples.

No.
Expected Output Actual Output

IV III II I IV III II I

2 1 0 0 0 0 0 0 1
19 0 1 0 0 0 0 1 0
23 0 1 0 0 0 0 0 1
36 0 1 0 0 0 0 1 0
46 0 0 1 0 0 0 0 1
48 0 0 1 0 0 0 0 1
52 0 0 1 0 0 0 0 1
53 0 0 1 0 0 0 0 1
58 0 0 1 0 0 0 0 1
66 0 0 0 1 0 0 1 0
83 0 0 0 1 0 1 0 0

4. Conclusions

The safety and scheduling of hydropower station construction are seriously affected by rockburst
disaster, which restricts the sustainable development of hydropower energy. Therefore, a method for
rockburst prediction in the deep tunnels of hydropower stations based on the use of real-time MS
monitoring information and the MIVA-MFA-PNN model is proposed in this paper. In the proposed
MIVA-MFA-PNN model, the MIVA is used to reduce the dimension of the original evaluation index in
the PNN, reducing interference from redundant information in the sample as well as the input layer
neuron and structural complexity of the PNN. Considering the properties of the smoothing factor in
the PNN, three improvements are made in the standard firefly algorithm, and the MFA is proposed to
improve global search ability and the rate of convergence. The error caused by empirical determination
of the smoothing factor is avoided. Therefore, combining the new model with the real-time monitored
MS information obtains good prediction results for rockburst in the tunnels of hydropower projects.
The proposed prediction method is verified and analyzed based on 93 rockburst events with different
intensities that occurred in parts of the diversion and drainage tunnels of the Jinping II hydropower
station, China (with a maximum depth of 2525 m). The performance of the MIVA-MFA-PNN model
is good.

During the construction of deep tunnels in hydropower stations, the proposed method can be
used for risk warning of rockburst. Therefore, rockburst disaster will be reduced and the safety of
the construction and sustainable development of hydropower energy will be ensured. However,
the mechanism of rockburst formation is complicated in deep tunnels of hydropower stations. Future
work will focus on the feasibility of the proposed rockburst prediction model in other deep tunnels of
hydropower station projects.
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Nomenclatures

The following terms with symbols and abbreviations are used in this manuscript.

MS Microseismic

PNN Probabilistic neural network
MIVA Mean impact value algorithm
MFA Modified firefly algorithm
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IV Impact value
X Input vector of PNN
k Number of neurons
zk kth neuron
wk Weight of kth neuron in the input layer
p Dimension of each sample
σ Smoothing factor
m Number of classes to be identified
vm Class output
l lth neuron in the pattern layer
Q Total number of neurons of class m
y Output category
MIV Effect of fluctuations of the parameter on the output of the neural network
i,j Firefly number
n Number of fireflies
xi, xj Positions of firefly i and j, or a possible solution to the objective function
Ii Absolute brightness of firefly i
Iij Relative brightness of firefly i compared to firefly j
γ Light absorption coefficient
rij Euclidean distance from firefly i to firefly j
βij Attractive force between firefly i and firefly j
β0 Largest attraction force of fireflies in the light source
t Times of the current iteration
αε Random disturbance term
q Number of fireflies
MaxGeneration Maximum number of iterations
rand Random number of uniform distribution on [0, 1]
βmin Minimum attraction
N Cumulative number of microseismic events
E Cumulative microseismic energy
V Cumulative microseismic apparent volume
n Microseismic event rate
e Microseismic energy rate
v Microseismic apparent volume rate
r Correlation coefficient
xab Value of microseismic parameter before normalization
x∗ab Normalized value of microseismic parameter
xmax Largest value of microseismic parameter
xmin Smallest value of microseismic parameter
PN Microseismic event index
PE Microseismic energy index
PV Microseismic apparent volume index
MIVN MIV of evaluation index N
MIVn MIV of evaluation index n
MIVLgE MIV of evaluation index LgE
MIVLge MIV of evaluation index Lge
MIVLgV MIV of evaluation index LgV
MIVLgv MIV of evaluation index Lgv
IV Intense rockburst
III Moderate rockburst
II Slight rockburst
I No rockburst
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Appendix A Pseudocode for Searching of the Smoothing Factor in the PNN Model

Objective function f(x) = error rate in PNN prediction result;

Initialization parameters: β0, βmin, γ, MaxGeneration;
Initialize the population of fireflies xi (i = 1, 2, . . . , n);
Determine the absolute brightness of each firefly I(xi) by the objective function f(xi);
while (t < MaxGeneration)

Update the random item αε in the location update formula
for i = 1:n

for j = 1:n
Calculate the brightness of fireflies xi and xj
if (I(xi) < I(xj))

Calculate the distance rij between fireflies xi and xj;
Calculate the attraction βij of firefly xj to firefly xi;
Firefly xi moves to firefly xj;

else
Calculate the distance rij between fireflies xi and xj;
Calculate the attraction βij of firefly xi to firefly xj;
Firefly xj moves to firefly xi;

end if
Update the brightness of fireflies and evaluate new solutions;

end for j
end for i
Sort all fireflies optimally to find the current optimal solution;
end while
Postprocessing the result
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