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Abstract: Dockless shared-bikes have become a new transportation mode in major urban cities in
China. Excessive number of shared-bikes can occupy a significant amount of roadway surface and
cause trouble for pedestrians and auto vehicle drivers. Understanding the trip pattern of shared-bikes
is essential in estimating the reasonable size of shared-bike fleet. This paper proposed a methodology
to estimate the shared-bike trip using location-based social network data and conducted a case
study in Nanjing, China. The ordinary least square, geographically weighted regression (GWR)
and semiparametric geographically weighted regression (SGWR) methods are used to establish the
relationship among shared-bike trip, distance to the subway station and check ins in different categories
of the point of interest (POI). This method could be applied to determine the reasonable number of
shared-bikes to be launched in new places and economically benefit in shared-bike management.

Keywords: dockless shared-bike; location-based social networking data; semiparametric
geographically weighted regression

1. Introduction

Dockless shared-bike services have emerged with technological improvements. Users are exempt
from searching for a fixed dock location to borrow or return a dockless shared-bike. The dockless
shared-bike services have attracted a significant number of users as they provide an effective solution
to “the last kilometer” problem. Many bike-sharing companies emerged to gain profit from this
huge market, and each has been producing and launching more and more bicycles to attract users.
However, excessive shared-bikes have been placed everywhere in many urban cities in China and
occupy roadway space. A study has pointed out that the rapid growth of dockless bike share programs
in China is mainly “supply-driven by operators” rather than by “user demand” or “triggered by
government policy” [1]. The promotion of the bike-sharing service is also raising questions about
profitability, wide-spread bike vandalism and theft, and growing government regulation [1]. Managing
the size of a shared-bike fleet has been a problem for bike-sharing companies and transportation
management departments. Therefore, it is essential to understand the trip pattern for shared-bikes and
to develop a method to estimate the demand for shared-bikes.

Various studies have been conducted to explore the travel behavior and trip pattern of shared-bikes,
including both docked bikes [2–4] and station-free dockless bikes. A study explored bike-sharing
trip data from eight cities in the United States and analyzed the distributions of trip distance and
trip duration for bike-sharing trips for commuting and touristic purposes [5]. A study in Minnesota
examined factors that influences shared-bike uses with a six-year panel data set of members’ bike-share
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trips, the finding suggests that the effects of distance are heterogeneous and vary with different
built-environment contexts based on a quasi-experimental research, members live in areas with higher
population density and a higher percentage of retail land use tended to increase their bike-share use,
and improvements in physical accessibility may not result in practically meaningful changes in the
frequency of use in all cases [2]. Another study carried out in Shenzhen indicated that the bike trip
pattern is found to be different in the central city and the suburban area [6]. Several studies utilized deep
learning methods to estimate short-term shared-bikes trip volumes [7–11]. One study proposes a novel
graph convolutional neural network with data-driven graph filter (GCNN-DDGF) model that can learn
hidden heterogeneous pairwise correlations between stations to predict station-level hourly demand
in a large-scale bike-sharing network [8]. Another study developed a dynamic demand forecasting
model for station-free bike-sharing using long short-term memory neural networks (LSTM NNs) at
the TAZ (Traffic Analysis Zone) level for different time intervals [9]. However, these previous studies
relied on historical data and failed to incorporate spatial factors which are found to be important.

With the increasing popularity of smartphones and tablets with location-based service (LBS)
features, location-based social networking (LBSN) services have attracted increasing number of users
to broadcast their locations and activities through their LBSN applications. The easy availability
and wide range of applications have made the LBSN data valuable for researchers in various fields
to better understand different aspects of mobility and urban activity patterns. The LBSN data
has been used by transportation researchers in land-use type identification [12,13], urban travel
demand estimation [14,15], passenger flow prediction [16], trip purposes inference [11,17–19] and etc.
For instance, one study explored the spatiality of destinations and social network influence on travelers’
destination choice in Chicago [17]; another study used a topic modeling method to infer individual
activity patterns using location-based social network data [18]; and another study conducted in Florida
proposed a method to build individual-level tourist travel demand models [19]. Some other researches
explored methods to estimate aggregated travel demand with location-based social network data. For
example one study developed a microscopic long-distance travel demand model and analyzed the
sensitivity to the implementation of a new high speed rail corridor in Ontario, Canada [15]; another
study proposed a combined clustering, regression, and gravity model to estimate an origin-destination
(OD) matrix for non-commuting trips based on Foursquare user check-in data in the Chicago urban
area [14], and the research established a linear relationship between check-ins at different categories
of venues and trip productions and attractions. The location-based social network data could also
be used as a data source to extract urban land-use information. One study utilized time distribution
frequency of Twitter check-in activity to attain the land-use function in Makassar City, Indonesia [13];
and another study in New York City used data mining techniques to infer land use types [12]. Those
studies have manifested the potential of using location-based social network data in urban land use
inference, and also reveals the hidden linkage between the human activity pattern and the underlying
urban land-use pattern.

The purpose of our research is to provide a method to estimate shared-bike demand for
transportation management departments and shared service providers to manage a reasonable
size of a shared-bike fleet in a metropolitan area. The location-based social network data is proved
by many previous researchers to be a useful data source for extracting various human activity
pattern. This paper proposes a novel dockless shared-bike demand estimation method that utilizes
location-based social network check-in data. The rest of the paper is organized as follows. Section 2
introduces the data-processing procedures and some preliminary data analysis. In Section 3, ordinary
least square, geographically weighted regression (GWR), and semiparametric geographically weighted
regression (SGWR) models are applied and compared to establish the dockless shared-bike trip
estimation model. In Section 4, a case study is conducted in Nanjing using real-world data from the
leading shared-bike business company Mobike and location-based social network Weibo. Section 5
concludes the paper.
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2. Data Collection and Preliminary Analysis

Our case study is conducted in Nanjing, which is the capital city in Jiangsu Province.
The population of Nanjing is estimated as 8 million, and the GDP is among one of the most prosperous
provinces in China. The city is home to 30 university campuses and more than 800,000 university
students. The research area is within the central part of the city and covers approximately 850 square
kilometers, 25 kilometers long from east to west, and 34 kilometers long from north to south, as shown
in Figure 1.
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venue locations, (c) Mobike cations.

The shared-bike data used in our research is from the Mobike company. Mobike [20] is the lead
company in bike sharing services in China, which was founded in Shanghai in 2016 and their novel
dockless shared-bike services expanded rapidly. By the end of 2017, their membership had grown
to 200 million world-wide [21]. Nanjing was among the first 12 cities where Mobike launched bikes,
therefore the market penetration rate is very high. Mobike users can use a mobile app and scanning
a QR (Quick Response) code on the mobike to unlock it. After the journey, users can leave mobikes
anywhere in public and pay a little money for the use. A mobike is equipped with a built-in Global
Positioning System (GPS) chip, enabling the users to find the locations of the nearest mobikes on their
mobile phone.

We use an automated program to collect bike location data continuously through the Mobike
application programming interface (API). The API provide access to the locations of all the mobikes
within 1km distance from a certain location. The program is able to collect bike locations within the
study area every 10 minutes. A bike trip can be identified by comparing the location of each mobike
between consecutive time periods. The data was collected in 11–13 November 2017. As indicated
in Figure 2a, there are about 100,000 mobikes available for the users to unlock in the research area.
The use of mobikes peaks at 7–8AM and 5–6PM, which coincides with the peak hours when people
leave for work in the morning and went back home in the afternoon. Figure 2b displayed the trip
length distribution statistics, which suggests most of the trips are under 1 km.

The LBSN data used in this research are from Weibo, one of the leading LBSN service provider in
China. Weibo has attracted more than 376 million registered users by September 2017. The Weibo
applications use the built-in GPS to obtain a user’s current location and render a list of nearby places
for the user to confirm the name of the place when they “check-in” at a location.
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Figure 2. Characteristics of bike trips: (a) temporal characteristics, (b) bike trip length distribution.

Weibo provides API [22] for check-in information at each venue. The check-in data are publicly
accessible, including the locations, the service types, and the historical total check-in counts, etc.;
6463 venues are collected in the research area with total check ins of 3.48 million in history. The locations
of the venues are displayed in Figure 1b, which suggests good spatial coverage in the central area
of the city. The service types of the Weibo POIs (points of interest) are labeled with 272 detailed
categories. In order to facilitate future studies, we further grouped these categories into 9 classifications:
residence, work, entertainment, school, transportation facilities, tour attractions, shop and services,
food and others, which are the most commonly used types for trip analyses in transportation planning.
The “Others” category contains POI labeled as district names or street names, from which we cannot
infer the specific land-use type. The user created personal tags are also classified as others. As indicated
in Table 1, the “School” venue category receives the largest number of average daily check-ins while
the “Work” venues have the lowest daily check-ins, which suggest a users’ preference to check-in
varies with different venue categories.

Table 1. Information of the venue categories of LBSN.

Category Type of Point of Interest (POI) # of POI Avg. Check ins

Transportation Facilities Bus Stop, Subway Entrance, Parking Lot,
Train Station, Inter-city Bus Station, etc. 538 639

Residence Residential Building, Residential District,
Apartment, Hotel, etc. 1071 413

Work Office, Government Building, Tech
Startup, Design Studio, etc. 649 208

Entertainment Nightclub, Bar, Theater, Club, KTV,
Cinema, Entertainment, etc. 350 449

School Campus, University Building, Primary
School, High School, etc. 632 951

Tour Attractions
Museum, Historical Spot, Scenic Lookout,
Park, Memorial Hall, Exhibition hall,
Botanical Garden, etc.

413 608

Shop and Services
Mall, Supermarket, Store, Bookstore,
Cosmetics Shop, Boutique, Miscellaneous
Shop, etc.

505 889

Food
Coffee Shop, Restaurant, Local Food,
Pizza, Burger, Cafe, Diner, Bakery, Food,
Steakhouse, Dessert Shop, etc.

1046 309

Others User Created POI, Street Name, etc. 1259 379
Total 6463 538
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3. Methodology

This paper adopted a geographically weighted regression model framework to develop dockless
shared-bike trip demand estimation model. Spatial correlation exists in many transportation
phenomena, and the geographically weighted regression model framework has been used in various
research to explore the spatial variation in association between trip demand for various trip purposes
or traveler groups, traffic events, crashes and other explanatory variables such as the built-environment
attributes, social-economical attributes, population, etc. For instance, one study used a geographically
weighted Poisson regression model to examine the effects of the built-environment on students’
metro ridership in Nanjing [23]; one study uses geographically weighted regressions to examine the
implications of location and attitudinal characteristics for travel behavior in Chengdu [24]; another
research developed zonal crash prediction models within the geographically weighted generalized
linear model framework in order to explore the spatial variations in association with the number
of crashes causing injuries and other explanatory variables in Belgium [25]; another study utilized
GWR models to identify whether there are spatially varying relationships between walking, bicycling,
traffic counts and ambient built-environment attributes including socioeconomic characteristics, transit
accessibility indices, land use attributes and characteristics of intersections and roadway networks [26].

The methodology framework of our research is illustrated in Figure 3. The check in data are
grouped into 8 venue categories to be used as determinant variables of the shared-bike trip prediction
model. Since users are only able to find shared-bikes within 1km radius range from their app, we
divided the research area into 1 km * 1 km grids, producing 850 zones. A venue can only reside in one
grid while check ins at a venue could reflect activities within a much larger area than 1 km2, therefore
we use kriging interpolation method to estimate the activities in the neighboring grid. In addition to
check ins at eight venue categories, we also consider total check in and distance to the subway station as
candidate determinant variables. In this study, we evaluated three methods including the conventional
ordinary least squares (OLS) regression model, GWR and SGWR to establish the prediction model of
shared-bike trips, which are discussed in the following sections:Sustainability 2019, 11, x FOR PEER REVIEW 6 of 14 
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3.1. Ordinary Least Squares (OLS) Model

We firstly use the traditional OLS model explore the relationship between shared-bike uses and
number of check ins at different venue types in a zone, the form of the OLS model [27] is:

yi = β0 +
∑

k
βkxik + εi (1)
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where yi is the response variable at a certain location i and xk,i is a row vector of explanatory variables
at location i, βk is a column vector of regression coefficients, and εi is the random error for zone i. The
first element of the equation β0 is the intercept.

The model parameters of the OLS model are estimated globally for the entire study area, and
the relationships between the dependent variable and the explanatory variables are considered to
be stationary over space. However, in reality, especially in the transportation engineering field, the
influence of each explanatory variable on the response variable may vary in space.

3.2. Geographically Weighted Regression (GWR) Model

GWR is a linear formulation which models spatially varying relationships by incorporating
geo-coordinates into the model. The general form of the GWR equation is given as [28]:

yi = β0(ui, vi) +
∑

k
βk(ui, vi)xik + εi (2)

where:

yi represent dependent variable at location i
xik represent independent variable at location i
εi represent the error term at location i
(ui, vi) represent the geographical location (geo-coordinates) of location i
βk(ui, vi) represent the weighing parameter for location i for independent variable k

The most commonly used weighting functions include Gaussian function and bi-square function,
which are defined as follows:

Gaussian function,

ωi j = exp
[
−

(
di j/b

)2
]

(3)

Bi-square function,  ωi j = exp
[
−

(
di j
b

)2
]

when di j ≤ b

ωi j = 0 when di j > b
(4)

where di j is the Euclidean distance between observations i and j, and b is the bandwidth.
In practice, the results of GWR are relatively insensitive to the choice of weighting function, but

they are sensitive to the bandwidth of the particular weighting function. There are two weighting
schemes in the choice of bandwidth: one is a constant bandwidth (a fixed kernel) and the other one is
a variable bandwidth (an adaptive kernel). In an adaptive kernel, the bandwidth may change from
location to location. The bandwidth will be larger in case of sparsely distributed data than densely
distributed data. This flexibility could induce a more accurate model, therefore we adopt the adaptive
kernel method with bi-square function in our study [29].

In the calibration of the adaptive kernel, we use the number of data points as the bandwidth.
Adjusting the bandwidth changes the number of degrees of freedom in the model. The Akaike
information criterion (AIC) method provides a trade-off between goodness-of-fit and the degree of
freedom to optimize the bandwidth. Fotheringham defined the AICc equation for GWR as [28]:

AICc(b) = 2nln(σ̂) + nln(2π) + n
{

n + tr(S)
n− 2− tr(S)

}
(5)

where n is the local sample size (according to bandwidth); σ̂ is the estimated standard deviation of the
error term; and tr(S) represents the trace of the hat matrix S. The hat matrix denotes the projection
matrix from the observed y to the fitted values.

Preference is given to lower values of AICc since they indicate a closer fit to the data. The function
minimization procedure uses the Golden Section method. The AIC criterion provides not only a
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framework for bandwidth selection, but also one for choosing models. Typically, the AIC value may
be presented in relative form, by subtracting the lowest AIC value from each of the raw AIC values.
When the AIC values for two models differ by more than 3, the two models are considered significantly
different [23].

3.3. Semiparametric Geographically Weighted Regression (SGWR) Model

GWR is not always appropriate if some of the variables do not exhibit spatial non-stationarity
and can be held constant. An important extension of GWR is its semiparametric formation by mixing
globally fixed and geographically varying coefficients. We used a SGWR model after testing for
spatial variability of all variables. In SGWR, some contributing factors that have no spatial variability
will generate a global parameter, while others with spatial variability will produce a local parameter.
The SGWR is defined as [27]:

yi =
∑

j
α jxi j +

∑
k
βk(ui, vi)xik + εi (6)

α j are the global coefficients and βk(ui, vi) are the local coefficient functions, xi j are the independent
global variables associated with fixed coefficients and xik are the independent local variables associated
with geographically varying coefficients.

For testing the geographical variability of the kth local variable, a model comparison is carried
out between the original GWR and a switched model with the kth coefficient fixed. If the switched
GWR model outperforms the original GWR model in terms of AICc, we can judge that the kth
coefficient should be fixed. This procedure is repeated for each of the remaining local variables until
no improvement can be gained by transforming into the global variable.

4. Results

We aggregated the LBSN check ins and the shared-bike uses data by 1km*1km grids, resulting in
850 (25*34) zones in the study area. Figure 4 illustrates the heatmap of the average daily check ins
and the mobike uses. We used the natural breaks (Jenks) method to classify the values into 10 groups.
As indicated in the heatmap, both the check ins and mobike uses are concentrated in the center area of
the city. It can also be found that in the upper left corner of the map, there is a hot spot for mobike use
but this suggests a low value for check ins. The place is a newly developed area, which may not be
adequately reflected in the LBSN data.
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In this study, a total of 10 variables were considered as potential mobike use predictor. The number
of total check ins is accounted as one of the prospective predictors. As found in previous research,
users’ preference of checking in varies greatly at different venue types [14]. Therefore, the number of
check ins of the 8 major venue categories are also considered as potential predictors of mobike trips,
including transportation facilities, residence, work, entertainment, school, tour attractions, shop and
services, and food. In addition, the distance to the nearest subway station is taken into consideration
since many people use shared-bike as a last mile transportation solution to transfer between public
transportation system and their destination places. As shown in Figure 5, the number of check ins of
the 8 venue categories and the distance from the centroid of the zone to the nearest subway station
(in meters) are color coded in the 850 zones using the natural breaks (Jenks) method. Shop, food and
entertainment venues are mostly concentrated in the center area, most check ins at transportation
facilities are in the two railway stations.
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Firstly, we use OLS method to examine the significance of each variable. All of the independent
variables are standardized by z-score transformation so that each variable has zero mean and one
standard deviation. It is useful for interpreting estimated coefficients under the same metric. Table 2
lists the significance test of the explanatory variables of the OLS model. In addition, we performed a
Koenker (BP) test and examined the correlation between these variables in pairs plots (See Appendix A).
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The result of the BP test is statistically significant, therefore we use the robust probability column to
determine if a coefficient is significant or not. Of the covariates, only total check ins, campus and
transportation facilities are not significant (at significance level 0.05) in the model; therefore, only
the other 7 variables are considered in the following analysis. In addition, the result suggested that
coefficients associated with transportation facilities, tour attractions and distance to the nearest subway
station are negative indicating that a decrease of Mobike use may be associated with an increase of
activities in transportation facilities, tour attractions and distance to the nearest subway station.

Table 2. Significance test of the explanatory variables.

Variable Coef StdError t_Stat Prob Robust_SE Robust_t Robust_Pr

Intercept 0.0000 0.0246 0.0000 1.0000 0.0244 0.0000 1.0000
SHOP 0.1080 0.0419 2.5760 0.0102 0.0491 2.2018 0.0279
FOOD 0.1255 0.0396 3.1690 0.0016 0.0495 2.5340 0.0114

TRANSP −0.0111 0.0296 −0.3764 0.7067 0.0343 −0.3254 0.7450*
ENTERTAIN 0.1039 0.0331 3.1372 0.0018 0.0368 2.8243 0.0049
CHECKIN 0.1180 0.0431 2.7358 0.0064 0.0714 1.6515 0.0990*
CAMPUS 0.1086 0.0293 3.7117 0.0002 0.0571 1.9031 0.0574*

TOUR −0.0612 0.0274 −2.2355 0.0256 0.0295 −2.0771 0.0381
WORK 0.1182 0.0290 4.0711 0.0001 0.0327 3.6092 0.0003

RESIDENCE 0.2068 0.0259 7.9763 0.0000 0.0326 6.3332 0.0000
DISTANCE −0.2501 0.0273 −9.1552 0.0000 0.0237 −10.5509 0.0000

Note. * An asterisk next to a number indicates a statistically significant p-value (p < 0.01).

We used the OLS, GWR, SGWR methods to establish the methods to establish the prediction
model of mobike uses with location-based social network data. Several commonly used evaluation
criteria including R-square, adjusted R-square, classic Akaike’s information criterion (AIC), and AICc
are calculated as in Table 3. The OLS method is the most widely used method in building models
with several parameters since the model is relatively simple, and the meaning of the coefficients are
relatively easy-to-interpret. The adjusted R2 of the OLS model is calculated as 0.464452, which indicate
approximately 47% of the variations in the number of mobike uses could be explained the 6 categories
of check ins and the distance to the subway.

The OLS model failed to account for the non-stationarity of the influence of check ins in different
areas and needs to be explored using GWR. The adjusted R2 of the GWR model is 0.696865, which is a
significant improvement of the prediction accuracy from OLS. GWR may not be appropriate if some
of the variables do not exhibit spatial non-stationarity. In SGWR, contributing factors that have no
spatial variability will generate a global parameter, while others with spatial variability will produce a
local parameter.

Table 3. Diagnostic information of the ordinary least squares (OLS), geographically weighted regression
(GWR), and semiparametric geographically weighted regression (SGWR) models.

OLS GWR SGWR

Residual sum of squares 40.3954 206.520771 190.3854
Classic AIC 1872.351758 1477.983322 1439.22

AICc 1890.351758 1528.748644 1503.448
R square 0.469499 0.756748 0.775753

Adjusted R square 0.464452 0.696865 0.71166
BIC/MDL 1933.058886 2114.788985 2148.117

CV 0.543858 0.375385 0.355332

After the geographically variability test, we found that switching the tour and residence variable
into fixed global variable would not significantly change the AICc (the value changed is less than
3), the remaining local variables includes shop, food, entertainment, work and distance to subway.
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The adjusted R2 of the SGWR model is 0.71166, which is better than GWR. In addition, the lower value
of AICc confirms the advantage of SGWR model.

We further examined the local R2 using heat map to compare the performance of GWR and SGWR
model on a zonal basis. As indicated in Figure 6, both models perform well in the city center where
shared-bike uses are higher.
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To further evaluate the performances of the results of the three models, the residuals are plotted
in Figure 7. In addition, the Moran’s index method is used to inspect the spatial autocorrelation of the
residuals. The results of the spatial autocorrelation test are listed in Table 4, which suggests the pattern
of the residuals of SGWR did not appear to be significantly different than random, while the residuals
of the OLS and GWR model appeared to be clustered. The result of the spatial autocorrelation test also
suggest the SGWR model perform better than the other two models.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 14 
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Table 4. Spatial autocorrelation test of the OLS, GWR, and SGWR models.

OLS GWR SGWR

Moran’s Index 0.381289 0.117867 0.023165
Expected Index −0.001178 −0.001178 −0.001178

Variance 0.000311 0.000605 0.00031
z-score 21.670406 4.838953 1.382729
p-value 0 0.000001 0.166748
Pattern Clustered Clustered Random

Based on the above evaluations, we adopted the SGWR model to further examine the influences
of each variable on shared-bike use. There are two global terms of the SGWR model: tour and
residence, and the coefficients are 0.0326 and 0.1334 respectively. Their coefficients are both positive
which indicates positive influences of touring activities and residential activities on the shared-bike
use. Figure 8a illustrated the spatial variations of the average coefficients and Figure 8b displays the
t-statistics of the local variables of the SGWR model, where the red indicates a positive association
between the variable and the shared-bike use, and the green color indicates negative association
between the variable and the shared-bike use. The figure suggests the effect of the subway station is
very strong in attracting shared-bike use. With the distance closer to a subway station, the shared-bike
uses will increase. The influence of dinning places is generally positive in most of the area which
indicate the increase of dining activities may induce more shared-bike use. The influence of shopping
activities appears to be negative in the central area where shopping places are densely distributed
while in the suburban area where shopping places are sparse the influence turns out to be positive.
The effect of the entertainment places on shared-bike use presents significant variations, while in the
central area the trend is still generally positive. The effect of working places exhibits positive in the
central area where office buildings are densely distributed while in the southern part of the city, most
of the working places are factories which are sparsely distributed. The increased commuting distance
in the southern area may induce people to choose personal vehicles over the shared-bikes.
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5. Conclusions

In this study, we proposed a data-driven method to estimate urban shared-bike uses with
location-based social networking data. A total of 10 variables were considered as potential Mobike
use predictors, seven variables including residence, work, entertainment, tour attractions, shop,
services, and food, and the distance to the nearest subway station were selected to develop the models.
We compared OLS, GWR and SGWR models and the results indicated that the SGWR models were able
to better explain the variation in the data and to predict shared-bike use with smaller errors than the
ordinary linear regression models and GWR models. To investigate the predictive powers of various
predictors over the space, statistics such local r-square and local parameter estimates were examined
and mapped to assess the usefulness of SGWR methods.

The analysis presented here can help us understand the demand pattern of shared-bike use
and help to address a series of questions both for urban transportation management department
and the shared-bike service providers. i.e., how many shared-bikes should be launched in a certain
place? In what kind of places should the shared-bikes be launched to maximize the benefit? How to
distribute new shared-bikes in different places in a city? Our method of estimating shared-bike demand
using LBSN data could be applied in large metropolitan areas where the use of LBSN services is
popular to calculate recommended number of shared-bikes in various traffic analysis zones, eliminating
superfluous shared-bikes and help improve the quality of urban transportation environment.

In small cities where the LBSN service is not widely used, shared-bike demand would be difficult
to quantify and an estimation maybe biased. However, our findings could still be useful in guiding the
allocation of the shared-bikes given the land use type information in a certain area. As indicated in
our previous analysis, more shared-bikes should be launched in the central area rather than in the
suburban area. In addition, the shared-bike should be launched more in residential areas, places near
to a subway station, and commercial areas with a lot of shopping and dining places.

For future studies, if more data would be available, we could further this research to establish
dynamic shared-bike trip prediction model. In addition, we could incorporate more datasets into our
methodological framework such as traffic volume, subway volume, and origin–destination demand,
etc. Furthermore, we could investigate the transferability of this methodology if the datasets of other
cities could be obtained.
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