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Abstract: In this paper we evaluate several well-known and widely used machine learning algorithms
for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring
approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural
Networks and Random Forest algorithms were evaluated across five datasets using seven different
sets of statistical and electrical features. The experimental results demonstrated the importance of
selecting both appropriate features and regression algorithms. Analysis on device level showed that
linear devices can be disaggregated using statistical features, while for non-linear devices the use
of electrical features significantly improves the disaggregation accuracy, as non-linear appliances
have non-sinusoidal current draw and thus cannot be well parametrized only by their active power
consumption. The best performance in terms of energy disaggregation accuracy was achieved by the
Random Forest regression algorithm.

Keywords: non-intrusive load monitoring (NILM); energy disaggregation; feature selection

1. Introduction

With the development of technology and the increasing usage of electrical appliances and
automated services, the electric energy needs have been growing steadily for the last century with
an annual growth of approximately 3.4% per year in the last decade [1]. Nowadays residential and
commercial buildings account already for roughly 36% of the total electrical demand in the USA and
25% in the EU while they are responsible for roughly 43% of carbon dioxide (CO2) emissions [2–4].
To assure balance between renewable energies, CO2 emissions, political stability and economic growth
it is essential to focus on a sustainable development [5]. To achieve sustainable economic growth
energy consumption in industrial and residential areas must be minimized under the consideration of
rising volatility of nowadays energy production with increasing amounts of renewable energies [6].
Under the consideration of sustainable development several studies investigated real time pricing
with additional storage systems [7,8] or large scale energy buffering [6] to reduce electrical energy
consumption and peak loads. Other studies indicate that detailed analysis and real-time feedback of
energy consumption in residential areas can lead to up to 20% savings in energy consumption through
detection of faulty devices and poor operational strategies and thus would improve the sustainability
of nowadays consumer households [9,10]. Therefore in the last few decades extensive research in
smart grids, smart systems and demand management was carried out and different optimization
techniques have been developed to reduce residential energy consumption [11–13]. To make use of
those techniques, accurate and fine-grained monitoring of electrical energy consumption is needed [14].
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However nowadays the energy consumption of most households is monitored via monthly aggregated
measurements and therefore cannot provide real-time feedback information.

To measure the energy consumption of a household or building with high resolution in the order
of seconds or below smart meters are utilized. According to [15] the largest improvements in terms
of energy savings can be made when monitoring energy consumption on device level. Therefore the
analysis of energy on device level is performed through energy disaggregation, i.e., the extraction
of energy consumption on appliance level based on one or multiple measures from smart meters.
When using only one sensor (smart meter) per household or building, therefore measuring only
the aggregated consumption, the task is referred to as Non-Intrusive Load Monitoring (NILM) [16],
in contrast to Intrusive Load Monitoring (ILM) where multiple sensors are used, usually one per
device. The goal of NILM is to find the inverse of the aggregation function through a disaggregation
algorithm using as input only the aggregated power consumption, which makes NILM a highly
under-determined problem and thus impossible to solve analytically [17].

In order to solve the NILM problem different approaches have been proposed in literature,
which can be split into methods with or without Source Separation (SS). Approaches with SS
consider the task of energy disaggregation as a single channel source separation problem and extract
the corresponding signal of each device from the aggregated samples using a set of conditions
and constraints (e.g., sparseness or sum-to-one) [18,19]. Approaches without SS are based on the
decomposition of the aggregated signal to a sequence of feature vectors. These feature vectors are
then classified to device labels using a machine learning algorithm [8,20,21] or by predefined set of
rules or thresholds [22,23]. As machine learning classification/regression models a wide variety of
algorithms have been used such as Artificial Neural Networks (ANNs) [8], Decision Trees (DTs) [24],
Hidden Markov Models (HMMs) [24–29], K-Nearest-Neighbours (KNNs) [30], Random Forests
(RFs) [20], Support Vector Machines (SVMs) [24] and ensemble classifiers [31].

Another classification of NILM methods is based on the sampling frequency fs of the
smart meter and thus the features that can be extracted from the measured data [32]. In detail,
depending on the sampling frequency either macroscopic (e.g., active/reactive power [23,33,34]) or
microscopic (e.g., transient energy, harmonics, wavelets [22,35]) features are extracted to disaggregate
energy consumption on appliance level for steady state and transient behaviour, respectively.
Macroscopic features are extracted in low sampling frequencies in the order of 1

60 Hz to 1 Hz
while microscopic features are extracted in high sampling frequencies from 50 Hz up to 30 kHz [32].
Many researchers have used microscopic features to efficiently detect transient device behaviour and
thus improve energy disaggregation [36,37]. However measuring the power consumption with high
sampling frequency has the drawback of higher cost through hardware and increase of computational
power [38]. Therefore most studies focus on disaggregation algorithms using macroscopic features or
only active power samples in combination with low computational cost disaggregation algorithms
utilizing sampling rates in the order of seconds and minutes [28,39–44].

Considering the wide range of appliances with either steady-state behaviour [16],
where appliances are modelled as finite state machines [16,45] or appliances with transient behaviour
including non-linear and continuous appliances [18,36,46], investigation of the effect of different
features and classification algorithms is essential. In this paper we evaluate the performance of various
well-known and widely used classifiers and various features on the energy disaggregation task for
the NILM task. Specifically, we present a large scale evaluation of several features with respect to the
NILM performance on specific appliance types in combination with several widely used classification
algorithms, in order to investigate which feature sets are more appropriate for accurately detecting
specific appliance types, e.g non-linear appliances and the effect of using appliance specific features
in the overall NILM performance. The proposed methodology with appliance specific features is
evaluated using several combinations of feature sets and classification algorithms.
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The remainder of this paper is organized as follows: In Section 2 the baseline NILM system is
presented. In Section 3 the experimental setup is described and in Section 4 the evaluation results are
presented. Finally conclusions are provided in Section 5.

2. NILM Architecture

NILM energy disaggregation can be formulated as the task of determining the power
consumption on device level based on the measurements of one sensor, within time windows (frames
or epochs). Specifically, for a set of M− 1 known devices each consuming power pm with 1 ≤ m ≤ M,
the aggregated power Pagg measured by the sensor will be

Pagg = f (p1, p2, ..., pM−1, g) =
M−1

∑
m=1

pm + g =
M

∑
m=1

pm (1)

where g = pM is a ‘ghost’ power consumption (noise) consumed by one or more unknown devices and
f is the aggregation function. In NILM the goal is to find estimations p̂m, ĝ of the power consumption of
each device m using an estimation method f−1 with minimal estimation error and p̂M = ĝ, resulting in
the total estimated power P̂, i.e.,

P̂ = { p̂1, p̂2, ..., p̂M−1, ĝ} ← f−1(Pagg)

s.t. argmin
f−1

{(Pagg −
M

∑
m=1

p̂m)
2}

(2)

The block diagram of the NILM architecture adopted in the present evaluation is illustrated in
Figure 1 and consists of of four stages, namely pre-processing, feature extraction, appliance detection
and post-processing. In detail, the aggregated power consumption signal calculated from a smart
meter is initially pre-processed, i.e., passed through a median filter [47] and then frame blocked in
time frames. After pre-processing feature vectors, v of length ‖v‖, one for each frame are calculated.
In the appliance detection stage the feature vectors are processed by a regression algorithm using a set
of pre-trained appliance models to estimate the power consumption of each device. The output of the
regression algorithm (Preg) estimates the corresponding device consumption and a set of thresholds
Tm with 1 ≤ m ≤ M with Tg = TM for the each device including the ghost device (m = M) is used
to decide whether a device is switched on or off. The detection of appliances and estimation of their
power consumption is performed for each frame of the aggregated signal. A post-processing stage is
refining the power estimates form the regression model by mapping them to apriori known device
states using a Look-Up-Table (LUT), i.e., if the distance of the regression output to any state in the
device model is larger than 25W the regression output is mapped to the closest device state. In order
to define the number of states per device the K-Means algorithm was used for initialisation followed
by Expectation-Maximization (EM) clustering to calculate the power consumption for each state of
each device and form the LUT for the post-processing stage [48].
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Figure 1. Block diagram of the proposed Non-Intrusive Load Monitoring (NILM) architecture.
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3. Experimental Setup

The NILM architecture presented in Section 2 was evaluated using a number of publicly available
datasets and a number of well-known machine learning algorithms for regression.

3.1. Datasets

To evaluate performance five different datasets of the ECO [47] database were used. The ECO
database was chosen as it contains power consumption measurements per device as well as the
aggregated consumption. The ECO-3 dataset was excluded as it contains only the aggregated signal
and not the power consumptions per device. Furthermore the aggregated consumption measurements
include not only the active power, but also the line currents (Ix), line voltages (Vx) and load angles (ϕx)
for all three phases (x ∈ {1, 2, 3}).

The evaluated datasets and their characteristics are tabulated in Table 1 with the number of
appliances denoted in the column #App. In the same column, the number of appliances in brackets is
the number of appliances after excluding devices with power consumption below 25W, which were
added to the power of the ghost device, similarly to the experimental setup followed in [40,49].
The next three columns in Table 1 are listing the sampling period Ts, the duration T of the aggregated
signal used and the appliance type for each evaluated dataset. The appliances type categorization
is based on their operation as described in [50,51], i.e., one-state devices have only on/off status
(e.g., resistive lamps, kettles or fridges without significant power spikes), multi-state devices having
several discrete power consumption states (e.g., washing machines including different washing cycles)
and non-linear loads (e.g., electronic appliances) having various states and stronger power variation.
Considering their electrical layout all one- and multi-state appliances consist of a series of resistors,
inductors and capacitors and thus can further be classified into resistive, inductive and capacitive
devices. Non-linear appliances can include additional active components (e.g., semiconductors) and
non-linear passive elements (e.g., diodes).

Table 1. List of evaluated datasets and their respective properties.

Dataset Parameters
#App Ts T Appliance Type

ECO-1 7 (6) 1s 7d One-state/multi-state
ECO-2 12 (9) 1s 7d One-state/multi-state/non-linear
ECO-4 8 (8) 1s 7d One-state/multi-state/non-linear
ECO-5 8 (6) 1s 7d One-state/multi-state/non-linear
ECO-6 7 (6) 1s 7d One-state/multi-state/non-linear

To evaluate NILM performance in close to real conditions the aggregated signal including the
ghost power from unknown devices was used as proposed in [52], instead of creating an artificial
aggregated signal by adding the corresponding power consumption from each device. The aggregated
signal includes real power samples, raw current samples, raw voltage samples and load angles,
depending on the chosen feature set.

3.2. Pre-Processing and Feature Ranking

During pre-processing the aggregated signal was processed by a median filter of 5 samples
as proposed in [47] and then was frame blocked in frames of 10 samples with overlap between
successive frames equal to 50% (i.e., 5 samples). For every frame a feature vector v ∈ RD consisting
of 15 statistical (mean value, minimum and maximum values, Root-Mean-Square (RMS) value,
median value, percentiles 25% and 75%, variance, standard deviation (std), skewness, kurtosis, range,
energy and Zero Crossings (ZC)) and four electrical features (line current, neutral current, line voltage
and load angle) were calculated resulting in a feature vector of dimensionality equal to D = 19. In order
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to calculate the statistical importance of the 19 features the Relie f F feature ranking algorithm [53] was
used. The Relie f F algorithm was chosen as it can deal with noisy data (in our task mainly coming from
the ghost power) and is appropriate for feature ranking estimation of multi-class datasets [54], as the
multiple devices of the NILM task. The average Relie f F ranking scores across the five evaluated ECO
datasets are shown in Figure 2.
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Figure 2. Feature ranking for 19 different statistical and electrical features determined with the
Relie f F algorithm.

As can be seen in Figure 2 statistical and electrical features can be divided into two groups based
on their Relie f F scores. The first group includes eight statistical and three electrical features with high
ranking score (≥0.04) namely the Min/Max, Mean, Energy, RMS, Percentiles75/25 (Per75/Per25),
Median and the load angles (ϕ1,2,3), the line currents (I1,2,3) and the neutral current (IN), respectively.
The second group includes features with lower ranking score (<0.04) namely the Zero Crossing rate,
Peak2Rms, Range, Standard Deviation, Skewness, Kurtosis, Variance from the statistical features and
the line voltages (V1,2,3) from the electrical features. For the electrical features it must be mentioned that
the neutral current and the load angles are given by the sum of the line currents and the phase-shift
between line currents and voltages, respectively, therefore they carry complementary information
which affects their ranking scores.

The outcome of the feature ranking was used to design a set of seven experimental protocols,
with the first four including only statistical features and the last three employing the additional
electrical features. The chosen features for each experiment are tabulated in Table 2 where the first
experiment is only considering the mean value of active power samples and thus is considered as
baseline system, while for the following experiments features with decreasing feature score from
the feature ranking were added under consideration of keeping similar pairs of features together
(e.g., Min/Max). There is one exceptional case (in protocol 5/7) for the electrical features were the
load angles are added after the line currents/voltages. This is due to two reasons, namely that the
combination of line current and voltages contains the same information as the load angles and that
load angles can only be computed if line currents and voltages are available.

For the regression stage four different well known and widely used machine learning algorithms
have been employed namely the feed-forward Deep Neural Networks (DNNs), the k-Nearest
Neighbours (KNNs), the Random Forests (RFs) and the Support Vector Machines (SVMs). The free
parameters of each regression algorithm were empirically optimized after grid search on a bootstrap
training subset including data from the ECO-1/2/4/5/6 datasets with ideal aggregated data (without
ghost power) as shown in Table 3. The best performance corresponding to the optimal values of each
regression model is shown in bold. A “one vs. all” approach was chosen with the output of each
regression model being the prediction of the power of the mth appliance. In order to avoid overlap
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between training and test data, each of the evaluated datasets was equally split into two subsets,
one for training each regression model and one for evaluating its performance.

Table 2. Definition of seven different experimental protocols including different numbers of features
determined from the feature ranking (experiments 1–4 with statistical features only and experiments
5–7 with additional electrical features).

Protocol Features Category

1 Mean Statistical Features

2 Mean, Max, Min, RMS, Energy Statistical Features

3 Mean, Max, Min, RMS, Energy, Median, Per25, Per75 Statistical Features

4 Mean, Max, Min, RMS, Energy, Median, Per25, Per75, Peak2Rms, Range, Std, Variance, Skewness, Kurtosis Statistical Features

5 Statistical Features, Line Currents Statistical/Electrical Features

6 Statistical Features, Line Currents, Line Voltages Statistical/Electrical Features

7 Statistical Features, Line Currents, Line Voltages, Load Angles Statistical/Electrical Features

Table 3. Parametrization results (%) for four different classifiers namely Deep Neural Networks
(DNNs), Random Forest (RFs), K-Nearest-Neighbours (KNNs) and Support Vector Machines (SVMs).

Deep Neural Network (DNN)

Nodes/ Layers 4 8 16 32 64 128

1 80.42 87.54 87.85 83.73 86.38 81.67
2 70.09 86.39 86.92 87.50 82.68 83.62
3 80.40 86.70 87.86 88.71 88.39 84.20
4 75.40 87.95 87.02 87.15 85.32 x

Random Forest (RF)

Trees 8 16 32 64 128 256

85.45 85.31 85.47 85.42 85.44 85.42

K-Nearest-Neighbours (KNN)

K 1 2 3 4 5 6

82.15 82.74 82.68 83.05 83.26 82.42

Support Vector Machine (SVM)

Kernel Linear Gaussian Rbf Pol-2 Pol-3 Pol-4

55.02 72.33 76.29 59.24 63.58 67.83

As can be seen in Table 3 the parameter optimized regression models are a DNN feed-forward
architecture with 3-hidden layers and 32 sigmoid nodes per layer, a KNN with K = 5 nearest
neighbours, a RF with 32 trees per forest and a SVM with Radial Basis Function (Rb f ) as kernel
and optimized kernel parameters γ = 12.8, C = 1.45. The DNN regression model achieved accuracy
equal to 88.71% and outperformed all other evaluated regression models on the bootstrap training set.

4. Experimental Results

The NILM architecture presented in Section 2 was evaluated according to the experimental
setup described in Section 3 with the optimized parameters shown in Table 3. The performance
was evaluated in terms of power estimation accuracy (EACC), as proposed in [55] and defined
in Equation (3). The estimation accuracy is taking into account the estimated power p̂m and the
ground-truth power consumption pm for each device m, where T is the number of frames and M is the
number of disaggregated devices including the ghost power. For evaluating estimation accuracy on
device level Equation (3) is modified by eliminating the summation over M appliances resulting in
Equation (4) measuring the estimation accuracy on device level (Em

ACC).
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EACC = 1− ∑T
t=1 ∑M

m=1 | p̂t
m − pt

m|
2 ∑T

t=1 ∑M
m=1 |pt

m|
(3)

Em
ACC = 1− ∑T

t=1 | p̂t
m − pt

m|
2 ∑T

t=1 |pt
m|

(4)

The evaluation results for different experimental protocols and different regression models are
tabulated in Table 4. As can be seen in Table 4 adding additional statistical and electrical features
improves the energy disaggregation performance across all evaluated datasets, with the RF regression
model outperforming all other regression algorithms. In detail for the RF regression model the greatest
absolute improvement was observed for the ECO-6 dataset (9.32%), followed by the ECO-1 dataset
(7.80%), while the lowest absolute improvement was found for the ECO-3 dataset (5.22%). Moreover,
for almost all of the evaluated datasets and regression algorithms the best energy disaggregation
performance was achieved when using additional electrical features, i.e., in protocols 5–7.

Table 4. Disaggregation results (%) for five different datasets out of the ECO database utilizing four
different classifiers (DNN, KNN, RF, SVM) with seven experimental protocols each.

ECO-1

Protocol 1 2 3 4 5 6 7

DNN 73.14 70.94 71.94 73.12 77.18 73.52 78.38
KNN 72.56 75.87 75.82 76.02 76.06 75.90 78.92

RF 72.42 77.02 77.00 78.34 79.05 78.23 80.22
SVM 67.04 66.43 66.35 66.84 69.41 67.75 67.98

ECO-2

DNN 83.70 84.69 81.99 85.75 89.78 83.39 89.17
KNN 85.40 85.17 85.22 85.40 85.44 85.26 87.88

RF 83.84 86.16 85.99 86.22 90.03 90.40 91.18
SVM 80.97 71.71 70.85 78.70 81.81 80.64 81.09

ECO-4

DNN 82.42 83.00 81.34 82.45 78.35 84.16 80.78
KNN 80.85 82.16 82.17 82.13 82.50 82.42 83.11

RF 82.27 83.27 83.49 83.84 86.76 86.42 87.49
SVM 77.88 78.79 78.55 80.41 82.35 82.46 81.70

ECO-5

DNN 88.11 86.89 83.48 87.59 91.48 89.47 91.05
KNN 85.63 88.36 88.40 88.08 88.53 88.55 88.88

RF 87.65 88.80 88.83 89.18 93.79 93.78 93.79
SVM 88.62 87.35 86.78 88.42 91.71 91.14 90.18

ECO-6

DNN 80.03 81.30 82.87 82.42 81.94 81.88 68.06
KNN 72.56 75.87 75.82 76.02 76.06 75.90 78.92

RF 79.00 83.39 83.63 84.57 88.32 87.37 80.90
SVM 72.85 70.58 70.23 71.74 72.93 72.77 59.03

In order to evaluate the appropriateness of each regression algorithm in the seven experimental
protocols the average performance across the five datasets for each of the regression models was
calculated. The results are tabulated in Table 5.
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Table 5. Comparison of different regression algorithms for averaged estimation accuracies (% EACC)
(average performance across the five datasets ECO-1/2/4/5/6) for the seven experimental protocols.

Protocol 1 2 3 4 5 6 7

DNN 81.48 81.36 80.32 82.27 83.75 82.48 81.49
KNN 80.47 83.07 83.16 83.07 83.26 83.17 83.89

RF 81.04 83.73 83.79 84.43 87.59 87.24 86.72
SVM 77.47 74.97 74.55 77.22 79.64 78.95 76.00

As can be seen in Table 5, protocol five shows the best average performance for the DNN,
SVM and RF regression models, while the KNN model shows a slightly higher performance protocol
seven followed by protocol five. Moreover, as also shown in Table 4, the RF regression model
outperforms the other models (87.6% with 6.5% performance increase), followed by KNN and DNN
with similar performance (∼83.8% with 2.5% performance increase), while SVM achieved the lowest
performance (79.6% with 1.9% performance increase).

Further analysis of the evaluated results was conducted on appliance type level, as they are
described in Section 3 and tabulated in Table 1. The results for per device improvement using the best
performing classifier (RF) are tabulated in Table 6. The first experimental protocol uses only the mean
value of the active power as feature and thus is considered here as baseline system, against which all
performance improvements have been calculated in Table 6 with the corresponding protocol denoted
in brackets. Moreover appliances that are not operating during the testing are marked in red and were
excluded from further investigation.

Table 6. Maximum improvement (%) with respect to the baseline (first) protocol for the best performing
regression model (RF). The protocol with the best performance is given in brackets. Further devices
that are not operating during the testing period are marked in red.

Device Category ECO-1 ECO-2 ECO-4 ECO-5 ECO-6

Air-Exhaust one-state - 0.00 (1) - - -
Coffee-Maker one-state - - - 30.97 (5) 0.00 (1)

Dryer multi-state 24.55 (5) - - - -
Entertainment non-linear - 6.76 (6) 11.12 (6) 18.97 (6) 16.85 (5)

Freezer one-state 8.87 (7) 2.91 (7) 5.57 (7) - -
Fridge one-state 15.78 (7) 9.76 (7) 22.65 (7) 30.09 (7) 38.16 (5)
Ghost undefined 3.35 (4) 4.48 (7) 2.46 (5) 3.30 (7) 3.44 (5)
Kettle one-state 28.42 (6) - - - 14.77 (5)

Kitchen undefined - - 18.59 (4) - -
Lamp one-state - 0.56 (7) 46.44 (5) - -

Laptop non-linear - 22.30 (5) - 2.19 (5) 11.30 (5)
Microwave multi-state - - 23.10 (7) 0.01 (0) -

Stereo non-linear - 8.31 (6) 0.33 (7) - -
TV non-linear - 5.81 (6) - - -

WM multi-state 32.24 (4) - - - -

As can be seen in Table 6 high improvements of performance do not necessarily appear
in experimental protocols with the highest number of features. To investigate the relation
between appliance types and features on the energy disaggregation task we consider two
types of linear appliances, either with pure resistive equivalent circuit diagram or complex
loads with inductive/capacitive behaviour. Therefore three appliances categories are formed,
namely one/multi-state appliances with resistive behaviour, one/multi-state appliances that can be
modelled as complex loads (mainly inductive) and non-linear appliances. This appliance categorization
is illustrated in Table 7.
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Table 7. Impact of employing temporal contextual infromation for three different devices categories.

One/Multi-State (Resistive) One/Multi-State (Inductive) Non-Linear

RV

I

R

L

V

I

RC

D

V

I

V,I

t

V,I

t

V,I

t

P = V · I
Q = 0

P = V · I · cos(ϕ)

Q = V · I · sin(ϕ)

P =
1
T

∫ T

t−T

∞

∑
k

vk · ik dt

Q = Qreactive + Qnon−linear

• Coffee Maker, Dryer, Kettle,
Lamp, Microwave, WM

• Fridge, Freezer • Entertainment, Stereo,
Laptop, TV

After examining the results from Table 6 under the consideration of Table 7 it can be seen that for
resistive one/multi-state appliances (e.g., kettle, coffee machine or lamp) where the reactive power is
zero (Q = 0) the best performing experimental protocol is protocol five in which together with the
statistical features the line current is included in the feature vector as an electrical feature. For this
appliance type adding the line voltage or the load angle as additional feature is not beneficial, since the
load angle or the shift between current and voltage is always zero and thus does not contribute
to their parametrized power signature with significant information. Except this, one/multi-state
appliances with strong inductive behaviour (e.g., fridges or freezers) benefit from adding the load
angle as a feature, as they consume a significant amount of reactive power and thus achieved
their best performance with experimental protocol seven. In addition, non-linear devices cannot
be described in terms of the active and reactive power consumption including the corresponding load
angle, since the current flowing through them is non-sinusoidal as illustrated in Table 7. Thus their
power consumption must be described through different techniques, as for example the Fryze power
theory [56], where time domain analysis of active and non-active currents is used and the reactive
power is split into a reactive component caused by the time domain shift between current and voltage
and a component caused by the non-linearity of the device. For such appliances (e.g., entertainment,
laptop or TV) the best performing experimental protocol was protocol six where line current and
line voltage are added as features hence a time domain description is performed as suggested in [56]
and does not include the load angle, since in non-linear appliances the load angle does not carry any
device-dependent information.

As regards performance on dataset level the maximum overall performance can be achieved
when detecting each device using its own set of optimal features (i.e., the best performing experimental
protocol) as tabulated in Table 6. Additionally to selecting appliance-driven features the disaggregation
results can be improved when employing the post-processing step from Section 2 where the power
estimates from the regression stage Preg are mapped to the appliance states determined through the
appliance model during the pre-processing. The per dataset results when choosing the optimal set of
features individually for each device and utilizing the post-processing are tabulated in Table 8 with the
best performing datasets shown in bold.
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Table 8. Maximum performance (%) per dataset for all classifiers using appliance driven features with
(‘Post’) and without post-processing (‘App’) when compared to the best performing protocol without
post-procesing and with uniform appliance features for all appliances (‘Base’).

DNN KNN RF SVM

Base App Post Base App Post Base App Post Base App Post

ECO-1 78.38 81.56 81.86 78.92 79.71 79.32 80.22 81.89 82.47 69.41 69.75 69.85
ECO-2 89.78 90.52 90.61 87.88 90.52 90.47 91.18 91.75 92.39 81.81 83.64 85.25
ECO-4 84.16 85.34 86.56 83.11 83.32 83.34 87.49 87.90 87.99 82.46 84.02 84.88
ECO-5 91.48 92.36 93.13 88.88 89.94 89.62 93.79 93.92 94.54 91.71 92.71 93.21
ECO-6 82.87 83.05 86.62 83.71 84.62 85.24 88.32 89.54 90.13 72.93 75.14 76.58

AVG 85.33 86.57 87.76 84.50 85.62 85.60 88.20 89.00 89.50 79.66 81.05 81.95

As can be seen in Table 8, employing the optimal set of features for each device results in further
improvement of the disaggregation accuracy varying from 0.1% to 3.2% depending on the dataset and
the regression model. The maximum average performance increase for the best performing classifier
(RF) is 0.8% with an overall average disaggregation accuracy of 89.0%. When further employing the
post-processing as described in Section 2 another performance increase between 0.5% and 1.2% can
be observed when utilizing DNNs, RFs or SVMs. However, no performance increase was observed
when using KNNs. The performance increase when using DNNs, RFs or SVMs is mainly due to
one/multi-state linear appliances, which can be modelled as finite-state-machines and benefit from the
post-processing step where power estimates are mapped to discrete power states of the corresponding
appliance. In terms of absolute improvement RF still outperforms all other classifiers when applying
the LUT post-processing with overall disaggregation accuracy equal to 89.5%.

5. Conclusions

In this paper the performance of different classifiers in combination with different sets of features
for energy disaggregation in non-intrusive load monitoring was investigated. The evaluation results
showed significant importance on the selection of features, with the electrical features being more
discriminative than the statistical ones. It was also shown that the optimal choice of features strongly
depends on the device type and its electrical characteristics, with the non-linear devices better being
disaggregated when using line current and line voltage, while linear devices were disaggregated
well with statistical features only. After evaluating energy disaggregation across several datasets,
random forest (RF) was found the best performing regression algorithm outperforming all other
evaluated machine learning algorithms by an absolute performance increase of approximately 6.5%.
Moreover, it was shown that, when using device dependent features and device state mapping as
post-processing, further improvement in energy disaggregation accuracy can be achieved (up-to
1.3%), resulting in a maximum disaggregation performance of 89.5%. Energy disaggregation and
especially non-intrusive load monitoring is a very challenging task. The use of detectors which have
been designed, adapted or fine-tuned to the specifications of each appliance is a direction which will
result in further improvement of disaggregation performance and, in combination with the recent
evolution of deep learning [43,57,58] and the use of big data for training device models, e.g., in the
order of years [57], is expected to contribute to even more accurate disaggregation methodologies.
Moreover multimodal information other than energy data acquired from smart meters like weather,
occupancy or socio-economical events could be supportive for disaggregating the energy consumption
of households and buildings [59].
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