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Abstract: The sustainability and complexity of logistics networks come from the temporally and
spatially uneven distributions of freight demand and supply. Operation strategies without considering
the sustainability and complexity could dramatically increase the economic and environmental costs
of logistics operations. This paper explores how the unevenly distributed demand and supply can be
optimally matched through collaborations, and formulates and solves a Collaborative Pickup and
Delivery Problem under Time Windows (CPDPTW) to optimize the structures of logistics networks
and improve city sustainability and liverability. The CPDPTW is a three-stage framework. First,
a multi-objective linear optimization model that minimizes the number of vehicles and the total cost
of logistics operation is developed. Second, a composite algorithm consisting of improved k-means
clustering, Demand-and-Time-based Dijkstra Algorithm (DTDA) and Improved Non-dominated
Sorting Genetic Algorithm-II (INSGA-II) is devised to solve the optimization model. The clustering
algorithm helps to identify the feasible initial solution to INSGA-II. Third, a method based on
improved Shapley value model is proposed to obtain the collaborative alliance strategy that achieves
the optimal profit allocation strategy. The proposed composite algorithm outperforms existing
algorithms in minimizing terms of the total cost and number of electro-tricycles. An empirical case
of Chongqing is employed to demonstrate the efficiency of the proposed mechanism for achieving
optimality for logistics networks and realizing a win-win situation between suppliers and consumers.

Keywords: Pickup and delivery; logistics network; composite algorithm; collaborative mechanism;
profit distribution strategy

1. Introduction

The Collaborative Pickup and Delivery Problem under Time Windows (CPDPTW) seeks to identify
a collaborative mechanism for logistics network and synergize pickups and deliveries by coordinating
Logistics Providers (LPs). CPDPTW need to be studied so that the efficiency of the logistics network can
be improved and commodity can be collected and distributed timely. The development of e-commerce
has led to a surge in consumer demand, for example, China’s fresh e-commerce transactions totaled
about 140 billion yuan in 2017, with a year-to-year increase of 59.7%, whereas the loss rate of fresh food
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in the distribution process has reached 30% [1]. The huge order sizes and strict timeliness requirement
increase the complexity of the pickup and delivery logistics network.

Solving this CPDPTW problem can improve network transport efficiency and security. It can
also improve the timeliness of service provided by LPs and boost the stability of the network, which
will help enterprises reduce operation costs. Therefore, the design of pickup and delivery logistics
networks is of particular interest to researchers and LPs alike [2,3]. CPDPTW is different from the
conventional Multi-Depot Vehicle Routing Problem with Pickups and Deliveries (MDVRPPD), which
assumes that pickups and deliveries are independent. CPDPTW connects the product collecting
process and distribution process in collaborative network. A growing emphasis is provided on the
coordination among commodity suppliers, LPs and customers in CPDPTW, which commonly exists
in Logistics Network with Pickups and Deliveries (LNPD). Effective and low-cost LNPD needs to
be designed to ensure the quality of products and meet customers’ timeliness requirements. LNPD,
which is usually composed of suppliers, LPs and customers, is an important part of a multi-echelon
logistics system [4,5]. Cooperation among logistics providers can improve the performance of the
entire logistics network by reducing transportation or operation costs and generating additional profit
ensuring customer service quality. Therefore, identifying the means to configure the network in case of
on-demand delivery and to achieve the synergy of resources are crucial. Among the three components
of LNPD, LP is the key to ensuring a well-connected and stable pickup and delivery logistics network.

Existing works have covered vehicle routing problem (VRP) optimization and the profit distribution
strategy [6,7]. These studies, however, mostly overlooked the coordination and cooperation process
among commodity suppliers, logistics providers and customers. Research on CPDPTW needs to
be strengthened. To fill the research gap, the current work presents a collaboration mechanism to
coordinate the components of LNPD. Establishing the collaboration mechanism can greatly improve
logistics efficiency. In the proposed collaboration mechanism, each supplier and customer are
reasonably assigned to an adjacent logistics provider to optimize LNPD. The optimization problem
aims to find the near-optimal vehicle routes through a composite algorithm. We investigate customer
clustering, and employ dynamic programming and heuristic algorithms to reduce the complexity
of this computation and further find the optimal solution of CPDPTW. Finally, a profit distribution
strategy based on cooperative game theory is proposed to fairly distribute the profits and study the
alliance sequences, the orders in which logistics providers join an alliance.

The remaining sections of this paper are organized as follows. Relevant literature is reviewed in
Section 2. In Section 3, the problem of CPDPTW is set up with the definitions of related concepts and
quantities and the assumptions in the CPDPTW model. In Section 4, a multi-objective optimization
model is established to redesign the vehicle routes and minimize the total cost in the collaborative
logistics network, and a composite algorithm including DTDA, clustering and a hybrid algorithm
named INSGA-II is presented to obtain the optimal routes A profit strategy for profit distribution is
presented in Section 5. In Section 6, a real-world case study is performed to verify the applicability of
the proposed model and methodology. In Section 7, the conclusion and summary results are presented,
and the possible future research directions are pointed out.

2. Literature Review

The collaborative mechanism based on CPDPTW becomes increasingly valuable [8,9]. LPs
play an important part in the logistics supply chain. The synergy among them can reduce logistics
costs and generate profits for enterprises. In addition, vehicle, customer service and resource
sharing have been integrated into the collaborative logistics network, which could improve the
sustainability of such a network. Because of its practical importance, many researchers have attempted
to achieve resource synergy and study the dynamic quality game among participants in logistics
network design [10,11]. To improve the ability of commodity distribution in supply chain network,
Govindan et al. [12] proposed a two-echelon location routing problem under time window for designing
a sustainable supply chain network, which aims to cut the cost of the whole network. Based on the
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duration of logistics operations, Bal and Satoglu [13] proposed a multi-product and multi-period
goal programming model to study sustainable logistics operations planning and an application.
By making the best choice for commodity packaging containers, Bortolini et al. [14] focused on
the cost of the entire distribution network, and then designed a supply chain network to reduce
costs while controlling quality. Other researchers have also studied the two-echelon collaborative
logistics network. Lozano et al. [15] merged the transportation demands from multiple companies to
achieve the horizontal collaboration among shippers, which can effectively reduce the operation cost.
Feng et al. [16] designed multiple collaboration and decision-making mechanisms for efficient logistics
transportation planning. Wang et al. [17] optimized two-echelon pickup and delivery networks to
reduce their total operation costs by establishing collaborative alliances.

The above research on supply chain networks provides a reference for the study of pickup and
delivery logistics networks. A single logistics provider processing a large amount of commodity
typically exists in a commodity distribution network with pickups and deliveries. This phenomenon
enables the application of precise method for studying the collaborative logistics networks with
pickups and deliveries. Researchers have studied numerous precise methods [18,19]. Sedeño-Noda
and Raith [20] proposed a Dijkstra-like method to determine all extreme supported non-dominated
solutions to the shortest path problem. Horváth and Kis [21] presented a branch and bound method to
study the constrained shortest path problem. Zhang et al. [22] studied a stochastic network based on
lagrangian relaxation method to find a reliable shortest path. Liu et al. [18] presented a branch-and-cut
algorithm to study the two-echelon capacitated vehicle routing problem. Andrade and Saraiva [23]
used shortest path method to solve an inter-linear programming model, which aims to find the shortest
path between two vertices. A branch-and-cut algorithm was used to study the unit-demand capacitated
vehicle routing problem [24]. Consequently, the precise method used to optimize the vehicle routing
problem with pickups and deliveries can improve the reliability of logistics network, and contribute to
achieve sustainable transportation goals.

Following commodity pickup, vehicles must be assigned to distribute the collected commodity
after simple classification and sorting. The underlying delivery network is different from the pickup
network. The clustering methods of customer demands are particularly important for sustainable
large-scale distribution networks. Clustering algorithm can be seen as a necessary element in solving
multi-depot vehicle routing problem with time windows (MDVRPTW) [25,26]. Many researchers
have studied various clustering methods to solve complex network problems. Narasimha et al. [27]
used a clustering algorithm to simplify the computation process in the min-max multi-depot vehicle
routing problem. Wang et al. [28] proposed a fuzzy clustering algorithm to divide the large number of
customers into multiple cluster units, which accelerates convergence in optimizing the logistics network.
A clustering method named demand clustering was implemented in freight logistics networks, and has
proved to be an important strategic decision tool for carriers [29]. Dragomir et al. [30] studied the
computational complexity of multi-depot pickup and delivery problems, which can be simplified by
customer clustering. Wang et al. [31] presented a clustering algorithm to study the complex logistics
network optimization problem with pickups and deliveries. Wang et al. [32] considered customers’
locations and purchase behaviors and discovered similar characteristics among them through clustering
algorithm to solve the two-echelon location-routing optimization with time windows. An improved
density peaks clustering algorithm based on fast calculation of cluster centers was proposed to simplify
the computational complexity of large-scale data [33,34]. In summary, customer clustering algorithm
can be considered as an important input step during the MDVRPTW optimization procedure.

MDVRPTW is an important part of the CPDPTW. Heuristic or intelligent algorithms and the
simulation-based approach can be used to study CPDPTW [19,35,36]. Integrated transportation
services into logistics providers should be considered in the CPDPTW. Soysal and Çimen [37]
combined a heuristic approach with simulation-based dynamic programming method to solve the
green time dependent vehicle routing problem in a large sized logistics network. Liu et al. [38]
proposed a simulation-based optimization approach combined with a tabu search algorithm to study
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the two-echelon vehicle routing problem consisting of freight transportation through intermediate
satellites. Belgin et al. [39] presented a hybrid heuristic algorithm with variable neighborhood descent
and local search to solve the two-echelon vehicle routing problem with simultaneous pickup and
delivery. Chami et al. [40] proposed a hybrid metaheuristic to solve a multi-period pickup and
delivery problem with time windows and paired demands, which aimed to minimize the total
traveled distance needed. Nedjati et al. [41] proposed a heuristic solution procedure named NSGAII
multi-objective algorithm with two distinct improvements, which was utilized to solve the location
routing problem. Given that delivery should meet the time window, Afshar-Nadjafi [42] established
a mixed integer-programming model and proposed a constructive heuristic algorithm to solve the
MDVRPTW model, which aimed to minimize the total cost of heterogeneous fleets. Li et al. [43]
formulated an integer programming model and proposed a hybrid genetic algorithm with adaptive
local search to study the multi-depot vehicle routing problem with time windows. Naccache et al. [44]
established a model based on multi-pickup and delivery problem under time window constraints,
and developed a hybrid adaptive large neighborhood search to solve this problem. Meng et al. [45]
proposed a Tabu Search (TS) algorithm with designed batch combination and item creation operation
to solve the vehicle routing problem in a pickup and delivery network. The above proposed models
and solution approaches can provide decision-making reference for the study of CPDPTW, and further
demonstrate that the future work is required.

CPDPTW optimization usually includes vehicle routing optimization and collaborative strategy
design [12,46]. Collaboration among logistics providers will often be considered in a multi-level
logistics distribution network optimization process on the basis of a sustainable perspective, which will
generate the net profits and exist profit distribution problems [15,47,48]. The distribution of profits is
handled in many ways, and some researchers have proposed various profit allocation methods to study
the collaboration alliance mechanism. Frisk et al. [49] proposed a new allocation method, which aimed
to ensure the relative profits to participants are as equal as possible. Cruijssen et al. [47] proposed a
so-called Shapley monotonic path method to allocate cost reduction to the participating shippers in a
fair and sustainable way. To improve vehicle utilization and reduce carriage return in collaborative
logistics network, Dai and Chen [50] proposed three profit distribution mechanisms based on the
Shapley value, the concept of proportional allocation and the contribution of each operator to solve the
resulting profit distribution problem. Lozano et al. [15] tackled the problem of allocating the joint cost
savings from cooperation based on cooperative game theory. Kumoi and Matsubayashi [51] formulated
a cooperative game to analyze the stable and fair profit allocations under the grand alliance, which
means all participants, joined an alliance according to an effective cooperation strategy. In the field of
video on-demand services, Kamiyama et al. [52] suggested that network service providers cooperate to
deal with the problem of wide-ranging on-demand volume, and proposed to use the Shapley value
method to distribute the profits from the alliance reasonably. Wang et al. [53] proposed an improved
Shapley value method to solve the problem of revenue redistribution due to the alliance and achieved
good results. Wu et al. [54] compared four benefit allocation schemes including Shapely, the Nucleolus,
Degree of Polymerization (DP) equivalent method, and Nash-Harsanyi based on cooperative game
theory, which aims to deal with the benefit assignment among the building clusters in the distributed
building heating network. However, collaborative strategy design among multiple logistics facilities
should be further investigated and studied in collaboration-based MDVRPTW.

The above studies suffer from the following issues: (1) Conventional MDVRPTW rarely
considers the optimization of vehicle routes and profit allocation collectively, especially when
goods are transported between logistics providers in a sustainable collaborative logistics network.
(2) Collaborative logistics network design is rarely considered including resource sharing, vehicle
sharing and customer service sharing among LPs on the basis of the sustainability view in LNPD.
(3) Conventional multi-objective model and heuristic algorithm cannot be directly employed to account
for the resource sharing and the alliance mechanism among multiple logistics providers. (4) Most
studies tend to consider pickup and delivery independently, but ignore the construction of collaborative
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coalition sequence and the sustainability of long-term collaboration, and little research has also been
done on the problem of collect-to-distribute process in the CPDPTW.

In summary, the main contributions of the current work are as follows: (1) Proposing a sustainable
collaborative logistics network with both pickups and deliveries, which accounts for collaborations
horizontally and vertically: horizontally, logistics providers cooperate with each other to form
alliance(s) and vertically, logistics providers synchronize their operations with suppliers and customers.
(2) Establishing a multi-objective optimization model based on the minimum number of vehicles and
the minimum total cost with consideration of resource sharing, vehicle sharing and customer service
sharing among LPs for the sustainable collaborative logistics network. (3) Designing a three-stage
composite algorithm that comprises DTDA, improved K-means clustering and improved NSGA-II
algorithm to effectively solve the multi-objective optimization model, and then a strictly monotonic
path (SMP) selection strategy is utilized to study the collaborative coalition sequences and evaluating
alliance stability(sustainability) given a profit distribution scheme. (4) Implementing a real-world
case study to assess the applicability and sustainability of the proposed approach to two alliance
mechanisms, and conducting a series of comparisons and analysis to demonstrate the superiority of
the composite algorithm. In addition, this study solves a special case problem of the logistics network
optimization, which can be further extended to solve the problem of collaborative multi-echelon
logistics network optimization in a sustainable intelligent transportation system.

3. Problem Statement

Solving the CPDPTW can increase the stability of the logistics network through sharing of customer
service, vehicles and resources. Figure 1 shows the changes in logistics network structure before and
after optimization. This logistics network consists of two parts, the pickup and the delivery network.
After a customer places the order with an expected time of delivery, LPs should serve the customers
within their expected time windows, due to the timeliness nature of commodities. Suppliers also hope
that LPs can pick up the goods within their expected time windows because they need to prepare the
commodity after receiving orders. Thus, LPs need to arrive within suppliers’ expected time windows.
In terms of the means of transportation, trucks transport commodities collected from LPs to suppliers
while electro-tricycles are used to deliver goods to customers.

As shown in Figure 1a complex logistics network combines pickups and deliveries. Figure 1a
shows the logistics network structure in the non-optimal LNPD. On the one hand, every supplier is
doing business with every LP. Therefore, LPs need to pick up the commodity from each supplier and
then distribute the collected commodity to customers. Thus, long-distance transportation cannot be
avoided during pickup and delivery. Moreover, LPs will wait until the orders have accumulated to a
certain number before starting pickup to save transportation costs. The two factors of long-distance
transportation and the desired number of orders to start pickup together make meeting the time
requirements of suppliers and customers difficult. On the other hand, the transportation network
shown in Figure 1a is over-complicated, with many cross-transport loops during pickup and delivery.
In Figure 1b, logistics provider intends to cooperate with one another in the LNPD. As a result,
each LP only needs to serve the suppliers and customers assigned by the optimization results. In other
words, we should first divide customers into different clusters according to customers’ order demands,
and each cluster must be paired with an LP who is responsible for delivering commodity to its paired
cluster of customers. The commodity ordered by a cluster of customers should then be collected to
the corresponding LP and then transported among the LPs. The comparison of cost and number of
vehicles between before and after optimization is given in Table 1. Assuming that customers visited
beyond time windows are compensated $50 in addition to the pickup and transportation costs of
$20 per unit time and delivery cost of $10 per unit time, significant reduction in cost and number of
vehicles can be achieved through collaborative transportation and distribution optimization.
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Table 1. Comparison before and after optimization.

Cost ($)
Transportation,

Pickup and
Delivery Costs ($)

Cooperation ($) Penalty ($) Total ($) The Number of
Vehicles ($)

Non-collaboration 1970 – 700 2670 9
collaboration 540 260 50 850 7

In the collaborative LNPD, LPs coordinate on pickup and delivery together, and the CPDPTW
can fulfill customers’ requirements for delivery time and achieve the minimum waiting time minimum
during pickup and delivery. Therefore, the proposed CPDPTW solution through collaboration
could facilitate a systematic optimization and effective resource management in the pickup and
delivery network.

4. Model Formulation and Solution Methodology

4.1. Model Formulation

4.1.1. Related Assumptions and Definitions

Our proposed network includes multiple LPs, several suppliers and numerous customers. To make
our proposed network structure realistic, we propose the following assumptions.

• Assumption 1: There exist multiple working periods in one year, and the customer demand is
stable within each working period.

• Assumption 2: LPs operate independently in a non-optimized network.
• Assumption 3: Each LP pursues profit maximization and fair profit distribution strategy.
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• Assumption 4: The collection of goods and the transportation between the LPs are all based on
trucks. The goods are delivered via electric tricycles.

• Assumption 5: The alliance among suppliers is not considered. Only the alliance between logistics
providers is considered.

• Assumption 6: The service time of each customer is considered to be 0.

In order to formulate the proposed problem into a mathematical model for analytical solutions,
some related variables are defined as follows:

S = {s|s = 1, 2, 3, · · · , m′} denotes the set of suppliers, and m′ is the total number of suppliers;
C = {c|c = 1, 2, 3, · · · , a} denotes the set of customers, and a is the total number of customers;
I = {i|i = 1, 2, 3, · · · , b} denotes the set of logistics providers, and b is the total number of

logistics providers;
K = {k|k = 1, 2, 3, · · · , m} denotes the set of electro-tricycles, and m is the total number

of electro-tricycles;
V =

{
v|v = 1, 2, 3, · · · , g

}
denotes the set of trucks from the suppliers to LPs, and g is the total

number of trucks;
V =

{
v|v = 1, 2, 3, · · · , g

}
denotes the set of trucks between LPs, and g is the total number of

trucks,V ⊂ V;
xisv is the decision variable which equals to 1 if truck v traveled from i to s (i ∈ I ∪ S, s ∈ S),

otherwise set xisv = 0, v ∈ V;
xick is the decision variable which equals to 1 if electro-tricycle k traveled from i to c (i ∈ I∪C, c ∈ C),

otherwise set xick = 0, k ∈ K;
dis denotes the Manhattan distance between LP i and supplier s or supplier i and supplier s,

(i ∈ I ∪ S, s ∈ S);
dic denotes the Manhattan distance between LP i and customer c or customer i and customer c,

(i ∈ I ∪C, c ∈ C);
di j denotes the distance from LP i to LP j;
fk denotes electric power consumption per kilometer of electro-tricycle k;
[es, us] denotes the time window of supplier s;
[ec, uc] denotes the time window of customer c;
as denotes the time of arriving at supplier s;
ac denotes the time of arriving at customer c;
ϕ1 denotes the penalty coefficient of arriving early;
ϕ2 denotes the penalty coefficient of arriving late;
cv, cv denotes the transport expense of trucks per kilometer;
ce denotes the expense of one kilowatt per hour(kwh);
|NNk| expresses the number of customers served by electro-tricycle k in one delivery route;
|NNv| expresses the number of suppliers served by truck v in one pickup route;
Vk is the decision variable which equal to 1 if vehicle k is chosen to serve customers, 0 otherwise;
λi expresses the variable transport cost coefficient of the LP i;
qi j denotes the transport quantity from LP i to LP j within a working period;
zis j denotes the change in service from LP i to j, if supplier s changes its LP from LP i to LP j,

and set zis j = 1, otherwise set zis j= 0, i, j ∈ I, s ∈ S;
zic j denotes the change in service from LP i to j, if customer c changes its LP from LP i to LP j,

and set zic j = 1, otherwise set zic j = 0, i, j ∈ I, c ∈ C;
Lv denotes the loading capacity of truck v and v, respectively;
Lk denotes the loading capacity of electro-tricycle k;
dmax denotes the maximum driving distance with full power;
θ denotes the conversion rate (fuel efficiency) of battery;
qs denotes the pickup quantity from supplier s;
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qc denotes the delivery quantity to customer c;
Mv denotes the maintenance cost of the truck v and v, respectively within one year;
Mk denotes the maintenance cost of electro-tricycle k within one year;
Ni denotes the number of trucks for collecting commodity from suppliers to LP i;
Ei denotes the number of electro-tricycles for serving customers in LP i;
Nk denotes the number of delivery trips for electro-tricycle k within a working period;
Nv denotes the number of pickup trips for truck v within a working period;
Nv denotes the number of shipments for truck v among LPs within a working period;
T denotes the number of working periods a year;
tisv denotes the travel time of truck v from LP i to supplier s or from supplier i to s, i ∈ I ∪ S, s ∈ S;
tick denotes the travel time of electro-tricycle k from LP i to customer c or from customer i to

customer c, i ∈ I ∪C, c ∈ C;
T1 denotes the maximum en-route time allowed for the truck;
T2 denotes the maximum en-route time allowed for the electro-tricycle;
depiv denotes the departure time of truck v leaving from LP i;
depik denotes the departure time of electro-tricycle k leaving from LP i;
atvs denotes the time of truck v arriving at supplier s;
atkc denotes the time of electro-tricycle k arriving at customer c;
zis is the decision variable which equals to 1 if supplier s is served by LP i, otherwise set zis = 0;
zic is the decision variable which equals to 1 if customer c is served by LP i, otherwise set zic = 0;
Ri expresses the cooperative decision variable, if LP i agrees to cooperate in CFFPDTW, then set

Ri = 0, otherwise set Ri= 1;
Gi expresses the government incentive provided to the LP i in the case of cooperation within a

working period.

4.1.2. CPDPTW Optimization Framework

CPDPTW optimization procedures of integrating with a collaborative mechanism are shown in
Figure 2. At the first stage, a multi-objective linear optimization model is established based on CPDPTW.
Then, a composite algorithm consisting of DTDA, an improved K-means clustering algorithm and
INSGA-II is presented at the second stage. At the third stage, a cooperative alliance strategy based
on improved Shapley value model is proposed and the monotonic path selection strategy is derived
to verify the mathematical model and determine the sequence and stability of alliances. LPs play
an important role in the procedures. They address the increased diversity in customer demand by
cooperating with each other and forming alliances in order to reduce high transportation costs from
long-distance transportation. Based on the above considerations, we devise the following model to
evaluate the applicability of the cooperative alliance as shown at stage 1 in Figure 2.

4.1.3. Optimization Model Formulation

To achieve the optimization of the pickup and delivery problems with heterogeneous vehicles
under time windows, a bi-objective optimization model simultaneously considering the minimum
total cost F1 and the number of electro-tricycles F1 is established as follows.

min F1 = TC1 + TC2 + TC3 + TC4 + TC5 (1)

minF2 =
∑
k∈K

|Vk|
∑
i∈I

∑
c∈C

xick (2)

TC1 expresses the total transportation cost that trucks pick up commodity from the suppliers to
LPs, while TC2 represents the total transportation costs that electro-tricycles deliver commodity from
LPs to the customers.
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TC1 =
∑
v∈V

∑
i∈I∪S

∑
s∈I∪S

(dis × cv × xisv ×Nv) (3)

TC2 =
∑

i∈I∪C

∑
c∈C∪I

∑
k∈K

[(dic × fk × ce × θ) × xick ×Nk] (4)
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TC3 expresses the penalty cost for the earliness or delay of the trucks picking up commodity in
the suppliers and electro-tricycles delivering commodity to the customers.

TC3 =
∑

i∈I∪S

∑
s∈S

∑
v∈V

[max(es − as, 0)] ×ϕ1 × xisv +
∑

i∈I∪C

∑
c∈C

∑
k∈K

[max(ec − ac, 0)] ×ϕ1 × xick+∑
i∈I∪S

∑
s∈S

∑
v∈V

[max(as − us, 0)] ×ϕ2 × xisv +
∑

i∈I∪C

∑
c∈C

∑
k∈K

[max(ac − uc, 0)] ×ϕ2 × xick
(5)

TC4 expresses the transportation cost as the summation of fuel cost and variable transport cost
among logistics providers.

TC4 =
∑

i, j∈I,i, j

∑
v∈V

(
di j × cv × θ×Nv

)
+

∑
i, j∈I,i, j

(
qi j × λi

)
(6)

TC5 evaluates the maintenance cost of trucks and electro-tricycles with consideration of the
discount from government incentives.

TC5 =
∑
i∈I

(
Ni ×

Mv

T

)
+

∑
i∈I

(Ei ×
Mk
T

) +
∑

i, j∈I,i, j

(qi j

Lv
×

Mv
T

)
−

∑
i∈I

(1−Ri) ×Gi (7)

Subject to: ∑
i∈I

∑
v∈V

xisv= 1,∀s ∈ S (8)

∑
i∈I

∑
k∈K

xick = 1,∀c ∈ C (9)
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∑
i∈I∪S

∑
s∈I∪S

(dis × xisv) ≤ dmax,∀v ∈ V (10)

∑
i∈C∪I

∑
c∈C∪I

(dic × xick) ≤ dmax,∀k ∈ K (11)

∑
s∈I∪S

xisv −
∑

s∈I∪S

xsiv = 0,∀v ∈ V, i ∈ I ∪ S (12)

∑
i∈I∪C

xlck −
∑

i∈I∪C

xclk = 0,∀c ∈ I ∪C, k ∈ K (13)

∑
i,s∈I∪S

xisv ≤ |NNv|−1,∀v ∈ V (14)

∑
i,c∈C∪I

xick ≤ |NNk|−1,∀k ∈ K (15)

∑
s∈S

qs

∑
i∈I∪S

xisv

 ≤ Lv,∀v ∈ V (16)

∑
c∈C

qc

∑
i∈I∪C

xicv

 ≤ Lk,∀k ∈ K (17)

∑
i∈I∪S

∑
s∈S

tisv ≤ T1,∀v ∈ V (18)

∑
i∈I∪C

∑
c∈C

tick ≤ T2,∀k ∈ K (19)

deptiv + tisv ≤ atvs,∀i ∈ I ∪ S, s ∈ S, v ∈ V (20)

deptik + tick ≤ atkc,∀i ∈ I ∪C, c ∈ C, k ∈ K (21)

qi j =
∑
s∈S

zis jqs, i, j ∈ I, s ∈ S (22)

qi j =
∑
c∈C

zic jqc, i, j ∈ I, c ∈ C (23)

∑
r∈I∪S

(xirv + xrsv) − zis ≤ 1, i ∈ I, s ∈ S, v ∈ V (24)

∑
w∈I∪C

(xiwk + xwck) − zic ≤ 1, i ∈ I, c ∈ C, k ∈ K (25)

Constraint (8) specifies that each supplier can be served by only one logistics provider and one truck.
Constraint (9) ensures that each customer is served by only one logistics provider. Constraints (10)–(11)
ensure that each vehicle travels no more than its maximum distance that can be covered without
refueling. Constraints (12)–(13) ensure that flow conservation is achieved at the pickup and delivery
processes, respectively. Constraints (14)–(15) specify that the sub-tours can be eliminated on every
pickup/delivery route. Constraint (16) guarantees that the sum of supplier goods collected by the truck
should be less than the capacity of that truck. Constraint (17) ensures that the electro-tricycles’ capacity
meets the total demand of customers on a delivery route. Constraint (18) guarantees that the total
travel time during pickup process does not exceed the maximum route time allowed. Constraint (19)
guarantees that the total travel time during delivery process does not exceed the maximum route time
allowed. Constraints (20)–(21) ensure the arrival of vehicles to suppliers and customers. Constraint
(22) specifies the transport quantity from LP i to j, which is equal to the total quantities that are picked
up by LP j but previously by LP i. Constraint (23) specifies the transport quantity from LP i to j, which
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is equal to the total quantities that are delivered by LP j but previously by LP i. Constraints (24)–(25)
ensure the routes of LPs (i.e., which suppliers/customers each LP serves) in the pickup process and
delivery process, respectively.

4.2. Solution Methodology

4.2.1. Relevant Definitions and Solution Procedure

Our proposed mathematical model reflects the complexity of the problem, and can enhance the
necessity of designing a robust and reliable optimization method. For the clarity of the optimization
framework, relevant parameters are defined as follows.

Psize: Chromosome population size
gmax: Maximum number of iterations
Crosp: Crossover probability
Mutp: Mutation probability
Q: Vehicle capacity
TS: Travel speed
α: Penalty coefficient of early arrival
β: Penalty coefficient of late arrival
G1: Periodic incentive for LP1
G2: Periodic incentive for LP2
G3: Periodic incentive for LP3
G4: Periodic incentive for LP4
S0: Start point
B: Set of suppliers that have been visited
S/B: Set of suppliers have not been visited
dr: Distance from S0 to point r, r ∈ B
dsds: Distance from S0 to point s, s ∈ B/S
X: The tabu set used to distinguish commodities with different attributes cannot be

delivered together
C: Total cost savings provided if all the facilities form the grand alliance
In addition, we need to introduce the methodology applied to effectively optimize the vehicle

routing optimization problem in the proposed pickup and delivery logistics network. In real life,
logistics enterprises often aim at minimizing costs and maximizing profits, along with maintaining
customer satisfaction. These goals are somehow interrelated to the extent that operating on the
minimum possible cost could generate more profit, and making more profit would provide sufficient
means to achieve customer satisfaction. In the pickup and delivery logistics network, customer
satisfaction is critical, and is defined by their perception of the service and product’s quality. In view of
the problems which could emerge in the delivery process, we propose a three-step composite method
to solve the CPDPTW. At the first step, an improved K-means clustering algorithm is devised to assign
customers to appropriate LPs. The second step employs the DTDA to calculate the shortest routes
from LPs to suppliers based on the results from first step, and returns supplier information to the first
step. Finally, the INSGA-II algorithm is utilized to optimize the distribution routes, and then returns
the customer information to the first step. Figure 3 illustrates the optimization process, and Figure 4
shows the algorithm flowchart. It is worth noting that in this proposed methodology, the three steps
iterate until gmax, where the optimal solution is found.
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4.2.2. Improved K-Means Clustering Algorithm

Cost reduction and profit generation are strong incentives for any entity to cooperate with each
other, in modern logistics operations. In the current supply chain structure, transportation costs
constitute one major portion of logistics facilities operation costs. Transportation costs are mainly
affected by factors like the distance, speed, road quality, etc. [29]. Therefore, the operation cost of the
pickup and delivery logistics network can be lowered by reducing the travelled distance. Customer
clustering is a procedure where groups of customers in a logistics network are formed based of similar
features [27,28]. This paper adopts the proximity degree of customers to each LP as a clustering criterion.

We propose an improved K-means algorithm for clustering [55,56], considering its wide application,
simplicity and fast convergence. For the distance function in the improved K-means algorithm, squared
Manhattan distance is used in this paper following the convention. As shown in Figure 5, the customers
are distributed in a three-dimensional network including geographic coordinates and time axis.
The customers can be clustered based on the customer locations and time windows. For further
explanation, customers can be first clustered at time range [t1, t2], and then the space range can be
considered to determine if the above customers can be clustered.
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Our goal in using clustering is to find the initial routes for LPs to reach corresponding customers
in a cluster. Therefore, the clustering algorithm is executed only when there are at least two members in
the alliance. Parameter o refers to the number of LPs in the alliance. The improved K-means clustering
algorithm is shown in Figure 6. It is noticing that a tabu set X consist of locations and time windows
can be established at the beginning, and a customer can be considered to join a cluster based on the
tabu set X. For example, the customers whose time window [8:30, 9:30] cannot be grouped in the same
cluster with customers whose time window is [14:30, 15:30].
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4.2.3. Demand and Time-Based Dijkstra Algorithm

In our proposed pickup and delivery logistics network, a pickup operation is executed based
on customers clustering. Considering that the number of suppliers is far less than the number of
customers, we use the Demand and Time-based Dijkstra Algorithm (DTDA) to address the route
optimization problem. The DTDA can be seen as an exact algorithm based on Dijkstra algorithm for
solving the pickup process from suppliers [20]. The proposed DTDA needs to cluster the suppliers
into several clusters, which accounts for the demands and time windows of customers and ensures
that a truck can accommodate the demands in a cluster. Detailed steps are shown in Figure 7.
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4.2.4. Improved NSGA-II Algorithm

Owing to the complexity of the CPDPTW, commercial solvers are ineffective in incorporating
all the practical factors considered in the problem formulation. Compared with commercial solvers,
a heuristic algorithm can offer a series of feasible solutions for practical analysis [57]. The Improved
NSGA-II algorithm (INSGA-II) is developed from NSGA and is proposed by Deb et al. [58] in order to
complement NSGA’s lack of elitism and speed [41,59,60]. First, NSGA-II employs a fast-non-dominated
sorting algorithm, and the computational complexity is much lower than that of NSGA. Second,
it introduces an elite strategy to ensure that certain elite individuals are not abandoned during evolution.
Finally, it uses comparison operators among individuals in the population, so that individuals in
the quasi-pareto domain are representative of the population in the entire Pareto domain, ensuring
generalizability of solutions in the quasi-pareto domains.

In this paper, we use NSGA-II in combination with TS to solve our proposed CPDPTW. We
have retained the main framework of the NSGA-II algorithm and made some modifications to it. We
introduce the initialization part of TS to NSGA-II. TS has a flexible “memory” technology, which
can record and select the optimization process already carried out, thereby guiding the next search.
We generate the tabu list based on the real problem and then select an initial solution that is more
conducive to get the optimal solution. In addition, the sweep algorithm is utilized to enforce the
binding of constraints (14)–(15) and increased the quality of solutions in INSGA-II. The detailed steps
of the algorithm are shown in Figure 8.

For further explanation, assume that LP1 serves ten customers with a fleet of electric tricycles
whose initial arrangement for delivery is shown in Figure 9. According to this figure, the route
generation is related to the loading capacity of the electro-tricycle and the time windows of the
customers. If the customers’ demands exceed the load capacity of an electric tricycle, or the time
windows are unsuitable for accepting service from this electric tricycle, this electric tricycle stops
routing to the remaining customers who will be served by the next vehicle. In addition, in our
proposed INSGA-II algorithm, we use Partial Mapped Crossover in the genetic operation. We select
two chromosomes from the initial population and one point on each chromosome. The two selected
points are then exchanged to generate the new offspring chromosomes. Considering the total cost after
exchanged, two better chromosomes are selected from the four (parent and children chromosomes) to
regenerate the next generation. The procedure of Partial Mapped Crossover is illustrated in Figure 10.
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For example, after the position of 4 becomes 2, the solution of the route for the new chromosome
should be reacquired considering the demands and time windows of 4 and 2.
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Figure 10. Process of Partial-Mapped Crossover. 

5. Profit Distribution Strategy 

5.1. Improved Shapley Value Model 

Many previous studies have demonstrated the Shapley model's efficiency of profit distribution 

in multi-participant games [47,51]. In the CPDPTW optimization problem, both suppliers and 

customers are served by the nearest LP to save costs and increase benefits. Whether a member (an 

LP) joins the alliance or not depends on the fairness of the profit distribution mechanism. The 

parameters associated with the profit distribution mechanism in this study are defined as follows:  

N: The set of members in the alliance. The number of N’s subset is 2N-1, excluding the null set. 
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5. Profit Distribution Strategy

5.1. Improved Shapley Value Model

Many previous studies have demonstrated the Shapley model’s efficiency of profit distribution in
multi-participant games [47,51]. In the CPDPTW optimization problem, both suppliers and customers
are served by the nearest LP to save costs and increase benefits. Whether a member (an LP) joins the
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alliance or not depends on the fairness of the profit distribution mechanism. The parameters associated
with the profit distribution mechanism in this study are defined as follows:

N: The set of members in the alliance. The number of N’s subset is 2N
−1, excluding the null set.

All subsets of N are denoted as S, where S ∈ N. N is also called the grand alliance.
σ Synergy requirement
V(S): The profits of forming alliance S
C0(i): Costs of i without coalition, i ∈ I
C(S): The total cost of alliance S
π(i): Rank of i in sequence π, i ∈ I
η(i,π, u): The cost reduction percentage to participator i on step u along sequence π
Participants tend to hope that their contribution to the alliance will be reasonably rewarded.

Therefore, to ensure the stability of the alliance, participants need a reasonable and effective profit
distribution mechanism. Improved Shapley value model presents an effective profit distribution
mechanism based on the contribution of participants under cooperative game theory. Equation (26)
means to allocate the benefits or cost savings obtained by the alliance to the participants who agree
to cooperate.

ϕi(N, V) =
∑

S⊂N,i∈S

[
(|S| − 1)!(|N| − |S|)!

|N|!

]
× [V(S) −V(S− {i})] (26)

In Equation (26), N represents the set of all members in the alliance. S is a subset of N.
The term V(S) −V(S− {i}) indicates the marginal contribution of participant i when i joins the alliance.
The improved Shapley value model has four properties: efficiency, symmetry, dummy and additivity.
These properties guarantee the rationality of benefit distribution and the stability of the alliance. In fact,
the purpose of an alliance in the improved Shapley value model is to gain more profit, which is
expressed by the synergy requirement σ. The larger the value of σ, the greater the benefits that the
alliance organizer receives. Correspondingly, a larger value of σ will decrease the benefits to other
members of the alliance and consequently destabilize the alliance. The value of V(S) can be calculated
by formula (27).

V(S) = (1− σ)max
{∑

i∈S
C0(i) −C(S), 0

}
(27)

Equation (27) states that an alliance is beneficial only if the participation of a member would
decrease the total cost compared to this member not participating. Otherwise, V(S) will be set to 0.

5.2. Strictly Monotonic Path Principles

Strictly monotonic path (SMP) selection strategy is a method for evaluating alliance stability given
a profit distribution scheme. Different alliance sequences show different levels of stability. The cost
reduction percentage η(i,π, u) can be calculated by Equation (28).

η(i,π, u) =
φi(∪π(µ)≤µ,v)

C0(i)
,π(i) ≤ µ (28)

SMP can be described as: when a new participant joins the alliance, the cost reduction percentages
of the original members in the alliance will increase. When there are multiple eligible alliance sequences,
we will choose the optimal alliances based on the SMP selection strategy. The specific process is
presented as in Figure 11.
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6. Case Study

6.1. Algorithms Optimization Comparison

To assess the applicability of the proposed algorithm to LNPD optimization, we run and test
our INSGA-II algorithm, the MOPSO algorithm [60] and the NSGAII-CW algorithm [51]. We use
20 different datasets, which are illustrated in Table 2. To evaluate their effectiveness, we compare the
optimal total cost of delivery, the optimal number of vehicles and computation time across these three
algorithms. We calibrated some parameters of INSGA-II to improve its performance. psize = 150 is the
population size, gmax = 1000 represents the maximum number of iterations; crosp = 0.9 and mutp = 0.1
represent the parameters of crossover and mutation, respectively. The vehicle capacity Q = 180, travel
speed TS = 40, Mv= 100, α = 0.05, and β = 0.1. The optimal solutions from the three algorithms with
randomly generated datasets are shown in Table 3.

Table 2. Description of instances.

Instance Number of Customers Number of Logistics Providers

1–4 90 8,6,4,2
5–8 110 8,6,4,2

9–12 130 10,8,6,4
13–16 150 10,8,6,4
17–20 200 12,10,8,6

Table 3. Algorithms optimization results comparison.

Instance
INSGA-II NSGAII-CW MOPSO

Cost ($) No. of Vehicles Time (s) Cost ($) No. of Vehicles Time (s) Cost ($) No. of Vehicles Time (s)
1 3757 15 207.3 4615 15 208.4 6650 15 223.7
2 4752 16 173.4 4625 16 176.2 5201 16 167.2
3 6952 14 134.3 6497 14 130.4 7663 14 145.2
4 40,700 13 89.3 41,800 13 87.1 42,031 13 84.2
5 5717 18 211.4 7534 18 213.3 8626 18 214.3
6 7058 15 178.6 6793 15 180.2 7982 16 159.7
7 9611 15 153.2 12,818 15 155.3 14,605 15 140.3
8 52,128 14 97.2 59,996 14 96.4 54,392 15 91.9
9 7444 20 284.2 7892 20 288.5 8077 21 271.5

10 7448 20 249.2 8088 20 253.6 9140 20 240.8
11 12,156 18 206.5 15,255 18 205.3 14,120 18 179.8
12 18,487 16 143.2 20,744 16 142.7 21,245 17 138.1
13 8006 22 272.4 8877 22 273.5 9560 22 242.7
14 10,271 20 234.6 10,605 20 236.3 11,393 20 221.3
15 17,821 19 197.3 20,552 19 196.4 21,948 19 181.2
16 24,949 18 153.5 29,110 18 156.2 32,101 18 139.7
17 18,247 27 374.5 19,388 27 371.7 20,957 27 357.8
18 16,845 25 306.8 17,354 25 308.2 18,409 25 321.7
19 17,398 25 285.1 18,814 24 284.6 17,957 24 274.5
20 21,049 25 252.3 22,536 25 253.4 23,316 25 246.3

Average 15,540 19 210.2 17,195 19 210.8 17,769 19 202.1
t-test −3.86 −5.98

p-value 1.04 × 10−3 9.27 × 10−6

Table 3 lists the optimal solution and the computation time returned by each algorithm for each
data instance. For cost minimization, INSGA-II performs better than NSGAII-CW and MOPSO in
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most cases. For vehicle number, the results indicate that the INSGA-II, NSGAII-CW and MOPSO have
the same optimization effectiveness. However, in terms of computation time, NSGAII-CW tends to
need more time to converge than the other two algorithms. INSGA-II has slightly higher computation
time than MOPSO but outperforms the latter in cost minimization. The t-test results and p-values
for comparing the minimum costs in NSGAII-CW and MOPSO to the minimum cost in INSGA-II are
shown at the bottom of Table 3, which shows that INSGA-II reaches significantly lower total cost than
the other two algorithms.

6.2. Data Description

To evaluate the applicability of the proposed optimization model in the real world, a case study
with regard to the proposed logistics network optimization mechanism is conducted in Chongqing,
China. In the actual pickup and delivery logistics network of the city, we selected 4 logistics providers,
10 suppliers and 180 customers, whose geographical distributions are highly mixed (instead of
clustered) with one another, to illustrate the customer allocation problem. The layout of logistics
network before optimization is shown in Figure 12. Triangles refer to suppliers. Diamonds refer to LP1
and the customers it serves. Crosses, squares and stars are used to symbolize LP2, LP3 and LP4, a well
as the customers they each serve, respectively. Table 4 shows the characteristics of all logistics facilities.
Logistics service overlap pickup and delivery can be found in the original logistics network. Therefore,
further study on logistics network optimization based on the collaborative mechanism is necessary.
In addition, Table 8 shows the characteristics of all logistics facilities.
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6.3. Optimization Results

In this section, we present the optimization setup in the case study by setting the initial values
for the parameters. The parameters in the objective function are: Lv = 1500, Lk = 180, fk = 0.04997,
ce = 0.04297, cv = 1.2, Mv = 150 Mk = 100, T = 52, Nt = 5. To encourage logistics facilities to
cooperate, we assume that the government provide LPs who join the alliance with incentives every
working period: G1 = 2145, G2 = 2370, G3 = 1849, and G4 = 2291. The total cost savings provided all
the facilities form the grand alliance is C = 8656.

In this study, a working period consists of five working days. INSGA-II algorithm is used to
reassign customers to the LPs and calculate the total cost of a working period. Cost savings need
to be distributed to each participant in the alliance via the improved Shapley value model. Table 5
shows the optimization results including the initial cost, optimized cost, demand and cost savings
for each possible alliance scenario. Table 6 shows the customers served by each supplier. The initial
supplier and customer assignments to LPs and the routes for pickup from suppliers and delivery to
corresponding customers are listed in Table 7. Table 8 shows the optimal suppliers and Customers’
assignment in the grand alliance.

Table 5. Comparison between initial and optimized network over one working period.

Alliances
Initial Optimized

V(t)
Cost ($) Demand(kg) Cost ($) Demand(kg)

{LP1} 42,905 447,200 27,459 483,600 15,446
{LP2} 47,406 410,800 30,340 353,600 17,066
{LP3} 36,992 374,400 23,675 182,400 13,317
{LP4} 45,820 426,400 29,325 525,200 16,495

{LP1LP2} 90,311 858,000 25,169 837,200 65,141
{LP1LP3} 79,897 821,600 24,861 666,000 55,036
{LP1LP4} 88,725 873,600 30,160 1,008,800 58,565
{LP2LP3} 84,398 785,200 25,611 536,000 58,787
{LP2LP4} 93,226 837,200 23,433 878,800 69,793
{LP3LP4} 82,812 800,800 29,135 707,600 53,676

{LP1LP2LP3} 127,303 1,232,400 23,658 1,019,600 103,645
{LP1LP2LP4} 136,131 1,284,400 26,844 1,362,400 109,287
{LP1LP3LP4} 125,717 1,248,000 32,880 1,191,200 92,837
{LP2LP3LP4} 130,218 1,211,600 29,417 1,061,200 100,801

{LP1LP2LP3LP4} 173,123 1,658,800 34,399 1,658,800 138,724

Table 6. Distribution of customers’ orders from each supplier.

Supplier Customer Unit Allocation

S1 C7 C10 C19 C21 C30 C31 C73 C96 C143 C145 C163
S2 C4 C45 C51 C58 C80 C91 C92 C94 C97 C146 C149 C151 C178
S3 C34 C42 C44 C59 C63 C66 C68 C95 C103 C117 C122 C127 C154 C155 C177
S4 C11 C16 C17 C41 C82 C85 C93 C100 C123 C126 C173 C176 C77 C113
S5 C8 C29 C35 C52 C62 C65 C98 C102 C162 C175
S6 C5 C12 C25 C60 C61 C101 C106 C112 C140 C141 C144 C153 C161
S7 C27 C43 C56 C83 C86 C105 C118 C125 C135 C137 C150 C156 C165
S8 C24 C55 C75 C76 C78 C90 C107 C131 C134 C136 C139 C164
S9 C13 C18 C39 C79 C89 C104 C120 C129 C138 C166

S10 C1 C2 C14 C20 C28 C33 C46 C49 C99 C110 C121 C147 C15 C32
S11 C40 C54 C70 C71 C72 C124 C130 C142 C148 C158 C170 C179 C180 C169
S12 C3 C36 C38 C47 C81 C88 C128 C171 C172 C174
S13 C22 C37 C48 C84 C87 C115 C119 C133 C152 C167 C109
S14 C26 C64 C69 C74 C111 C114 C157 C23 C159
S15 C6 C9 C50 C53 C57 C67 C108 C132 C160 C168 C116
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Table 7. Initial suppliers and Customers’ assignment.

Logistics Provider Suppliers and Customers Allocation Symbol

LP1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
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Table 8. Suppliers and Customers’ assignment in the grand coalition.

Logistics Provider Suppliers and Customers Allocation

LP1

S1 S12 S13 S9

C1 C2 C3 C7 C10 C13 C17 C18 C19 C20 C27 C29 C30 C31 C32 C33 C34 C35 C36
C37 C38 C39 C40 C46 C47 C48 C51 C52 C63 C81 C84 C85 C97 C100 C108 C109
C110 C112 C113 C114 C115 C128 C155 C160 C161 C162 C165 C166 C167 C176

LP2

S15 S14 S11 S5 S10

C6 C8 C9 C14 C15 C21 C22 C23 C26 C28 C49 C50 C53 C54 C57 C58 C62 C64 C65
C66 C67 C68 C69 C86 C87 C88 C89 C101 C111 C126 C127 C156 C163 C164 C172

C177 C180

LP3

S4 S2

C4 C11 C16 C41 C44 C45 C59 C60 C61 C77 C79 C80 C82 C83 C91 C92 C93 C94
C95 C96 C98 C99 C102 C103 C105 C107 C129 C130 C131 C132 C141 C151 C154

C157 C169 C170 C175 C178

LP4

S7 S8 S3 S6

C5 C12 C24 C25 C42 C43 C55 C56 C70 C71 C72 C73 C74 C75 C76 C78 C90 C104
C106 C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C133 C134 C135
C136 C137 C138 C139 C140 C142 C143 C144 C145 C146 C147 C148 C149 C150

C152 C153 C158 C159 C168 C171 C173 C174 C179

In comparison with the initial customer allocation, the cooperative network in Table 12 shows
that the number of customers served by per LP has changed. In the non-optimal network, each LP has
to serve each supplier, while the number of suppliers served by each LP obviously decreased after
optimization. For example, before optimization, LP1 served 15 suppliers (S1-S15), whereas LP1 served
only four suppliers (S1, S12, S13 and S9) after optimization. This condition greatly reduces the cost.
The routes for pickup and delivery are also optimized in the grand alliance scenario. The logistics
network will be simplified as the unnecessary routing is minimized, which will also greatly reduce
travel distances and thus transportation costs.
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6.4. Improved Shapley Model Application and Coalition Sequence Selection

To ensure long-term cooperation and the stability of the alliance in the CPDPTW, the benefits and
cost savings should be reasonably allocated to each LP [61]. In this study, the synergy requirement
value σ = 0 which means the alliance organizers take no profit generated by the alliance. Thus, all the
profits are shared by the logistics providers. All non-empty alliances from the combinations of LPs are
shown in Table 9.

Table 9. Profit distribution in Two-echelon logistics distribution network (unit: USD).

Alliances V(t) ϕ(s,v)

{LP1} 15446 (15446,0,0,0)
{LP2} 17066 (0,17066,0,0)
{LP3} 13317 (0,0,13317,0)
{LP4} 16495 (0,0,0,16495)

{LP1LP2} 65141 (32503,32638,0)
{LP1LP3} 55036 (27607,0,27429,0)
{LP1LP4} 58565 (29239,0,0,29326)
{LP2LP3} 58787 (0,31268,27519,0)
{LP2LP4} 69793 (0,35182,0,34611)
{LP3LP4} 53676 (0,0, 25249,28427)

{LP1LP2LP3} 103645 (34989,36932,31723,0)
{LP1LP2LP4} 109287 (33745,39427,0,36115)
{LP1LP3LP4} 92837 (32002,0,29469,31366)
{LP2LP3LP4} 100801 (0,37858,27925,35018)

{LP1LP2LP3LP4} 138724 (34623,40315,29212,34574)

Table 9 shows the cost savings for each alliance and how the savings are distributed among
the LPs in the alliance, evaluated based on the improved Shapley value model. The same LP may
benefit differently from various alliances. For example, the cost saving of LP1 operating alone
is $15446, after sharing vehicles and resources with LP2, the saved cost for LP1 becomes $32503.
By contrast, a situation exists where the benefits of existing members will decrease if new members
join. For example, after LP2, LP3, and LP4 form an alliance, the addition of LP1 changes the cost saving
for LP4 from $35,018 to $34,295. Therefore, comprehensive decision-making requires that the profits to
other members must be guaranteed with the addition of new members. In other words, the stability of
the alliance depends on the changes in members’ profits before and after new members join. Figure 13.
shows the percentage of saved costs in the process of forming a grand alliance and a feasible alliance
sequence that maintains the alliance stability is illustrated in Figure 14.
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The examination of alliance sequences is critical to the profit distribution strategy and to
participants’ willingness to become member. In other words, the order in which members are
added to the alliance affects the distribution of profits and the satisfaction of SMP principles.
Nevertheless, following the examination of every possible combination, the SMP-based alliance
sequence is π1 = {LP1, LP3, LP4, LP2}. All possible alliance sequences satisfying SMP principles are
calculated based on Equation (28) and shown in Table 10.

Table 10. Feasible cooperation sequence based on SMP principle.

π1={LP1,LP3,LP4,LP2}

Player i LP1 LP3 LP4 LP2

η(i,π, 1) 36.0%
η(i,π, 2) 66.6% 71.5%
η(i,π, 3) 74.9% 77.5% 69.9%
η(i,π, 4) 80.7% 85.0% 75.5% 79.0%

π2 = {LP3, LP1, LP4, LP2}

Player i LP3 LP1 LP4 LP2

η(i,π, 1) 36.0%
η(i,π, 2) 71.5% 66.6%
η(i,π, 3) 77.5% 74.9% 69.9%
η(i,π, 4) 85.0% 80.7% 75.5% 79.0%

π3 = {LP1, LP4, LP3, LP2}

Player i LP1 LP4 LP3 LP2

η(i,π, 1) 36.0%
η(i,π, 2) 67.0% 57.7%
η(i,π, 3) 74.9% 69.9% 77.5%
η(i,π, 4) 80.7% 75.5% 79.0% 85.0%

π4 = {LP4, LP1, LP3, LP2}

Player i LP4 LP1 LP3 LP2

η(i,π, 1) 36.0%
η(i,π, 2) 57.7% 67.0%
η(i,π, 3) 69.9% 74.9% 77.5%
η(i,π, 4) 75.5% 80.7% 79.0% 85.0%
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From Table 11, in the design of the coalition, we have considered that LP1 joined the alliance first
followed by LP3. The percentages of operation cost reduced for LP1 and LP3 are 66.6% and 71.5%,
respectively. LP4 is the third member joining the coalition, raising the cost reduction percentage for
LP1, LP3 and LP4 to 74.9%, 77.5% and 69.9% respectively. The final sequence for the grand alliance
{LP1, LP3, LP4, LP2} yields a cost reduction percentage of {80.7%, 85.0%, 75.5%, 79.0%}, respectively.

Table 11. Optimal cooperation sequence based on SMP principle.

π1={LP1,LP3,LP4,LP2}

Player i LP1 LP3 LP4 LP2

η(i,π, 1) 36.0%
η(i,π, 2) 66.6% 71.5%
η(i,π, 3) 74.9% 77.5% 69.9%
η(i,π, 4) 80.7% 85.0% 75.5% 79.0%

Figure 15 shows the cost change for every LP before and after resource sharing in a collaborative
logistics network. The cost for every logistics provider substantially decreased when LPs cooperate
and join the alliance. For instance, the cost for LP1 before choosing to cooperate is $42,905, while the
cost after cooperation is $34,623. The reduction is caused by collaborations including resource sharing,
vehicle sharing and customer service sharing among LPs. The result suggests that the proposed
cooperation strategy is effective.
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6.5. Alliance Stability

In this section, we examine the accuracy of the improved Shapley value model to identify an
optimal profit distribution mechanism. Four different profit distribution methods are chosen to
calculate the profit to each LP: the improved Shapley value model, the Minimum Cost Remaining
Savings model (MCRS), the Cost Gap Allocation (CGA) model and the Equal Profit Method (EPM)
model. To determine the performance of each method, the result of each profit distribution mechanism
is compared to the core center [50]. According to the snowball theory [48, 50, 16], the strategy closest to
the core is the best. Equation (29) is used to calculate the position of the core center where v(N) is the
total cost savings from the grand alliance, β represents an alliance member, and α is a parameter for
controlling the scope of the core. Table 12 shows the profit distribution results for each LP under these
distribution mechanisms. Figure 16 illustrates the core position and corresponding distances.
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Table 12. Profit distributions according to MCRS, Shapley, CGA and EPM.

MCRS Improved Shapley Value Model CGA EPM

LP1 34,119 34,623 33,493 35,255
LP2 37,801 40,315 41,061 38,952
LP3 29,572 29,211 30,166 29,437
LP4 37,230 34,574 34,003 35,080
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In Figure 13, the numbers in parentheses are the distribution of profit for LP1, LP2, LP3 and
LP4 in order. However, the use of the improved Shapley value model for LP3 is the lowest, but the
improved Shapley value model is the closest distance to the core center. Therefore, the improved
Shapley value is the closest to the core center and thus the most appropriate profit distribution strategy.
This result implies that individual benefits are not supposed to be the most important consideration
in a cooperative logistics network. Decision makers should be aware of the overall impacts of the
cooperative network.

6.6. Analysis of Two Coalition’s Network

In multi-echelon logistics network optimization, collaboration is a common strategy to reduce
cross-transportation and the complexity of logistics networks. Studies on cooperation in logistics
network optimization mostly consider the formation of a single alliance. However, in real life, multiple
alliances may also be formed in a logistics network. Therefore, this paper considers a case of two
alliances. The SMP-based alliance sequences are shown in Table 13.

Table 13. Two sub-coalition sequences based on SMP.

π1={LP2,LP4} π2={LP1,LP3}

Player i LP2 LP4 LP1 LP3

η(i,π, 1) 36.0% 36.0%
η(i,π, 2) 74.2% 75.5% 66.6% 71.5%

π3 = {LP4, LP2} π4 = {LP3, LP1}

Player i LP4 LP2 LP3 LP1

η(i,π, 1) 36.0% 36.0%
η(i,π, 2) 75.5% 74.2% 71.5% 66.6%

As shown in Table 13, the order in which members join the alliance has an impact on the benefits
of the alliance. For LP2 and LP4, the situation where LP4 joins the alliance after LP2 can save more
cost than where LP4 joins the alliance before LP2. Similarly, for LP1 and LP3, the situation where
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LP3 joins the alliance first can save much more cost than where LP1 joins the alliance first. Therefore,
two alliances π1 = {LP2, LP4} and π3 = {LP1, LP3}will be formed in the end.

Figure 17 shows the percentages of cost reductions during the formation of the two alliances.
After the new members join, the percentage of cost reduction increases dramatically in both alliances,
proving that the solution follows the SMP rules. In the final two alliances, the cost reduction percentage
reaches 75.5%, 74.2%, 71.5% and 66.6% for LP4, LP2, LP3 and LP1, respectively, after LP4 teamed with
LP2 and LP3 teamed with LP1. This is a notable increase in the cost reduction percentages for LP2 and
LP1, up from 36.0% (for LP2 and LP1) before forming the alliances.
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6.7. Discussion

To select the optimal alliance strategy and enhance the long-term stability of the cooperative
logistics network, we compare the benefits of each participant in the two-alliance scenario and
single-alliance scenario, respectively. Table 14 presents the allocated profits to the four logistics
providers considered in our case study.

Table 14. Comparison of different network scenarios.

Player i Two Sub-Alliances Grand Alliance

LP1 35,182 34,665
LP2 34,611 39,861
LP3 27,607 29,903
LP4 27,429 34,295
Total 124,829 138,724

As shown in Table 14, the two-alliance strategy generates a total profit of $124,829. By contrast,
the grand-alliance strategy produces more benefits with a total profit of $138,724 than the two-alliance
strategy. For individual LPs, joining a sub-alliance vs. joining the grand alliance also presents different
benefits. For example, LP1 gains more benefits ($35,182) by joining a sub-alliance with LP3 than joining
a grand alliance with a profit of ($34,665). For LP3, however, the situation is the opposite, with a grand
alliance being more profitable than a sub-alliance with LP1. This situation will prompt LP3 to give
up the opportunity to form a sub-alliance with LP1 and choose to join the grand alliance, thereby
leaving LP1 with no choice but to join the grand alliance as well. Therefore, the logistics network will
ultimately be stable when the grand alliance is formed.
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In recent years, collaboration between logistics facilities has played an important role in optimizing
of enterprise logistics supply chain. Further sharing of transportation resources can save additional
costs. In addition, local government incentives for cooperation indicate that the governments are
willing to achieve sustainable development in their administrative regions. Transportation activities
are among of the main factors contributing to regional economic development as well as environmental
issues. Hence, they should be organized efficiently. Therefore, encouraging the formation of alliances
benefits logistics enterprises and many members of society. However, forming a grand alliance may
present some management challenges. For example, the alliance may meet the strict monotonous path
principle in the short term. However, due to the dynamic nature of modern logistics services and the
changes in operation costs over time, participants may face serious challenges in internal financial
and operational crises. Therefore, the distribution of benefits will be affected and the stability of the
grand alliance will be threatened. As a precautionary measure, different situations must be assessed
before starting negotiations. The grand alliance should be divided into groups, and the potential risks
associated with individual facilities in the network before making a final decision.

7. Conclusions

This paper studies the impact of cooperation among logistics providers on logistics networks with
pickup and delivery activities under time windows. One- and two-alliance strategies are studied to
assess each participant’s willingness to minimize costs and maximize profits. A three-stage cooperation
strategy is proposed to describe the problem and optimize the cost of non-empty alliances. At the first
stage, this study establishes a multi-objective programming model to minimize the number of vehicles
and the total cost for the collaborative logistics network. A composite algorithm, which consists of
improved k-means clustering algorithm, DTDA and INSGA-II, Dijkstra algorithm is used to calculate
the travel cost of trucks. To simplify the calculation, the improved clustering algorithm is utilized to
assist LPs to find the initial routes. INSGA-II is presented to optimize the routes of electro-tricycles in
the delivery process. At the third stage, a cooperative alliance strategy based on improved Shapley
value model is proposed and the optimal profit allocation strategy is obtained in the logistics network.
Because different alliance sequences have various cost reduction percentages, the SMP theory is used
for optimal sequence selection.

To test the collaboration mechanism and CPDPTW implementation in real life, an empirical
analysis is conducted on a pickup and delivery logistics network in Chongqing, China. The total cost
change from before to after implementing collaboration mechanism is $138724. A comparison among
the INSGA-II, NSGAII-CW and MOPSO algorithms reveals that INSGA-II performs outstandingly
among the three in terms of solution quality. In selecting the best profit distribution scheme, we find
that the improved Shapley value method returns the profit distribution scheme closer to the core center
than MCRS, CGA and EPM. In addition, we share profits to each member based on the assumption
that the synergistic demand is zero. Through the analysis of two alliance strategies including one
grand alliance and two sub alliances respectively and the formation of the grand alliance is the most
desirable for LPs.

From a practical point of view, the optimization of the CPDPTW provides a strategic collaboration
mechanism for supplier and LPs for the improvement of logistics transportation network. On the
one hand, the formation of a collaboration mechanism achieves the additional profits among the
cooperative members in the entire transportation system. On the other hand, for suppliers and
customers, a coordinated logistics network with cooperation can provide more timely services to meet
the timeliness requirements of suppliers and customers. Considering the collaboration mechanism
and optimization strategy proposed in this paper, the reductions of cost and vehicle number not
only generate great economic benefits in reducing resource consumption, but also produce great
positive externalities to the environment, thus providing favorable theoretical support for profit seekers.
The discussion about the influence of different profit allocation methods on the stability of the alliance
will provide the best profit allocation strategy for the cooperative members, and thus guarantee the
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sustainability of the cooperation. In addition, reasonable logistics network resource configuration
through cooperation will propel the sustainable development of an intelligent transportation system and
further promote the establishment of a resource-friendly society. Therefore, a reasonable collaboration
mechanism can serve as a reference for logistics companies and local governments to further cooperate
and establish better cooperation strategies.

This work aims to study the CPDPTW, a special case of LNPD, which has so far been insufficiently
investigated by existing research. Future work can be conducted in the following directions:
(1) Considering a multi-echelon pickup and delivery logistics network and studying how to achieve
coordination between multi-level facilities. (2) Considering the cooperation among suppliers based on
the study of cooperation among logistics providers. (3) Considering vehicle sharing during pickup
and delivery processes, which can make full use of vehicle resources. (4) Introducing state-space-time
networks into a pickup and delivery logistics network and considering their impacts on logistics cost.
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