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Abstract: The presence of underground voids in regions suitable for sustainable development can
adversely affect the stability of the overlying infrastructures. In this paper, the collapse loads of
strip rigid footings resting on sand with single and double continuous voids are determined for a
frictional Mohr-Coulomb material following the non-associated flow rule. For use by practitioners,
design charts are proposed to evaluate the well-known bearing capacity factor Nγ as a function of
the dimensionless parameters related to the vertical and horizontal void distances from the footing,
void shape, and spacing between the two voids, as well as the soil friction angle. The computational
result compares quite favorably with the available theoretical and numerical solutions. The failure
mechanism is broadly discussed based on the pattern of soil displacement around the footing and void.
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1. Introduction

Civil engineering design and construction processes have emphasized the safety and serviceability
of infrastructure. In recent years, most infrastructure is planned not only to endure external and
internal disturbance without significant loss of integrity and functionality over time, but also to
improve sustainability elements in every stage of the design and construction [1]. Meanwhile, the
robustness of infrastructure is tied to societal vulnerability and resilience. As an example, the formation
of subsurface voids, leading to ground and sinkhole subsidence, represents a risk of infrastructure
performance, which can be potentially detrimental to the safety of humans as well as the environment
and communities.

Footings are often placed on ground with voids that are either undetected before construction
or formed after construction. The underground voids typically occur as a result of the dissolution
of soluble rocks, the dynamic loading caused by construction and mining activities, the existence of
nearby leaking pipelines, and the subsidence of poorly compacted trench backfill [2]. There are studies
on the stability of footings located above voids [3–10] and footings on geosynthetic-reinforced soil
with voids [11–17]. In the literature, researchers investigated the effect of the shape, size, location,
and number of voids, as well as the type, dimension, number, and configuration of the geosynthetics.
Lai et al. [18] further studied the bearing capacity of low geosynthetic-reinforced embankments
overlying voids.

The bearing capacity of a centrally and vertically loaded strip footing is usually determined by
the formula proposed by Terzaghi [19], assuming that the shear strength of soil can be represented by a
linear Mohr-Coulomb failure envelop:

qu = cNc + qDNq +
1
2
γBNγ (1)
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where, qu is the ultimate bearing pressure, c is the cohesion of the soil, q is the surface surcharge,
D is the depth of embedment, γ is the unit weight of soil, B is the width of the footing, and Nc,
Nq, and Nγ are the non-dimensional bearing capacity factors related to cohesion, surcharge, and
soil weight, which are all functions of the soil friction angle ϕ. Such additivity of the individual
contributions simplifies the mathematical analysis substantially and hence this solution is widely used
in engineering practice. However, Equation (1) is not strictly correct because soil response in the plastic
range is non-linear, implying that plastic theory does not satisfy the superposition principle valid in
elasticity [20]. As demonstrated in Bolton and Lau [21], Equation (1) yields conservative estimates of
the ultimate bearing capacity.

The bearing capacity factors Nc and Nq are solved analytically using the method of characteristics
(also called slip-line method) assuming that the soil follows an associated flow rule (i.e., the dilation
angle ψ equal to ϕ) [22]. It is generally expected that the method enables accurate prediction, although
the closed-form solution can be obtained for a weightless soil. In contrast, the evaluation of Nγ requires
that the soil weight be taken into account. In this case, the stress characteristic field may be constructed
numerically and therefore the solution is typically found using the finite element method (FEM) and
finite difference method (FDM) [23–26].

For a strip footing on the surface of sand (for which both surcharge and soil cohesion are zero),
the bearing capacity formula of Equation (1) reduces to

qu =
1
2
γBNγ (2)

It is noted that the term sand implies the granular material (particulate network) and the long-term
condition that requires effective stress analysis, which is applicable to geotechnical analysis. A number
of approximate solutions for Nγ have been reported in literature and a comprehensive overview
is given by Diaz-Segura [27]. Consideration is given to the effects of footing geometry (e.g., strip,
rectangular, square, circular, and conical footings), footing roughness (e.g., footing-soil interface),
soil properties (e.g., friction angle, relative density, and anisotropy), stress level (e.g., mean effective
stress and intermediate principal stress) and non-associativity (i.e., the dilation angle ψ being less than
ϕ) [28–35].

This study presents a comprehensive set of Nγ values for strip footings resting on sand with a
variety of void numbers, shapes, and locations, as well as a range of friction angles. The technique
used involves application of the FEM. Previously, the FEM was applied to analyze the yield pressure of
cohesive-frictional soils with voids by several researchers [3,4,36,37]. Recently, Lee et al. [38] calculated
the finite element solutions for the Nc value of strip footings on clay with voids. Furthermore, the limit
analysis theory was employed to study the bearing capacity of strip footings above voids in two-layered
clays and rock mass by Xiao et al. [39,40]. Zhou et al. [10] extended the limit analysis to evaluate the
collapse load of the footing-above-void system by using the discontinuity layout optimization (DLO)
technique. However, no thorough analysis of the drained bearing capacity of strip footings on sand
has been performed and the corresponding Nγ values are not available in literature.

2. Problem Statement

Figure 1 illustrates the geometries and parameters of the problem analyzed. A rigid strip footing
of width B is placed on the horizontal surface of an isotropic homogenous soil of friction angle ϕ and
unit weight γ. A static vertical load is imposed at the centerline of the footing. By considering the case
of zero surcharge and zero soil cohesion, the bearing capacity factor Nγ can be computed directly using
finite element analysis. The bearing capacity of the footing above underground openings is influenced
by the size, shape, location, and number of voids. Kiyosumi et al. [7] investigated the dimension of
voids in calcareous sediments and revealed that the size of voids ranges from less than 1 to as large
as about 10 m. A square-shaped void is adopted in this study, as the influence of void shape can
be neglected [3]. As shown in Figure 1a, the shape and location of the void are quantified in terms
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of dimensionless parameters, i.e., m, n, α, and β. The parameters m and n represent the void height
and width normalized by the footing width B. The parameters α and β designate the relative vertical
and horizontal distances from the centerline of the footing to the center of the void normalized by B.
Figure 1b,c show the parallel and symmetrical configurations of two voids, respectively. It is assumed
that the two voids have the same size and shape at a given depth. The two voids are separated by the
parameter s, defined as the horizontal distance between two void centers normalized by B.
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Figure 1. Problem definition and notation.

3. Finite Element Model

A series of small strain finite element analyses was carried out using the commercial software
PLAXIS 2D version 2012. The soil was modeled with fifteen-node triangular elements and the footing
was modeled with six-node triangular plate elements. Figure 2 shows a schematic of the boundary
conditions and finite element mesh used in this study. The external boundaries are positioned 16.5B
laterally from the edge of the footing and 15B beneath the footing. In the arrangement, the boundary
effect on the estimation of the failure load can be neglected. The vertical boundary is restrained
against horizontal displacement, and the bottom boundary is restrained against displacement in the
vertical and horizontal directions. Small elements were introduced in the area adjacent to the footing to
enhance the accuracy of the numerical results. The underside of the footing was simulated as perfectly
rough by specifying a tied contact constraint at the soil-footing interface.
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Soil is idealized as an elastic-perfectly plastic material obeying the linear Mohr-Coulomb yield
criterion. The friction angle ϕ is varied from 20◦ to 40◦ in 10◦ increments. Since it is well known that
the dilatancy angle ψ is considerably less than the friction angle for real soils, the analyses with a
non-associated flow rule were undertaken using realistic pairs of ϕ and ψ: ϕ = 30◦ and ψ = 0◦, ϕ = 30◦

and ψ = 0◦, ϕ = 40◦ and ψ = 12◦. This set is consistent with predictions by Bolton [41] for the critical
state of sands. As adopted by Diaz-Segura [27] for sands, the Young’s modulus and Poisson’s ratio
were set to Es = 40 MPa and ν = 0.3, respectively. The unit weight was assumed to be γ = 20 kN/m3.
However, the selection of γ is immaterial because the Nγ value can be normalized almost perfectly
with respect to γ [34]. The coefficient of earth pressure at rest K0 was taken as unity to calculate the
initial stresses with self-weight of the soil.

Footing was modeled as a non-porous linear elastic material with width B = 2 m and thickness
t = 1 m. The Young’s modulus of the footing was set to be Ec = 30 GPa, which is three orders of
magnitude greater than that of the soil, implying that the footing is defined as a rigid body. The footing
was subjected to successive incremental load up to the collapse load. The bearing capacity factor Nγ

stemming from the unit weight and friction angle of the soil is expressed by

Nγ =
Qu

0.5γB2 (3)

where, Qu is the magnitude of the collapse load per unit length. Other parameters have been
defined previously.

The examples of the evolution of the bearing capacity factor Nγ with footing displacement are
shown in Figure 3. The initial settlement or stiffness is independent on the friction angle, as expected.
The Nγ value for ϕ = 30◦ is determined to be 6.7, which is approximately 7.2 times higher than that for
ϕ = 20◦. The numerical oscillations in the load-displacement curves are observed and the magnitude
of oscillations increases with an increase in the friction angle ϕ. Such oscillations were found in other
studies involving a Mohr-Coulomb constitutive law with the non-associated flow rule [24,28,42]. It
is attributed to the apparent softening exhibited in shear bands by a Mohr-Coulomb material with
ψ < ϕ, even when strength properties are constant. As pointed out by Drescher and Detournay [43],
the apparent strain softening is a consequence of the rotation of the principal stress axes as strains are
localized inside the shear bands. It is noteworthy that the oscillation displayed in the load-displacement
response does not undermine the validity of the current finite element analyses, but the only problem
is the selection of the limit load [42]. In this study, the collapse load is taken as the maximum load
value of the load-displacement behavior obtained from the present analysis.
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4. Results and Discussion

4.1. Validation
Table 1 provides the obtained values of Nγ for footings on sand without voids for different values

of friction angle ϕ. It is noticed that the magnitude of Nγ increases continuously with increasing ϕ.
Table 1 also compares the present Nγ values with the analyses of (1) Terzaghi [19] and Silvestri [44]
using the limit equilibrium method; (2) Meyerhof [45] using the semi-empirical method; (3) Bolton
and Lau [21] and Smith [46] using the method of stress characteristics; (4) Frydman and Burd [25]
and Erickson and Drescher [26] using the finite difference method; (5) Hjiaj et al. [20] and Kumar and
Kouzer [31] using the upper bound limit analysis; (6) Hjiaj et al. [20] and Kumar and Khatri [33] using
the lower bound limit analysis; and (7) Loukidis and Salgado [42] using the finite element method. It
can be seen that the computed values of Nγ are normally lower than the solutions by the upper and
lower bound theorems and the methods of characteristic and limit equilibrium, and the difference is
more predominant for the greater values of ϕ. This is mainly due to the fact that their solutions are
developed by assuming that the soil behaves as a material with an associated flow rule, i.e., ψ = ϕ.
In fact, an associate material is stronger than the non-associate one, which produces unconservative
results. The current computations yield results close to the finite element solutions of Loukidis and
Salgado [42], where the ψ values are the same as those used in this study. The obtained results also
compare reasonably well with the results of Frydman and Burd [25] and Erickson and Drescher [26]
with the consideration of ψ = 0.

4.2. Case of Single Void
The values of Nγ for strip footings above single square void (m = 1 and n = 1) with three different

values of ϕ = 20◦, 30◦, and 40◦ are presented in Figure 4, where the coupled effect of β and α is
highlighted. For constant values of β and α, the magnitude of Nγ is higher for greater values of ϕ.
It is also observed that for a given value of α, the magnitude of Nγ increases continuously with the
value of β up to a limit value, and the rate of increase of Nγ with respect to β is more pronounced for
lower values of α. This finding states that the influence of a subsurface void on the bearing capacity of
footings reduces as the distance between the void and footing increases, and there is a certain location
beyond which the void impact on the footing stability becomes negligible. Figure 4 also shows the
values of βcr, representing the critical void eccentricity at which the value of Nγ becomes identical
to the maximum bearing capacity factor Nγ max, decreases with increasing the value of α. It is worth
noting that the lower values of Nγ are achieved for the continuous void than for the cubic void [36],
and the continuous void considered herein will lead to a safe prediction of the bearing capacity.

Table 1. Comparison of Nγ values for rough footings on sand without voids.

Reference Method
ϕ (◦)

20 30 40

Terzaghi (1943) Limit equilibrium 4.80 20.0 -
Meyerhof (1963) Semi-empirical 2.87 15.7 93.7

Bolton and Lau (1993) Method of characteristics 5.97 23.6 121
Frydman and Burd (1997) Finite difference - 16.7 73.0

Erickson and Drescher
(2002) Finite difference 2.5 - 73.0

Silvestri (2003) Limit equilibrium - 19.5 107
Smith (2005) Method of characteristics 2.84 14.8 85.6

Hjiaj et al. (2005) Upper bound limit analysis 2.96 15.2 88.4
Hjiaj et al. (2005) Lower bound limit analysis 2.82 14.6 83.3

Kumar and Kouzer (2007) Upper bound limit analysis 3.16 16.5 98.5
Kumar and Khatri (2008) Lower bound limit analysis 2.65 13.7 77.9

Loukidis and Salgado
(2009) Finite element - 12.9 67.9

This study Finite element 3.01 11.9 65.9



Sustainability 2019, 11, 3966 6 of 12
Sustainability 2019, 11, x FOR PEER REVIEW 6 of 11 

 

 

Figure 4. Bearing capacity factor Nγ for a single square void. 

From Figure 4, the bearing capacity distributions of strip footings above a single square void (m 
= 1 and n = 1) can be constructed in the form of contours of equal bearing capacity factor (1.0, 0.9, 0.8, 
0.7, and 0.6Nγ). Figure 5 displays the critical void location denoted by the solid line, discussed in 
Figure 4. When a void is located below the line, the presence of the void is ignored. For example, it 
can be noticed in Figure 5a that the existence of a void does not affect much beyond a vertical location 
of about three times the footing width. The Nγ values at the solid line are identical to those for strip 
footings without a void. Figure 5 also shows the lines of constant Nγ (dashed lines), which serve as a 
useful qualitative conceptual aid. These lines were obtained by constructing Nγ profiles as selected 
points across the parameters β and α, and interpolating points of equal intensity of Nγ (0.9, 0.8, 0.7, 
and 0.6Nγ) in Figure 4. The dashed lines are always located inside the solid line. 

 

 

Figure 5. Critical void location for a single square void. 

N

Figure 4. Bearing capacity factor Nγ for a single square void.

From Figure 4, the bearing capacity distributions of strip footings above a single square void
(m = 1 and n = 1) can be constructed in the form of contours of equal bearing capacity factor (1.0, 0.9,
0.8, 0.7, and 0.6Nγ). Figure 5 displays the critical void location denoted by the solid line, discussed in
Figure 4. When a void is located below the line, the presence of the void is ignored. For example, it can
be noticed in Figure 5a that the existence of a void does not affect much beyond a vertical location
of about three times the footing width. The Nγ values at the solid line are identical to those for strip
footings without a void. Figure 5 also shows the lines of constant Nγ (dashed lines), which serve as a
useful qualitative conceptual aid. These lines were obtained by constructing Nγ profiles as selected
points across the parameters β and α, and interpolating points of equal intensity of Nγ (0.9, 0.8, 0.7, and
0.6Nγ) in Figure 4. The dashed lines are always located inside the solid line.
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Figure 6 plots the values of Nγ for strip footings centered above a single rectangular void with
three different values of ϕ = 20◦, 30◦, and 40◦. As expected, the magnitude of Nγ increases with an
increase in ϕ. It is also seen that at a given value of α, the magnitude of Nγ decreases with the increase
in n, and the difference in Nγ becomes less for lower values of n.
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4.3. Case of Double Void

The values of Nγ for strip footings above a double square void (m = 1 and n = 1) with three different
values of ϕ = 20◦, 30◦, and 40◦ are given in Figure 7, where the coupled effect of s and α is examined.
The results for the two distinct void configurations, namely, parallel and symmetrical configurations
are shown in Figures 7a–c and 7d–e, respectively. Irrespective of void configuration, the magnitude of
Nγ increases as the value of s increases, indicating that the stability of footing stability improves, as the
two voids are moved further apart. This is attributable to the higher shear resistance induced by a
wider pillar between the adjacent voids. Additionally, at a certain value of s, the maximum bearing
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capacity factor Nγ max is achieved: Especially for the parallel configuration, the Nγ max values equal
those for a single void case with β = 0 presented in Figure 4. It is noted that the Nγ values for double
square voids with s = 1 equal those for single rectangular voids with n = 2 presented in Figure 6. On
the other hand, a comparison of Nγ values for parallel and symmetrical configurations appears to
show that the Nγ values for the former are lower than those for the latter, and their difference increases
with increasing s and decreasing α.
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4.4. Failure Pattern

Figure 8 illustrates the finite element displacement contours at collapse for footing-above-void
system. As shown, the failure mechanism is significantly dependent on the location, shape, and
number of voids. For shallow square voids, the limit load is related to the well-defined roof-shaped
zone, featured by the downward movement of a rigid soil block immediately above the void. This is
supported by a typical roof collapse mode observed in Figure 8a. As the void location is vertically
and horizontally farther from the footing, the failure mechanism becomes deeper and wider, which
involves the combination of the roof and wall collapse modes given in Figure 8b–d. For the shallow
rectangular void, the corresponding displacement is more complicated than that of the shallow square
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one and includes the rotation of soil mass above the void, as identified in Figure 8e. As the rectangular
void is placed deeper and wider, the failure mechanism is dominated by the roof movement and the
boundaries of the plastic area extend laterally outward (Figure 8f). The collapse modes for double voids
are shown in Figure 8 g,h. It is seen that the soil displacement in the neighborhood of the individual
void overlapped, leading to the decrease in collapse load. The displacement developed in the pillar
between the two voids of the parallel configuration is more prominent than that of the symmetrical
configuration, confirming that the symmetrical configuration has higher values of Nγ compared to the
parallel configuration.
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5. Conclusions

Finite element analyses of strip footings over sand with single and double continuous voids have
been performed. Comparisons with published solutions for no voids have been made. Stability charts
are presented in the familiar form of nondimensional bearing capacity factor Nγ, reflecting the effect of
the void shape, the void distances from the footing, the spacing between the two voids and the soil
friction angle. The magnitude of Nγ always decreases with increase in the values of n and m, and
reduction in the values of α, β, s, and ϕ. By using the proposed charts and methodology, one can
estimate the critical void location for design purposes. The failure pattern of footing above voids is
controlled by the combination of roof and wall collapse, which differs from that of the classical bearing
capacity theory.
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