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Abstract: The freight forecasting of river-sea direct transport (RSDT) is crucial for the policy making
of river-sea transportation facilities and the decision-making of relevant port and shipping companies.
This paper develops a multi-step approach framework for freight volume forecasting of RSDT in the
case that direct historical data are not available. First, we collect publicly available shipping data,
including ship traffic flow, speed limit of each navigation channel, free-flow running time, channel
length, channel capacity, etc. The origin–destination (O–D) matrix estimation method is then used
to obtain the matrix of historical freight volumes among all O–D pairs based on these data. Next,
the future total freight volumes among these O–D pairs are forecasted by using the gray prediction
model, and the sharing rate of RSDT is estimated by using the logit model. The freight volume of
RSDT is thus determined. The effectiveness of the proposed approach is validated by forecasting the
RSDT freight volume on a shipping route of China.

Keywords: river-sea direct transportation; O–D matrix estimation; logit model; gray prediction model

1. Introduction

River-sea direct transport (RSDT) is a kind of sustainable transportation mode directly connecting
river and sea, which uses river-sea ships for direct transport without transshipment. It has been
reported that the introduction of RSDT mode is able to reduce the total shipping cost by more than 8%
comparing to the reduction of about 2% by the river-sea combined mode [1]. Besides, the RSDT mode
is able to reduce shipping time, fuel consumptions and carbon emissions.

Due to various realistic restrictions such as river conditions and ship types, the RSDT mode has
not been well-developed [2]. Many researchers have studied the design and optimization of river-sea
ship [1,3–7], the function model [8,9] and the characteristics and strength analysis [10–14] of RSDT.
Cinquini et al. [4] addressed the shape optimization problem of an innovative river-sea ship designed
to achieve an improved dynamic behavior in both river and sea navigation conditions. Wu et al. [11]
investigated the ultimate strength of a river-sea ship under combined action of bending and torsion
by the means of numerical and experimental research. Guo et al. [12] carried out a hydrodynamic
analysis of river-sea container ships under specific routes based on the three-dimensional potential
flow theory, which placed a foundation for fatigue assessment of new inland-ocean container ships.
By investigating the characteristics and structure of the river-sea combined transport, Egorov and
Tonyuk [13] provided the optimal propulsion system selection for combined ships and presented the
comparison results of fuel efficiency at different cruising speeds.

Nowadays, as China’s coastal economy and inland economy enter a new era of synergistic
development, the traditional shipping transport mode is facing new challenges of transformation and
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upgrading. RSDT, as an important way of deepening the supply-side structural reform of transportation,
is attracting more and more attention. Compared with similar sea-going ship, this RSDT ship leads to
the reduction of about 10% in the total shipping cost, the increase of about 13% in the load capacity
and the reduction of about 12% in the energy consumption. This RSDT model is in line with the green
and low-carbon development trend [15–19] nowadays. China plans to establish a safe, efficient and
green direct transportation system by 2030 and to complete the construction of the RSDT system from
the Yangtze River and Yangtze River delta region to Ningbo-Zhoushan port and Shanghai-Yangshan
port in 2020 [20]. In order to achieve this goal, it is very important to forecast the RSDT freight
demand effectively.

The freight volume of RSDT is one of the important indicators reflecting the demand of direct
transport, and it is also critical for the local government to determine the scale of infrastructure
construction and make relevant shipping transport policies. Moreover, shipping companies need
to establish development and operation strategies on the basis of certain demands of river-sea
freight volumes. Therefore, forecasting RSDT freight volume effectively is of great significance for the
RSDT development.

Research on freight volume forecasting in different industries has been reported extensively [21–30].
Rashed et al. [28] developed a three-step approach by combining the autoregressive distributed lag
model with economic scenarios to capture the potential impact of specific risks, modeling and forecasting
the demand of container throughput. Ruiz-Aguilar et al. [29] proposed a novel methodology based on
a three-step procedure in order to better predict inspections volume, integrating a clustering technique
and a hybrid prediction model. Traditional freight volume forecasting methods make forecasts usually
based on historical data. We can use these methods to forecast the freight volume in the future if we
have the historical freight volumes between ports of origin (O) and ports of destination (D), which is
called usually as the origin–destination (O–D) matrix of historical freight volumes. Unfortunately, as a
new transport mode in China, RSDT is still in its infancy of entering the market, for which historical
data are rare and difficult to obtain. Therefore, it is infeasible to use the existing forecasting method
directly to forecast the RSDT freight volume. Unfortunately, there is no relevant research on RSDT
freight forecasting so far.

This paper thus aims to develop an effective method for RSDT freight volume forecasting when
direct historical data are not available. The RSDT freight in a port consists of ingoing and outgoing
freights. The goal of RSDT freight volume forecasting is to obtain the summation of ingoing and outgoing
freight volumes between a specified O–D pair of RSDT in the future year. Due to the unavailability
of the O–D matrix of historical RSDT freight volumes in China, this research thus investigates how to
forecast RSDT freight volume based on publicly available indirect shipping data and effective methods
in the absence of such direct data. Available indirect shipping data usually includes ship traffic flow,
speed limit of each navigation channel, free-flow running time, channel length, channel capacity, etc.

This paper contributes to the literature by developing a multi-step approach framework for RSDT
freight volume forecasting. To the best of the authors’ knowledge, it is the first study of investigating
RSDT freight forecasting in the literature. The proposed methodology is capable of making effective
freight volume forecasting in the case that direct historical freight data are unavailable by combining
OD matrix estimation, gray prediction and logit model.

2. A Multi-Step Approach Framework for RSDT Freight Volume Forecasting

2.1. Overview of the Multi-Step Approach Framework

This research proposes a multi-step approach framework for the RSDT freight volume forecasting,
as shown in Figure 1. Since the O–D matrix of historical RSDT freight volumes is not available, a natural
starting point of our methodology is to first observe and collect publicly available shipping-related
data of specific routes, such as shipping transport-related traffic flow, speed limit of each navigation
channel, free-flow running time, channel length and channel capacity. On the basis of these data,
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we then use the O–D matrix estimation method to obtain the O–D matrix of historical RSDT freight
volumes among all O–D pairs. Next, the gray prediction method is used to predict the total freight
volume between the specified O–D pair in future years, which contains the total freight volume of
all shipping transport modes, including river-sea combined transport, river-sea push barge transport
and river-sea direct transport. Finally, the logit model is adopted to estimate the proportion of RSDT
(i.e., the sharing rate) in total freight volume between this O–D pair, so as to obtain the forecast of
RSDT freight volume. Based on the above descriptions, the approach framework involves four steps:
Data collection, O–D matrix estimation, forecast of total freight volume between all O–D pairs and
RSDT sharing rate estimation. These steps are detailed in Sections 2.2–2.5.
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2.2. Data Collection

Data collection is to collect the data required in the forecasting process. In the four steps shown in
Figure 1, the future total freight forecast is generated based on the O–D matrix estimation. Therefore,
only the data required in the O–D matrix estimation and the logit model need to be collected.

2.2.1. Data Required in O–D Matrix Estimation

The O–D matrix estimation, as detailed in Section 2.3, is a process of estimating the O–D matrix
based on publicly available data (e.g., traffic flow). In this process, the required data include shipping
transport-related traffic flow, speed limit of each navigation channel, free-flow running time, channel
length, channel capacity and an initial O–D matrix. Among them, the first five can be observed on the
website http://www.shipxy.com/, which uses more than 60 satellites and 2500 automatic identification
system base stations to provide Internet-based information and positioning services of vessels among
more than 3000 ports worldwide. The historical O–D matrix is usually used as the initial O–D matrix if
the historical matrix is available. In the absence of the historical O–D matrix, this research used the
matrix with a diagonal value of 0 and the remainder of 1 as the initial O–D matrix.

2.2.2. Data Required in Logit Model

The logit model, as detailed in Section 2.5, is a commonly used method for determining the
sharing rates of different transport modes. The utility function is the decisive factor influencing the
choice of a transport mode, which will be formulated in Formula (7). We needed to determine the

http://www.shipxy.com/
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factors that influence the cargo owner’s choice of a particular mode of transport first. Based on these
influencing factors, the required data of the utility function can be divided into two parts. The first
part is the proportions of different influencing factors, which can be determined by analytic hierarchy
process [31], since it is a classical method for determining the weight of factors. The second part is
the utility values, which indicates the decision criteria of shippers for different factors. We rated the
factors based on their gradings given by shipping practitioners and researchers.

2.3. O–D Matrix Estimation

The O–D matrix estimation method aims at estimating the freight volumes between O–D pairs
by traffic flow volumes, which is widely used in highway traffic forecasting. This research applied
the O–D matrix estimation method to estimate the historical freight volumes of shipping transport
among all O–D pairs, since the forecasting of RSDT freight volume is similar to the forecasting of
highway traffic flow. Let N denote the number of ports (indexed by i, j). There are M route segments
(indexed by a) between port i and port j. The principle of O–D matrix estimation can be expressed by
the following formula:

Va =
∑

i

∑
j

Ti jpa
i j, (1)

where Va is the freight volume of route segment a, Ti j is the amount of freight from port i to port j and
pa

i j is the proportion of the freight passing through segment a.
According to Formula (1) above, the estimation of Va is determined by the total freight volumes

among all O–D pairs and their proportions passing through segment a. For an actual traffic network,
the number of traffic segments M is often much smaller than the number of O–D pairs N(N − 1) to
be sought. Moreover, the traffic flow of all segments cannot be detected, so the optimal O–D matrix
cannot be estimated only by the traffic flow. This means that, due to insufficient information, the linear
equations will have multiple sets of feasible solutions. Thus, the problem is transformed into the one
of choosing the optimal solution (i.e., the optimal O–D matrix) among the many feasible solutions.
This requires some additional information to determine the most realistic O–D matrix. Nguyen [32]
first proposed a user equilibrium model to solve the O–D matrix estimation problem, which can be
easily implemented by using the Transcad software. TransCAD is a geographic information system
(GIS) software product developed by Caliper Corporation, which combines GIS and transportation
modeling capabilities in a single platform. It is widely used in transportation planning, travel demand
forecasting, design and management.

Based on this principle, the flowchart of O–D matrix estimation solved by Transcad software is
illustrated in Figure 2. The first operation process was to divide the estimation O–D area and create
geographical network files of the base year, where we needed to input basic data, such as ship traffic
flow, speed limit of each navigation channel, free-flow running time, channel length and channel
capacity, etc. Based on the geographical network files of the base year and the initial O–D matrix, the
user equilibrium model [24] was used to allocate the ship traffic. Then, the ship traffic flow of each
segment was estimated. The segment flow error was calculated to verify the reliability of the O–D
matrix estimation process. If the error was small enough, the optimal matrix was obtained. Otherwise,
we needed to replace the O–D matrix and performed the traffic allocation again.
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2.4. Forecasting of Total Freight Volumes Among All O–D Pairs

The freight volume matrix obtained by the O–D matrix estimation is the historical freight volume
data between ports of all O–D pairs, which is so-called the historical O–D matrix. Next, based on this
matrix, we could forecast directly the total freight volumes among all O–D pairs in the future year.

The freight volume forecast between an O–D pair usually depends on the freight volumes in recent
years. The available data of historical freight volumes are usually limited and uncertain. The gray
prediction model is a forecasting method capable of generating effective forecasts based on a small
amount of historical data. There is no need to know the priori characteristics of historical data, and
can better maintain the actual situation of the original system. The gray model contains both certain
and uncertain information, and predicts the time series-related processes for less data within a certain
range. Therefore, this study used the gray prediction model [33] to predict the total freight volumes
among all O–D pairs in the future year, in which the posterior ratio C and the probability P of small
error were used to test the accuracy of the model.

The gray prediction model is presented as follows:
(1) Assume that the original data sequence is X(0) =

{
x(0)(1),x(0)(2), . . . , x(0)(n)

}
, n ≥ 4;

(2) Generate an accumulation sequence X(1) =
{
x(1)(1),x(1)(2), . . . , x(1)(n)

}
, n ≥ 4 based on X(0),

where x(1)(k) =
k∑

i=1
x(0)(i), k = 1, 2, . . . , n.

Take GM(1, 1) model for the accumulated sequence. The prediction principle of GM (1,1) model is
described next. First, we generate a set of new data series with obvious trend by means of accumulation
for a certain data series. We then build a model for prediction according to the growth trend of the new
data series. At last, we conduct an inverse calculation by using the method of subtraction to restore the
original data series, so as to obtain the prediction results. That is,

dx(1)(k)
dt

+ cx(1)(k) = u, (2)
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where c is the development of gray number, u is the endogenous control gray number. c and u are
solved by least squares method:

[c, u]T= (BTB)−1BTYn (3)

where B =


−

1
2 [x

(1)(1) + x(1)(2)] 1
−

1
2 [x

(1)(2) + x(1)(3)] 1
. . . . . .

−
1
2 [x

(1)(n− 1) + x(1)(n)] 1

, Yn= [x(0)(2),x(0)(3), . . . , x(0)(n )]T.

(3) Solving the differential equation, the time response sequence can be obtained as follows:

X̂
(1)
(k + 1) = (x(0)(1) −

u
c
)e−ck +

u
c

, (4)

where k = 0, 1, 2 . . . . ., n.
Since sequence X(1) is a first-order accumulation sequence of X(0), a subtraction of X̂

(1)
(k + 1)

gives an estimate of X(0). That is,

X̂(0)(k + 1) = X̂ (1)(k + 1)X̂(1)(k) = (1 − e−c)(X(0)(1) −
u
c
)e−ck. (5)

In general, there are two criteria to validate the accuracy of the gray prediction model. The first one
is the posterior ratio C, which is derived by dividing S2 by S1, that is C = S1/S2. And S1 is the standard
deviation of the original time series, S2 is the standard deviation of the forecasting errors. The lower C
is, the better the forecasting model is. The other is the probability of small error, which is defined as
P = prob.

{∣∣∣e(k) − e
∣∣∣ < 0.6745S1

}
, k = 2, 3, . . . , n, where e(k) = X(0)(k) − X̂(0)(k), k = 0, 1, 2 . . . . ., n. e

is the mean of forecasting errors. This shows the probability that the relative bias of the forecasting
error is lower than 0.6745. The pairs of the forecasting indicators P and C can characterize for grades
of forecasting accuracy. The values of P and C for different accuracy grades are defined in the gray
prediction model [28], as shown in Table 1. To achieve a good forecasting performance, P is commonly
required to be larger than 0.95.

Table 1. Accuracy grade of the GM (1,1) model under different values of C and P.

Evaluation Index
Accuracy Grade

Good Qualified General Unqualified

The posterior diff. ratio C <0.35 <0.5 <0.65 >0.65
The small error probability P >0.95 >0.8 >0.7 <0.70

2.5. RSDT Sharing Rate Estimation

There are three shipping transportation modes in the river and sea transportation, including
river-sea combined transport (RSCT), river-sea push barge (RSPB) system and river-sea direct transport
(RSDT). The river-sea combined transport (RSCT) uses sea-going vessels and river-inland vessels
transporting separately in different channel segments, and transit at particular places or junction ports.
The river-sea push barge (RSPB) system implies a river push boat to sail the push barge to the junction
port where it, from the sea push boat, continues to the seaport destination. There, the push barge will
be unloaded or possibly sailed, again with a river push boat, to the final inland port of destination.
The river-sea direct transport (RSDT) uses the river-sea direct ship to transport without transshipment.

The results of the gray prediction model is the total freight volume of the above three modes.
In order to obtain the freight volume of RSDT mode, the sharing rate of RSDT needs to be determined.
This paper adopts the logit model to obtain the sharing rate of RSDT in the above modes.

The logit model is a widely used effective method for determining the proportions of different
categorical outputs, which is thus used to estimate the sharing rate between a single O–D pair. This
model can be formulated as follows:
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Pk =
eU(k)

K∑
k

eU(k)

, (6)

U(k) =
I∑

i=1

wi·Xi(k), (7)

where Pk is the sharing rate of the kth transport mode, and U(k) is the utility function of the kth
transport mode, k = 1, . . . , K; wi is the weight of the ith influencing factor, and 0 ≤ wi ≤ 1, i = 1, 2, . . . , I;
To use the logit model, we needed to obtain the weights of all influencing factors first. This paper
used the analytic hierarchy process (AHP)-based process [23] to calculate the weights of these factors.
The detail of AHP-based process is described as follows.

First, we established different levels of element structure diagrams, namely the target layer, the
criteria layer and the solution layer. For the target layer H, its next criteria layer has n elements
A1, A2, . . . , An. These elements could be transportation capacity, transportation price, transportation
transit time, etc. To calculate the weights (denoted by wi) of different influencing factors, we firstly
used the pairwise comparison method to get the relative importance of Ai to H, and formed the
judgment matrix. The judgment matrix is the basic information of the analytic hierarchy process and
an important basis for calculating the weight of each element. An example of the judgment matrix of
pair-wise comparison factors is shown in Table 2.

Table 2. Judgment matrix of pair-wise comparison factors.

H A1 A2 . . . A j . . . An

A1 a11 a12 . . . a1 j . . . a1n
A2 a21 a22 . . . a2 j . . . a2n
. . . . . . . . . . . . . . . . . . . . .
Ai ai1 ai2 . . . ai j . . . ain
. . . . . . . . . . . . . . . . . . . . .
An an1 an2 . . . anj . . . ann

In Table 2, ai j represents the relative importance of factor Ai to A j from the perspective of the
judgment criteria H. If it is assumed that the weights of the factors A1, A2, . . . , An under the criterion H
are w1, w2, . . . , wn respectively, w = (w1, w2, . . . , wn)T, then ai j = wi/w j and ai j must satisfy these rules

aii = 1, ai j = 1/a ji, aikakj = ai j. Matrix A =


a11 a12 · · · a1n
a21 a22 · · · a2n

· · · · · · · · · · · ·

an1 an2 · · · ann

 is a judgment matrix. Then, the

square root method was used to calculate the relative weights wi of different influencing factors. We

had Vi =
n∏

i=1
a

1
n
i j , wi = Vi/

∑
Vi and

∑
wi = 1.

The element wi in the judgment matrix is the numerical scale representing the relative importance
of two factors, which is called the judgment scale. It varies from 1 to 9, where ‘1’ signifies the same
importance of two factors, and ‘9’ indicates that one factor is much more important than the other.

In order to test the consistency of the judgment matrix, the consistency index CI = λmax − n
n − 1 was

built, where λmax = 1
n

n∑
i=1

(Aw)i
wi

was the maximum eigenvalue of the judgment matrix. A matrix is

consistent only if λmax > n. If the index CI is less than 0.1, which is a baseline for consistency, the
judgment matrix is considered as consistent.

Next, the utility value Xi(k) was used to indicate the decision criteria of shippers for different
factors, which could be determined by expert scoring. Participants from the shipping industry and
relevant research communities were investigated to obtain the scoring results. Each factor was evaluated
by three grades, 1, 2 and 3. Grade ‘3’ means that the score was high, and grade ‘1’ means that the score
was low.
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3. Case Study

3.1. Case Route of River-Sea Direct Transport

This paper takes the Ningbo-Zhoushan port to Ma’anshan port route as the case route to forecast
the RSDT freight volume. In terms of the total cargo throughput, Ningbo-Zhoushan port is the world’s
largest and the first billion-ton port. It locates in the Pan-Yangtze River Delta area of China with
excellent natural conditions and is the main port of the Zhoushan River-Sea Intermodal Service Center.
A 300,000-ton-class ship can get into and out of the port freely. The super-large ship of 400,000 tons or
above can wait for the tide to enter and exit. The Yangtze River Economic Belt has been an important sea
passage and has the conditions and foundation for developing river-sea combined transport. The route
from Ningbo-Zhoushan port to Ma’anshan port is thus selected as the China’s first RSDT route by
relevant authorities. In the following, we referred to Ningbo-Zhoushan port as Ningbo port.

3.2. Results

Based on the approach framework described in Section 2, the forecasting process and results for
the case route are described as follows.

3.2.1. Data Collection and Results of O–D Matrix Estimation

We obtained the annual average ship traffic flows between 2011 and 2017 through the Statistical
Bulletin on the Development of the Transportation Industry, which are listed in Table 3. It could be seen
that the difference in annual average ship flow variation was small. Therefore, we observed and recorded
the ship traffic flow in the ports along the case route, based on the website http://www.shipxy.com/,
as the basic data of O–D estimation. The observed results are shown in Table 4. On this basis, the
O–D matrix estimation was then carried out. We used the information such as the ship traffic flow
and the initial matrix as inputs, and used the user equilibrium model to obtain the ship traffic flow
matrix, which is shown in Table 5 (unit: Ship/h). To convert the unit in Table 5 to million tons, the
average load of one ship was multiplied by the number of hours per year. Therefore, this paper sets
the conversion coefficient u, and it was equal to 24 (h/d) × 365 (d/year) × the average load (ton/ship)
÷ 1,000,000. The average loads of one ship from 2011 to 2017 were obtained from the China port
Yearbook. The conversion coefficients and the average loads of one ship are shown in Table 6. Based
on these conversion factors, we obtained the total freight O–D matrix shown in Table 7.

Table 3. Average ship flow of 2011–2017 (Source: Statistical Bulletin of Transport Industry Development).

Year 2011 2012 2013 2014 2015 2016 2017

Annual average daily ship flow (ship) 638 617 628 656 648 663 703
Annual average hourly ship flow (ship) 26.58 25.7 26.16 27.33 27 27.62 29.2

Table 4. Observed flow at major ports per hour (source: http://www.shipxy.com/).

Port Anqing Chizhou Tongling Wuhu Ma’anshan Jiangsu Shanghai Ningbo Taizhou Jiujiang

Observed flow (Ship per hour) 4 3.6 4.8 8 9 15 9 6 2 1

Table 5. Ship flow matrix of 2011–2017 (unit: Ship per hour).

Anqing Chizhou Tongling Wuhu Ma’anshan Shanghai Ningbo Taizhou Jiangsu Hefei Jiujiang

Anqing 0 0.40 0.48 0.27 0.30 0.32 0.42 0.53 0.54 0.56 0.17
Chizhou 0.40 0 0.57 0.23 0.27 0.30 0.43 0.56 0.58 0.59 0.14
Tongling 0.48 0.57 0 0.10 0.19 0.25 0.40 0.56 0.58 0.60 0.09

Wuhu 0.27 0.23 0.10 0 0.38 0.40 0.68 0.94 0.90 0.86 0.09
Ma’anshan 0.30 0.27 0.19 0.38 0 0.44 0.95 1.34 1.16 1.05 0.03
Shanghai 0.32 0.30 0.25 0.40 0.44 0 2.26 2.54 1.68 1.34 0.09
Ningbo 0.42 0.43 0.40 0.68 0.95 2.26 0 2.88 1.46 1.14 0.22
Taizhou 0.53 0.56 0.56 0.94 1.34 2.54 2.88 0 0.78 0.74 0.37
Jiangsu 0.54 0.58 0.58 0.90 1.16 1.68 1.46 0.78 0 0.71 0.42
Hefei 0.56 0.59 0.60 0.86 1.05 1.34 1.14 0.74 0.71 0 0.45

Jiujiang 0.17 0.14 0.09 0.09 0.03 0.09 0.22 0.37 0.42 0.45 0

http://www.shipxy.com/
http://www.shipxy.com/
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Table 6. Average load and conversion factors of 2011–2017 (Source: China Port Yearbook).

Year 2011 2012 2013 2014 2015 2016 2017

Average load
capacity (ton/boat) 1186.35 1279.38 1414.11 1499.34 1642.16 1662.88 1770.00

Conversion factor 1039.24 1120.74 1238.76 1313.42 1438.53 1456.68 1550.52

Table 7. Total freight volume matrix of 2017 (unit: 10,000 tons).

Anqing Chizhou Tongling Wuhu Ma’anshan Shanghai Ningbo Taizhou Jiangsu Hefei Jiujiang

Anqing 0 7.02 8.41 4.86 5.25 5.61 7.41 9.32 9.64 9.85 3.02
Chizhou 7.02 0 10.11 4.06 4.78 5.32 7.52 9.84 10.19 10.38 2.48
Tongling 8.41 10.11 0 1.77 3.36 4.34 7.04 9.89 10.32 10.55 1.63

Wuhu 4.86 4.06 1.77 0 6.72 7.15 12.01 16.57 15.85 15.19 1.59
Ma’anshan 5.25 4.78 3.36 6.72 0 7.72 16.74 23.63 20.53 18.54 0.5
Shanghai 5.61 5.32 4.34 7.15 7.72 0 39.96 44.95 29.75 23.73 1.6
Ningbo 7.41 7.52 7.04 12.01 16.74 39.96 0 50.93 25.81 20.1 3.86
Taizhou 9.32 9.84 9.89 16.57 23.63 44.95 50.93 0 13.75 13.12 6.54
Jiangsu 9.64 10.19 10.32 15.85 20.53 29.75 25.81 13.75 0 12.54 7.35
Hefei 9.85 10.38 10.55 15.19 18.54 23.73 20.1 13.12 12.54 0 7.91

Jiujiang 3.02 2.48 1.63 1.59 0.5 1.6 3.86 6.54 7.35 7.91 0

We could obtain the freight volumes of Shanghai port and Ningbo port to Ma’anshan port in
2011–2017 by repeating the above steps, which are shown in Table 8.

Table 8. Total freight volumes of Shanghai port and Ningbo port to Ma’anshan port in 2011–2017 (Unit:
Million tons).

Year 2011 2012 2013 2014 2015 2016 2017

Shanghai-Ma’anshan 4.53 4.89 5.41 5.73 6.28 6.36 7.72
Ningbo-Ma’anshan 9.83 10.60 11.71 12.42 13.6 13.77 16.74

Total 14.36 15.49 17.12 18.15 19.88 20.13 24.46

The Ma’anshan port is the main source of water freight transportation within Anhui Province.
After opening up RSDT routes, it has a strong attraction to the freight from its surrounding ports,
which we could define as Anhui ports. Assume that the freight between Ningbo port to the ports of
Anhui Province (Anhui ports) are transported via Ma’anshan direct route, the maximum amount of
waterborne freight transport between 2011 and 2017 that can be obtained under ideal conditions are
shown in Table 9.

Table 9. Total freight volume available at Ma’anshan port in 2011–2017 (unit: Million tons).

Year 2011 2012 2013 2014 2015 2016 2017

Ningbo-Anqing 4.35 4.69 5.19 5.50 6.02 6.10 7.41
Ningbo-Chizhou 4.42 4.76 5.27 5.58 6.11 6.19 7.52
Ningbo-Tongling 4.14 4.46 4.93 5.22 5.72 5.79 7.04

Ningbo-Wuhu 7.05 7.60 8.40 8.91 9.76 9.88 12.01
Ningbo-Ma’anshan 9.83 10.60 11.71 12.42 13.60 13.77 16.74

Total 29.79 32.11 35.50 37.63 41.21 41.73 50.72

3.2.2. Results of the Total Freight Volume Forecasting

Based on the historical total freight data of 2011–2017, we obtained the gray prediction model
as follows,

X̂
(1)
(k + 1) = 362.93e 0.0842k

− 333.14. (8)
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The estimated value of the original sequence is:

X̂(0)(k + 1) = X̂(1)(k + 1) − X̂(1)(k). (9)

Based on this model, the freight volume of Ningbo port to Ma’anshan in 2018–2022 could be
obtained, as shown in Table 10. In order to test the accuracy of the gray prediction model, we used
the posterior difference method [32] to calculate the posterior difference ratio C and the small error
probability P, which equaled 0.047 and 1.0 respectively. Compared these two values with the accuracy
grade of GM (1,1) model shown in Table 1, the prediction model had good prediction accuracy.

Table 10. Forecast of the total annual freight volume of 2018–2022 in Ningbo to Ma’anshan route.

Year 2018 2019 2020 2021 2022

Freight volume
(million tons) 52.86 57.51 62.56 68.06 74.04

3.2.3. Results of RSDT Sharing Rate Estimation

Based on the total freight volume of Ma’anshan port obtained in the future year in the previous
step, the logit model detailed in Section 2.5 was used to obtain the freight volume of RSDT. First, through
survey statistics and a literature review, we found that the shippers or agents mainly considered five
factors when choosing a freight transport mode, including transportation capacity, transportation
price, transportation time, cargo security and service convenience. We could see the AHP hierarchy
for choosing a transport mode in Figure 3. The judgment matrix of pairwise comparison is shown
in Table 11. The analytic hierarchy process and the expert scoring method were used to obtain the
weights of different influencing factors, as shown in Table 12. The consistency index CI was 0.0648,
which is smaller than 0.1 and can be considered as consistent.
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1A  
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Figure 3. Analytic hierarchy process (AHP) hierarchy for choosing a transport mode.

Table 11. Judgment matrix for case route.

H A1 A2 A3 A4 A5

A1 1 1/3 4 1/5 5
A2 3 1 5 3 7
A3 1/4 1/5 1 1/6 2
A4 5 1/3 6 1 8
A5 1/5 1/7 1/2 1/8 1
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Table 12. Weights of various influencing factors.

Target Layer Criteria Layer Weights

The main considerations for
choosing which mode of transport

Transportation capacity 0.13
Transportation price 0.38
Transportation time 0.07

Cargo safety 0.36
Service convenience 0.06

Next, the above-mentioned index Xi(k) was determined by expert scoring. More than
40 participants from the shipping industry and relevant research communities were investigated to
obtain the scoring results.

On the basis of the values in Tables 12 and 13, the utility values of RSCT, PSPB and RSDT modes
were 2.134, 1.489 and 1.688 respectively. In addition, the sharing rates of the three modes were 46.2%,
24.2%, and 29.6%.

Table 13. Utility values for each influencing factor.

The Main Considerations
for Choosing Which
Mode of Transport

Utility Value Score

River-Sea
Combined Transport

River-Sea Push
Barge Transport

River-Sea Direct
Transport

Transportation capacity 3 1 2
Transportation price 3 1 1
Transportation time 1 2 3

Cargo safety 1 2 2
Service convenience 3 2 2

3.2.4. Results of RSDT Freight Volume Forecasting

On the basis of the total freight volume obtained by the O–D matrix estimation and the grey
prediction model and the sharing rate obtained by the logit model, the freight volume forecasts of
different shipping transport modes from 2018–2022 could be obtained, as shown in Table 14. The freight
volume forecasts of RSDT were 15.65, 17.02, 18.52, 20.15 and 21.92 in the four years respectively.

Table 14. Forecast of freight volume of three shipping transport modes of 2018–2022 in Ningbo to
Ma’anshan route (unit: Million tons).

Year 2018 2019 2020 2021 2022

River-sea combined transport 24.42 26.57 28.90 31.44 34.21
River-sea push barge 12.79 13.92 15.14 16.47 17.92

River-sea direct transport 15.65 17.02 18.52 20.15 21.92

4. Evaluation and Discussions

In the forecasting literature, two methods are adopted usually to validate the effectiveness of
the proposed forecasting approach. Method 1 is to compare the forecasting results of the proposed
forecasting approach and benchmarking approaches. Method 2 is to compare the errors of the forecasts
generated by the proposed approach and the real values. However, both methods cannot be used in
this research because no effective approach has been developed to forecast the RSDT freight volumes
and the real RSDT freight volumes are unavailable in China.

This research thus used an indirect method to validate the effectiveness of the proposed multi-level
forecasting approach. Our case study aimed to forecast the direct transport freight volume from
Ningbo port to Ma’anshan port, so we focus on validating this value. To make this forecast, multiple
steps were involved under the proposed framework. Among these steps, the ratio of RSDT freight
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volume to the total shipping freight volume obtained by the logit model was based on the weights
determined by different experts’ subjective gradings. Therefore, this step did not need to be validated
and we only validated the effectiveness of the other two steps. First, we validated the reliability of the
freight volume of the two international transshipment ports of Shanghai port and Ningbo port to the
Ma’anshan port. Second, we compared the freight volume forecast of Ma’anshan port with the freight
volume attracting from this port’s surrounding ports to validate if the forecasting result was reliable.

We used the main freight volume of the Ma’anshan port to validate the reliability of the forecasted
total freight volume of Ma’anshan port. As a heavy industry city, Ma’anshan port’s main shipping
cargo from Ningbo and Shanghai ports is the iron ore import of Ma’anshan Iron and Steel Co., Ltd.
The imported iron ore is transshipped to the Ma’anshan port from two international transshipment
ports on the Yangtze River route, namely Shanghai port and Ningbo port. According to the Ma’anshan
Yearbook of 2018, the crude steel output of Ma’anshan City reached 19.76 million tons in 2017.
According to the historical statistics of the industry, we needed 1.6 tons of iron ore for the production
of one ton of crude steel. The external dependence of Chinese iron ore ranged from 65.5% to 89.29%, so
the demand for iron ore imports in 2017 ranged from 20.71 to 28.82 million tons, with an intermediate
value of 24.47 million tons, which is almost equal to the predicted value of 24.46 million tons. It can be
seen from Table 7 that the total freight volume from Shanghai and Ningbo ports to Ma’anshan port in
2017 was 24.46 million tons. Therefore, we could conclude that the forecast of the total freight volume
of Ma’anshan port was reliable.

According to the results shown in Table 8 of Section 3.2, the cargo transshipment freight volume
of Shanghai port and Ningbo port had increased year by year. This can be ascribed to the construction
of Shanghai Free Trade port and the integration of Zhejiang ports in recent years. It is also consistent
with the increase of the cargo transportation capacity of the two ports. It can be seen from Table 15 that,
comparing with the import volume of iron ore in Ma’anshan port, the intermediate value of the import
volume of Ma’anshan port was gradually approaching the value obtained by the O–D estimation
method, and the gap between the two was almost 0 in 2017. This also explains the reliability of the
O–D matrix estimation results.

Table 15. Comparison of total freight volumes to Ma’anshan port and intermediate value of imported
iron ore in 2011–2017 (Unit: Million tons).

Year 2011 2012 2013 2014 2015 2016 2017

Shanghai-Ma’anshan 4.53 4.89 5.41 5.73 6.28 6.36 7.72
Ningbo-Ma’anshan 9.83 10.6 11.71 12.42 13.6 13.77 16.74

Total 14.36 15.49 17.12 18.15 19.88 20.13 24.46
Crude steel production 15.51 15.92 17.34 17.74 17.67 18.72 19.76

Intermediate value of iron ore import range 19.20 19.71 21.47 21.97 21.88 23.18 24.47

It can be seen from Table 16 that in 2011–2017, excepting in 2011, the cargo volume attracted by
the Ma’anshan port (shown in Table 9) was lower than the average ingoing and outgoing throughput
of Ma’anshan Port (source: China port Yearbook of 2012–2018). The result is consistent with the reality
since the throughput includes the freight volume of transshipment.

Table 16. Total freight volume available in Ma’anshan port in 2011–2017 (unit: Million tons).

Year 2011 2012 2013 2014 2015 2016 2017

Total freight volume of Ningbo to
ports of Anhui province 29.79 32.11 35.5 37.63 41.21 41.73 50.72

Mean of inbound and outbound
throughput of Ma’anshan port 26.53 34.05 37.45 40.51 46.03 52.86 55.07
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5. Conclusions

This paper investigated a freight forecasting problem for RSDT. A multi-step approach framework
for RSDT freight volume forecasting was developed to forecast the future freight volume effectively,
which is helpful (1) for relevant government authorities to make relevant policies in shipping
and infrastructure construction, and (2) for shipping and logistics companies to make effective
development plans.

Due to the lack of direct historical data, the proposed approach made forecasts on the basis of
publicly available indirect data. First, we used the observed ship traffic flow and other related data
to estimate the O–D freight volume matrix. Based on this, the gray forecasting model was used to
predict the total freight volumes among all O–D pairs. The total freight volume consists of the volumes
generated by three different transport modes, including RSDT, RSCT and RSPB. Therefore, we used the
logit model to determine the sharing rate of RSDT mode. Then, the RSDT freight volume was obtained.

In the absence of historical freight data, traditional methods cannot be used to validate the
effectiveness of the proposed multi-level forecasting approach. This research thus used an indirect
method, which aimed to evaluate the results generated by the O–D matrix estimation and the logit
model could be used to obtain reliable freight volume forecasts. Due to the absence of historical freight
data, we could not validate the effectiveness of the proposed approach directly by using historical
freight, which was the main limitation of this research. However, even so, we used an indirect analysis
method to show the effectiveness of the proposed approach.

Under the proposed framework, other methods could also be used for total freight forecasting
and RSDT sharing rate estimation. We did not claim the approaches used in this paper were the best
ones under this framework, which can be further investigated in future work. Future research can
validate the effectiveness of the proposed approach in different RSDT routes as well, especially after
real historical freight data are available.
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