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Abstract: Drought risk analysis can help improve disaster management techniques, thereby reducing
potential drought risk under the impacts of climate change. This study analyses observed and
model-simulated spatial patterns of changes in drought risk in vulnerable eco-regions in China during
1988–2017 and 2020–2050 using an analytic hierarchy process (AHP) method. To perform a risk
assessment and estimation of a drought disaster, three subsystems—namely hazard, vulnerability and
exposure—are assessed in terms of the effects of climate change since the middle of the 21st century:
(i) Hazards, represented by climate anomalies related to the drought process, such as changes in rainfall
averages, temperature averages and evaporation averages; (ii) vulnerability, encompassing land use
and mutual transposition between them; (iii) exposure, consisting of socioeconomic, demographic,
and farming. The results demonstrated that high hazards continue to be located in the arid zone,
high vulnerability levels occur in the Junggar Basin and Inner Mongolia Plateau, and high exposure
levels occur Loess Plateau and southern coastal area. In this way, the results provide exhaustive
measures for proactive drought risk management and mitigation strategies.
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1. Introduction

Strengthening the capacity to cope with climate change and increase risk research in vulnerable
eco-regions is a popular issue that continues to be of concern to all countries and the public. Global
climate change, characterized by warming, has led to increased climate-driven variability in social and
economic development, an increased frequency of extreme events, and a chain reaction of disasters [1].
Drought ranks first among all natural disasters directly encountered by humans, and it affects almost
all climatic regions [2]. More emphasis on drought risk is warranted due to repeated and widespread
droughts throughout the world [3]. In China, drought is the most common of the major climatic
disasters [4]. Northern China is located at mid–high latitudes and is highly sensitive to global
warming [5]. Drought risk is a product of regional exposure to natural disasters and long-term
water scarcity. To reduce the occurrence of severe consequences, drought risk first needs to be
analyzed. In particular, vulnerable eco-regions must better understand their drought risk distribution
characteristics to minimize the losses caused by drought.

In mainstream practice, the development stage of drought risk assessment is divided into three
stages: Attention to the hazard factor stage, attention to the social attribute stage of the hazard body,
and the comprehensive research stage that combines disaster and social attributes. From the 1920s to
the 1980s, researchers generally used the environment as a hazard or disaster to conduct research [6,7].
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However, research at this stage focused on the disaster itself, treating disasters as the uncertain effects
of extreme events [8], ignoring the interrelationship between the disaster-tolerant environment and
the hazard-bearing body. In the 1980s and 1990s, researchers began to pay attention to the social
attributes of the hazard-bearing body [9]. Gregoric (2010) noted that drought is a phenomenon closely
linked to climate and society [10]. Natural disasters are not the only factor determining risk, and the
ability of society to overcome the difficulties caused by vulnerability also determines risk; vulnerability
determines the risk of current and future drought effects. Assessing natural disasters and social
vulnerability becomes one of the goals of drought risk management. The historical assessment of
drought establishment and monitoring systems has been undertaken to establish a regional estimation
method for climate and actual natural disasters. However, most drought risk assessment methods
focus on drought risks and vulnerabilities. As an important part of arid ecological risks, exposures
need to be considered. From the 1990s to the present, the trend of disaster risk vulnerability research
has gradually turned to disaster-based research [11]. Scholars who study the theory of disaster systems
believe that disasters are the result of interactions between hazards and the environment of pregnant
disasters [12]. The disaster risk in a certain area is formed by the interaction of three factors: Hazard,
exposure and vulnerability. Therefore, disaster risk assessments should be based on the above three
factors [13]. Using disaster assessment models to assess hazards, vulnerabilities, exposures, and
the spatial distribution of drought risks, decision-makers can identify drought conditions and make
decisions to reasonably fight against drought [14,15].

International trends in drought disaster research have shifted from the traditional “drought disaster
crisis management” to the modern “drought disaster risk management” [16]. Drought risk is usually
assessed for its impact on human activities, as well as economic, social and environmental systems,
with the aim to determine the appropriate actions that can be taken to reduce potential damage [17].
Most of the research mainly uses meteorological elements to assess disasters, and less consideration
is given to the environmental and social factors that cause disasters. This study uses meteorological
data and social statistics to assess drought risk in the historical period of 1988~2017 and further uses
multimodal data to estimate drought risks in different scenarios in the future based on environmental
and social factors. This study aims to provide decision-makers with a visual distribution of disaster
risks and reduce the social and economic losses caused by drought.

2. Materials and Methods

2.1. Data and Methods

Data
Meteorological and social statistical data were used to conduct drought risk assessments (Table 1).

Based on precipitation, temperature, and drought-affected areas as indicators in the drought hazard
assessment, total agricultural output value, water resources, and forest area were used as vulnerability
assessment factors, while permanent population, cultivated land area, and the gross output value
of agriculture, forestry and fisheries were used as exposure assessment factors. Many semiarid
and arid-prone areas have significant competitive advantages for irrigated agriculture because they
are rich in resources, agricultural activities in the area are inexpensive, and there are few land use
alternatives [18]. Therefore, the use of water resources and agroforestry to assess drought risks is
considered reasonable.

Table 1. Sources of drought risk assessment data.

Types Index Name Historical Period Source

Meteorological data Temperature,
precipitation, etc. 1988–2017 National Meteorological

Information Center

Social statistics Population, GDP, etc. 1988–2017 China Statistical
Yearbook
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Wide-ranging uncertainties about future climate change coercion and responses are expected
by the 21st century, so future scenarios need to be utilized to explore the potential consequences of
distinct response options [19]. When applied to climate change research, scenarios help to assess
the uncertainty of human contributions, the responses of Earth to anthropogenic activities, and the
impacts of different mitigation and adaptation methods (actions that promote responses to new climatic
conditions). Specifically, we conducted drought risk estimates from Phase 5 of the Coupled Model
Intercomparison Project (CMIP5) [20], land use and population GDP data (see Table 2 for a complete
list of all model expansions).

Table 2. Sources of drought risk estimates.

Model Index Name Horizontal Resolution
(Lat × Lon) Selected References

MRI-CGCM3
Temperature,
precipitation,
evaporation

1.125◦ × 1.125◦ Sillmann et al., 2013 [21]

Global Land-Use Models (GLMs) Crop, pasture, primary
land, second land, urban 0.5◦ × 0.5◦ Hurtt et al., 2011 [22]

Moss et al., 2010 [23]

International Institute for Applied
System Analysis (IIASA) Population, GDP 0.5◦ × 0.5◦ Grubler et al., 2007 [24]

Hawkins et al., 2011 [25]

Consistent with many other studies, we focused on lower emission RCP (Representative
Concentration Pathway) 4.5 scenario and high emission RCP 8.5 scenario [26]. Temperature,
precipitation and evaporation were used to estimate hazards; primary land, second land, urban
and secondary land transition to crop were used to estimate vulnerability; and population, GDP,
crop, and pasture were used to estimate exposure. Studies have shown that changes in land use
caused by human activities can affect global climate change by changing the carbon content of the
atmosphere [22,27]. For example, vegetation degradation can cause increased drought and ecosystem
degradation [28]. Therefore, it is reasonable to consider land use in drought risk estimation.

2.2. Methods

2.2.1. Methods of Disaster Risk Assessment

According to regional disaster system theory, disasters are the product of the combined effects of
disaster systems consisting of hazard, disaster-bearing bodies and disaster-pregnant environments [29].
The hazard factor is a necessary condition for disasters. A hazard-bearing body is a necessary
condition for amplifying or reducing disaster impacts. The environment in a disaster-prone area is the
background condition that affects the hazard factor and the hazard-bearing body. The three effects are
indispensable. Disaster risk assessments are based on a quantitative perspective to assess the form and
intensity of disaster occurrence. Generally, three major factors are considered, including the hazard,
the vulnerability of the environment, and exposure to the hazard [30].

Disaster risk = (Hazard H, environmental vulnerability S, Hazard exposure V)

2.2.2. Normalization of Indicators

The disaster risk assessment contains multiple indicators. Since each indicator has different
dimensions and cannot be directly compared, each indicator needs to be normalized so that the values
are distributed between [0, 1] for comparison.

bi j =
ai j −min

(
ai j

)
max

(
ai j

)
−min

(
ai j

)ai j is a positive indicator
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bi j =
max

(
ai j

)
− ai j

max
(
ai j

)
−min

(
ai j

)ai j is a negative indicator

2.2.3. Fuzzy Analytic Hierarchy Process (AHP)

Buckley (1983) [31] used the geometric mean method to calculate the fuzzy weights of each fuzzy
matrix, a process which is often used in disaster zoning studies [32]. The analytic hierarchy process
AHP is a decision-making method that combines qualitative and quantitative methods and guarantees
a unique solution for the reciprocal matrix. This study selected the weighted evaluation method of the
geometric mean because it is simple and easy to use in a fuzzy environment. The comparison of the
index weights with the positive and negative numbers of the evaluation factors is shown in [33]:

A =


A11 · · · A1n

...
. . .

...
An1 · · · Ann


The geometric mean of each row vector is calculated as follows:

Mi =
n∏

j=1

Ai j, i = 1, 2, · · · , n

Calculate the n-th root of Mi
Wi =

n
√

Mi, i = 1, 2, · · · , n

Normalize the vector W

Wi =
Wi∑n

i=1 Wi
, i = 1, 2, · · · , n

Wi is the weighting factor of each variable.
To evaluate the coefficient matrix, it is necessary to calculate the consistency index CI of the

matrix. CI = λmax−n
n−1 , where λmax is the largest eigenvalue of A. When CI = 0, the judgment matrix

is completely consistent; the smaller CI is, the better the consistency of the judgment matrix. In the
judgment matrix consistency test, the CI value is compared with the average random consistency
index RI (Table 3), and CR is expressed as the random consistency ratio of the judgment matrix; that is,
CR = CI/RI. When CR < 0.1, the judgment matrix can be considered to have good consistency; when
CR > 0.1, the judgment matrix needs to be adjusted until CR < 0.1.

Table 3. Average random consistency indicator RI.

n 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

3. Research Area

The Ministry of Ecology and Environment of the People’s Republic of China identified eight
ecologically fragile areas in China with the ecotone as the main body (Ministry of Environmental
Protection, 2008): 1. Northeast forest grass ecotone; 2. northern agriculture pasture ecotone; 3. northwest
desert oasis ecotone; 4. southern red soil hilly mountain ecotone; 5. southwestern karst mountain
rocky desert ecotone; 6. southwestern mountain farming and pasture ecotone; 7. Qinghai–Tibet Plateau
complex-erosion, ecologically fragile zone; 8. coastal water–land junction zone. With the deepening of
Earth system science and sustainable development research, the existing ecologically fragile zoning has
not adapted to the needs of the new situation. The comprehensive ecological division that integrates
natural elements and social and economic factors is currently the main trend and the principle of
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dividing the research area in this study. To identify ecologically vulnerable areas, carbon flux was used
to divide the study area.

Net primary productivity (NPP) is the total amount of organic dry matter that can be produced
by green plants per unit time and unit area. This value reflects the ability of plants to utilize natural
environmental resources and is a key link in the biogeochemical carbon cycle. The temporal and spatial
variations in NPP are mainly determined by the complex interactions between vegetation, soil, and
climate, and they are strongly influenced by human activities and global environmental changes [34].
Human disturbances, especially those associated with land use change, have equal or even more severe
ecosystem productivity than those physiological changes associated with climate composition [35].
If the resilience and adaptability of ecosystems are severely damaged, these ecosystems may be at
risk. The increase in global warming will lead to increased risks to the ecosystems in the 21st century.
In turn, feedback from global carbon that sinks to atmospheric carbon dioxide pools can accelerate or
limit climate change [36]. The estimation process of NPP is as follows [37]:

GPP =
∑

A dt (1)

and
NPP = GPP−Ra (2)

where gross primary production (GPP) is the cumulative sum of A at every time step (dt; s); A represents
the parameterizations for leaf photosynthesis [38]; and Ra is the autotrophic respiration [39], determined
by temperature and tissue nitrogen content.

To reflect the changes in the patterns of vulnerable eco-regions in the future, this study selected
the NPP data from the MPI-ESM-LR(Max Planck Institute Earth System Model) model from 2021
to 2050 as a typical period to represent the medium-term trend (based on 1988–2017) (Figure 1).
The MPI-ESM-LR includes a detailed spatial separation rate and considers complex human activities
that reflect the ecological issues we care about, and the modular land surface scheme (Jena Scheme
for Biosphere-Atmosphere Coupling in Hamburg) brings simulation results closer to real values [40].
Under the low-emissions scenario (RCP 4.5), vulnerable eco-regions are expected to be concentrated
in the southern region. For the high-emissions scenario (RCP 8.5), the area may extend north to the
central and northeastern regions. It is worth noting that regardless of the type of emissions scenario,
the ecosystem of the western region will develop, at least until 2050, while the region from south to
southwest will become a new ecologically fragile zone. This change may be mainly due to increased
drought in Southern China [41]. Therefore, in this study, the traditional arid zone was combined with
the new vulnerable eco-region as a drought risk assessment research area.
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Figure 1. Distribution of future (2021–2050) net primary productivity (unit: kg m−2 s−1) changes under
different emissions scenarios (a) RCP 4.5 (b) RCP 8.5 (based on 1988–2017). A greener (or redder) grid
indicates an improvement (or worsening) of the ecological environment.

4. Results

4.1. Drought Risk Assessment

Hazard factors, including natural and anthropogenic climate change, determine the probability of
risk [42]. Hazard refers to the various characteristics and abnormalities of the main meteorological
factors causing the disaster, such as abnormal changes in precipitation and temperature, which are
generally considered to affect disaster risks. Figure 2a shows the distribution of hazard risk based on
three hazard factors: Precipitation, temperature, and drought-affected areas. After processing the data,
a comprehensive hazard index was obtained. The comprehensive hazard index decreased from north
to south, and attention should be paid to drought prevention measures in the north.

Vulnerability describes a system of vulnerability and lack of ability to adapt to variation and
change [43], and it is generally defined as the possibility, degree, or state of a system that is vulnerable to
damage under external interference. The greater the vulnerability of the region, the greater the potential
for damage and the higher the risk. Figure 2b shows the distribution of vulnerability risk based on
three vulnerability indicators: Total agricultural output value, water resources, and forest area. After
data processing, a vulnerability model was established, and the composite vulnerability index was
obtained. The composite vulnerability index generally showed a decreasing trend from north to south
(Figure 2b). Though Guangdong had abundant water vapor, the vulnerability index was relatively
high for drought. Therefore, the vulnerability of Guangdong should be given special attention.

Exposure degree refers to the infrastructure, resources, environment, society, economy and cultural
property that are closely related to human life and production [44]. The greater the exposure is in
a region, the greater the potential loss and the higher the risk. Figure 2c shows the distribution of
exposure risk based on three exposure indexes, including permanent population, cultivated land area,
and gross output value of agriculture, forestry and fisheries. After data processing, the exposure model
was established, and a comprehensive exposure index was obtained. The exposure index trend was in
contrast to the hazard index trend and generally increased from north to south. It is worth noting that



Sustainability 2019, 11, 4463 7 of 14

although the drought in the south was less than that in the north, the exposure was higher in the south
than in the north. Therefore, the exposure in the south should be given more attention.Sustainability 2019, 11, x FOR PEER REVIEW 8 of 15 
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Figure 2. Drought risk assessment during the historical period (1988–2017): (a) Hazard, (b) vulnerability,
and (c) exposure.
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To reduce the drought risk in the study area, we extracted the main risk factors in each area
(Table 4) from the drought risk assessment (Figure 2) to provide countermeasures. (1) High hazard and
vulnerability risks in disaster-bearing environments are the main risks in Gansu and Ningxia. The high
hazard risks in these regions are mainly due to the dry climate, low precipitation and high temperature
(relative to the same latitude). However, with industrial development, the impact of anthropogenic
aerosols on natural disasters is increasing. In areas with a low moisture content, an increase in aerosols
will inhibit precipitation. Some feasible measures to address this risk are to reduce the emission of
carbon dioxide and pollutants. The transition from traditional agriculture to irrigated agriculture
and the increase in the total number of reservoirs may be able to adequately improve the disaster
reduction capacity. Expanding forest areas and reducing industrial water use may reduce vulnerability.
(2) Excessive grazing and excessive mining are some of the ways to artificially cause drought in Inner
Mongolia. With the increase in grazing costs, pastoralists can only rely on more grazing to eliminate
these increased costs, resulting in overgrazing and ecological deterioration of pastures. At the same
time, the mineral resources in Inner Mongolia are very rich, but rainfall will lead to reduced mining
efficiency. To protect economic benefits, enterprises will adopt artificial rain dispersal. Measures can be
taken to control the pasture and mining industries: Controlling the development of pasture can reduce
the livestock deaths caused by drought and reduce the exposure of the disaster-bearing body; on the
other hand, the ecological conditions of grasslands can be gradually restored to alleviate the impacts of
drought. For overexploitation, the government can appropriately control the mining enterprise while
replenishing the economic losses faced by companies due to rainfall.

Table 4. Main risk factors by region.

Province Main Risk Factors

Gansu Hazard Vulnerability
Ningxia Hazard Vulnerability

Inner Mongolia Hazard Exposure
Xinjiang Hazard Vulnerability

Guangdong Vulnerability Exposure
Qinghai Hazard
Shanxi Vulnerability

Guangxi Exposure
Yunnan Exposure

(3) Due to the hindrance of the warm and humid air currents from the Indian Ocean by the
Himalayas, the leeward slope of the Qinghai–Tibet Plateau is one of the main factors causing drought in
Qinghai. Moreover, the high wind speed caused by the high altitude will further accelerate evaporation.
Increasing afforestation can reduce ecological fragility while reducing wind speed, which seems to be a
way to alleviate drought. (4) The arid environment in Xinjiang is caused by the fact that it is located
far from the ocean. The water availability from the ocean gradually decreases during long-distance
transportation. When this water reaches Xinjiang, it is blocked by the mountains. Both the water and
the regional differences in precipitation distribution decrease. Because urban expansion led to the
destruction of large areas of vegetation, the living and industrial water requirements both increased,
while surface water and groundwater were severely overdrawn, which directly led to drought in
Xinjiang. Therefore, a reduction in domestic and industrial water use and maintenance of the surface
and groundwater levels should be focused on in this area. (5) The main risk factors in Guangdong,
Guangxi and Yunnan are high exposure (Guangdong is also accompanied by high vulnerability),
and the large population is one of the main reasons for high exposure. Therefore, a feasible solution
is to control the permanent population and convert the primary industry into a tertiary industry.
In general, the emissions of greenhouse gases and pollutants should be controlled in the northern
region, and the population and transformation of the primary industry into a tertiary industry should
be controlled in the southern region.
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4.2. Drought Risk Estimate

4.2.1. Estimation of Future Hazard

To identify key risk areas in vulnerable eco-regions, a model-MRI-CGCM3 (Meteorological
Research Institute atmosphere–ocean coupled global climate model version 3) with high spatial
resolution that was more suitable for Asia was used to analyze precipitation, temperature and
evaporation. MRI-CGCM3 can capture regional differences over subtropical China [45] and can better
simulate the spatial distribution of Chinese meteorological factors. The uncertainty of the model is
given in Appendix A. The uncertainty is calculated based on the statistics of the model and observations
and the error between them.

Error = Y −X (3)

where Y is the model value and X is the observations value.
The projected future hazards for the vulnerable eco-regions in China as a whole under two

emissions scenarios are shown in Figure 3a,b,d,e. High hazard risks around the Tarim Basin are
exhibited for both RCP 8.5 and RCP 4.5. We also calculated the hazard differences over the next three
decades (Figure 3e,f) to determine where the changes will be the greatest relative to the first half of the
21st century. As the low-emission mitigation scenario, the RCP 4.5 scenario projects that the hazards
will increase throughout most of the research area (Figure 3e). However, the high hazard risks under
the RCP 8.5 scenario will occur in the traditionally vulnerable eco-regions (Figure 3f), while a drastic
countrywide risk is projected for RCP 4.5. It is worth noting that when emissions increase, the changes
in hazard risks are less than those under the low emissions scenario in the Cainozoic vulnerable
eco-regions, which may mean that the increase in emissions will result in hazards occurring earlier.
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4.2.2. Estimation of Future Vulnerability

Figure 4 shows the geographic pattern of ecological vulnerability over a 30-year period.
Interestingly, the spatial patterns in the hazard changes are similar between the two scenarios.
The most ecologically vulnerable areas are concentrated in the Inner Mongolian Plateau (Figure 4a–d).
To determine where the changes will be the greatest relative to the first half of the 21st century,
two typical years of 2020 and 2050 were selected in this study (Figure 4e,f). The risk area is predicted
to be distributed in most regions under the two emissions scenarios (RCP 4.5 and RCP 8.5).Sustainability 2019, 11, x FOR PEER REVIEW 11 of 15 
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4.2.3. Estimation of Future Exposure

Figure 5 shows a crude index of exposure risk. This is an index of population, GDP, crop and
pasture. The data were calculated at a spatial resolution of 0.5◦ × 0.5◦. The Loess Plateau and southern
coastal area are highly exposed to drought (Figure 5a–d). Figure 5e,f clearly show that excessive
carbon dioxide emissions will expose more areas to drought earlier. Regarding the emissions scenarios,
exposure to the high-exposure Loess Plateau and southern coastal area will increase continuously.
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5. Conclusions and Discussion

Projections of future drought risk estimation are usually associated with multiple sources
of uncertainty inherent in climate model predictions, emissions scenarios, land use, economic
demographics, and generally unpredictable social, technological and environmental changes.
Recognizing this uncertainty, we simulate the risk of drought under different emissions scenarios.

We learned that there are limits to validating an index because the risk system is not a quantitatively
measurable variable from some points of view. In this sense, the purpose of the study was to determine
the main risk comparisons, especially in the most critical areas. Thus, the variables were listed to
determine the logical relation between what they reflect and the occurrence of disasters studied.

Under the RCP 8.5 emissions scenario, the hazard in Cainozoic vulnerable eco-regions and
exposure in most study areas will increase until 2050, which means that the risk levels that should only
have been reached in 2050 may now occur before 2020, compared to the RCP 4.5 emissions scenario.
Ignoring the emissions scenario, the vulnerability shows a similar spatial pattern—the vulnerability of
most vulnerable eco-regions will increase.

The risk index results satisfactorily demonstrate that there are many vulnerable eco-regions that
are at a high risk of drought. Traditionally vulnerable eco-regions have always maintained high hazard
risks in both historical and future periods. Moreover, the Junggar Basin and Inner Mongolia Plateau are
highly vulnerable to drought, which may trigger devastating disasters due to the low resilience of these
areas. The vulnerability is often deteriorated due to the land use dynamics in risky areas; it is worth
noting that the Loess Plateau and the southern coastal areas are severely exposed to drought, and even
if the droughts in these areas are not severe, they will suffer more disaster losses once disasters occur.

Therefore, a complete risk management program must include a fine-scale analysis of the risks
to which certain ecological components and society are exposed, allowing for the development of
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measures to prevent and reduce the risks related to this exposure. Considering that the most suitable
measures to reduce risk occur locally, the information provided and generated by this work at the
regional level will help to identify financial resources for the preparation of locations that are considered
critical to mitigate imminent effects.

The combination of modes indicates the importance of public policies to be implemented in the
near future. In addition, it is of great importance to support long-term drought mitigation measures to
relieve drought and consider the drought management stages of monitoring, early warning, mitigation,
response, and recovery. Thus, it is recommended to adopt preparatory adaptive measures for future
drought risk management planning strategies, especially in vulnerable eco-regions, to respond to
future drought conditions.

Author Contributions: Conceptualization, J.C.; data curation, T.X. and R.Z.; formal analysis, J.C. and T.X.; funding
acquisition, J.C.; investigation, T.X.; methodology, T.X.; project administration, J.C.; resources, T.X.; software, R.Z.;
supervision, J.C., Y.X., F.Y. and M.S.; writing—original draft, T.X.; writing—review & editing, J.C.

Funding: This work was supported by National Key Research and Development Program of China
(grant 2018YFC1509003), National Key Research and Development Program of China (grant 2016YFA0602703),
National Natural Science Foundation of China (grant 41575001), Skate Key Laboratory of Earth Surface Processes
and Resource Ecology Project (2017-FX-03), and Supported Scientific Research Foundation Beijing Normal
University (2015KJJCA14).

Acknowledgments: Thanks to the “American Journal Experts” for helping us to polish this article.

Conflicts of Interest: No conflict of interest exits in the submission of this manuscript, and manuscript is approved
by all authors for publication.

Appendix A

Table A1. The Uncertainty of the MRI-CGCM3 by the Historical (1966–2005) Period.

Statistics
Pr (mm mon−1) Evaporation (mm mon−1) T (◦C)

Observation MRI-CGCM3 Error Observation MRI-CGCM3 Error Observation MRI-CGCM3 Error

Mean 70.8258 58.2089 −20.6169 12.1496 45.3955 33.2459 11.6572 6.0697 −5.5875

median 61.4500 47.1123 −14.3377 11.3837 38.9522 27.5685 12.8151 6.9891 −5.826

Mode 1.3905 7.7494 6.3589 2.2233 15.3962 13.1729 −6.0305 −12.9264 −6.8959

Standard
deviation 48.1565 37.5733 −0.5831 6.4183 20.8258 14.4075 9.3843 10.6533 1.269
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