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Abstract: One of the major challenges toward the reliable and safe operation of the Multi-Terminal
HVDC (MT-HVDC) grids arises from the need for a very fast DC-side protection system to detect,
identify, and interrupt the DC faults. Utilizing DC Circuit Breakers (CBs) to isolate the faulty line
and using a converter topology to interrupt the DC fault current are the two practical ways to clear
the DC fault without causing a large loss of power infeed. This paper presents a new topology of
a fast proactive Hybrid DC Circuit Breaker (HDCCB) to isolate the DC faults in MT-HVDC grids
in case of fault current interruption, along with lowering the conduction losses and lowering the
interruption time. The proposed topology is based on the inverse current injection technique using a
diode and a capacitor to enforce the fault current to zero. Also, in case of bidirectional fault current
interruption, the diode and capacitor prevent changing their polarities after identifying the direction
of fault current, and this can be used to reduce the interruption time accordingly. Different modes of
operation of the proposed topology are presented in detail and tested in a simulation-based system.
Compared to the conventional DC CB, the proposed topology has increased the breaking current
capability, and reduced the interruption time, as well as lowering the on-state switching power losses.
To check and verify the performance and efficiency of the proposed topology, a DC-link representing
a DC-pole of an MT-HVDC system is simulated and analyzed in the PSCAD/EMTDC environment.
The simulation results verify the robustness and effectiveness of the proposed HDCCB in improving
the overall performance of MT-HVDC systems and increasing the reliability of the DC grids.

Keywords: DC Circuit Breaker (CB); DC Fault; Hybrid DC Circuit Breaker (HDCCB); Multi-Terminal
VSC-HVDC (MT-HVDC) Grids

1. Introduction

Protection of the MT HVDC grids in case of a DC fault is vital to improve the reliability of the
power system [1–3]. Conventional Voltage Sourced Converters (VSCs) are not capable of limiting or
interrupting the current that flows following a DC-side fault. Also, the high power DC Circuit Breakers
(CBs) are not commercially available. Therefore, opening the CB on the AC side is the only possible
way to isolate the DC-side fault. Opening all the AC CBs to isolate/clear the DC-side fault in a DC grid
with high capacity can lead to a large loss of power infeed. Therefore, clearing the DC fault within the
DC grid by opening the AC CBs is practically impossible [4–6].

The consequence of a DC-side fault within an MT-HVDC grid is the sudden increase in the fault
current, and that is due to the capacitive behavior of the HVDC grids and low resistance of the DC
cables. The fault current should be interrupted in less than 20 ms to limit it within the acceptable
levels [7]. Using AC-side CB in the point-to-point VSC-HVDC grids to interrupt the fault current leads
to loss of the entire link. Adopting the same strategy for MT-HVDC grids and opening all the AC-side
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CBs is a disruptive measure and can cause losing a large amount of power infeed. Therefore, it is
mandatory to isolate only the faulty section of MT-HVDC grids. Two measures can be considered to
deal with this issue: (1) Using fast-acting DC CBs at both ends of the DC-links. (2) Using fault-blocking
converters to open the DC-links in case of a sudden increase in the DC fault current. Moreover,
determining the exact location of the DC-side faults within MT-HVDC grids is difficult [8,9]. In the AC
grids, impedance relays are used to determine the fault location. However, due to the low resistance of
the DC cables compared to the impedance of the AC grids, it is impractical for the impedance relay to
determine the fault location in a DC-link within its protective zone. Besides, distinguishing between
the AC and DC-side faults is another major challenge in a DC protection system [10,11].

In order to interrupt the fault current, the AC CBs at the high voltage transmission levels require
4-5 cycles (within 80–100 ms). By creating zero crossings of the current, the AC CBs provide interruption
with minimal arcing [12]. As there is no zero crossing of the current in DC, the conventional AC CBs
are not useful to prevent large DC currents. To overcome this issue, a passive or active resonant circuit
can be used to force the current zero crossing. The other way is to bypass or interrupt the fault current
using semiconductor switches (Insulated-Gate Bipolar Transistor (IGBTs)), which considering the
power losses, it is an expensive strategy. Due to the lack of reactance in the DC circuits, the rate of rise
of fault current in the DC grids is higher than the AC grids [13,14]. Thus, the DC CBs must be capable
of interrupting the fault currents faster than the AC CBs.

Different CB topologies are studied in the literature. The CBs can be categorized into three types:
Mechanical Circuit Breakers (MCBs), Solid-State Circuit Breakers (SSCBs), and Hybrid Circuit Breakers
(HCBs) [15,16]. The MCBs consist of the conventional AC CBs with a parallel circuit to generate a current
zero crossing [17]. In both passive and active MCBs structures, due to the existence of the parallel circuit,
the interruption time of the MCBs is long (30–50 ms), which is not suitable for VSC-HVDC systems.
The SSCBs consist of several solid-state switches that can interrupt the fault current faster than the
MCBs without the need for a current zero crossing [18–21]. Proper configuration of switches can lead to
achieving the desired breaking current capability. To design a bidirectional CB, at least two switches
are needed. The SSCBs are faster compared to the MCBs, but their on-state switching losses and total
cost are high. The HCBs configurations are the results of the combination of MCBs and SSCBs [22].
The combinations are based on the operation time, breaking current capability, power losses, and total
cost. The operation time and breaking current capability of the MCBs are low, but they are cheap. In
contrast, the SSCBs are fast, but when it comes to a complicated configuration for the VSC-HVDC
systems, they are expensive. Also, because of the existence of permanent resistance, the SSCBs have
large power losses compared to the MCBs. The HCBs take advantage of both MCBs and SSCBs, such as
fast current interruption and low power losses [23,24].

The first HCB [24], which was based on inverse voltage generation method, provided the advantages
of both MCBs and SSCBs. It consisted of a semiconductor-based CB using IGBTs and a bypass circuit
developed by the semiconductor-based load communication switches in series with an ultra-fast
disconnector. Reducing the fault current level to zero is achieved by generating the arc voltage at a
higher level than the source voltage. This topology has a short interruption time than the MCSs and
lower on-state switching losses compared to the SSCBs. A detailed analysis of the operating modes of
HCBs (reclosing and rebreaking) is performed in [16]. An accurate model considering the coordinated
control of the four subunits (two semiconductor values along with two mechanical switches) and the
opening and closing sequences of each subunit of the HCB is presented in [23]. This topology is not
suitable for MT-HVDC grids, where the fault location is hard to find, and the switches in the auxiliary
CB might damage due to the high rate of rise of current. To overcome this issue, a large number of
semiconductor switches in the semiconductor-based CB branch is needed, which can increase the cost of
implementation and relatively increase the on-state switching losses. To reduce the on-state switching
losses of the HCBs, another topology considering multiple thyristors connected in series is proposed
in [25]. In this topology, by injecting current stored in the capacitor with the initial charge, a current
zero crossing can be generated. The main issue with this topology is the high on-state switching losses
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because of the existence of IGBT in the main CB. Moreover, the fault interruption time is increased due
to the transferring the fault current from the CB to the auxiliary CB. Besides, using an external power
supply to charge the capacitor might lead to an increase in the costs of implementation. This topology
provides the bidirectional fault current interruption, but reclosing and rebreaking capabilities of the
HCBs is not considered. The topology of the HCBs presented in [26] is provided reclosing and rebreaking
capabilities, as well as bidirectional fault current interruption. Reclosing and rebreaking capabilities
have prevented the interruption of the power to the connected AC systems, and the auxiliary power
source is used to charge the capacitor. Although the polarity of the capacitor can change according to
the direction of fault current, it might have delay time to interrupt the fault and consequently, increase
of the fault current magnitude.

As MT-HVDC systems can control the active and reactive power independently and in both
directions [27], and do not require the installation of separate Flexible AC Transmission System (FACTS)
devices, it is necessary to investigate a proper Hybrid DC Circuit Breaker (HDCCB) for MT-HVDC
systems with capabilities of reclosing and rebreaking, as well as bidirectional fault current interruption.
A new topology of the HDCCB to solve the above-mentioned issues is proposed.

The major contributions of this paper are as follows:

• The proposed topology of the HDCCB is based on the switching technique to minimize the
costs of implementation and on-state switching losses, as well as interrupting the fault current
in both directions. Also, in this topology, the polarity of the capacitor is based on the direction
of fault current, which would lead to reducing the interruption time. Hence, it can be used in
MT-HVDC systems.

• The proposed topology has reclosing and rebreaking capabilities without the need for an external
power supply, which leads to reducing the overall cost.

• Improving the fault tolerance capability by increasing the maximum breaking current 0.25%
compared to the conventional HDCCB, while having approximately the same total dissipated
energy of the surge arrestor in the DC CB, and clearing the fault in 16 ms.

• The proposed topology limits the rate of rise of the voltage across the DC CB, reduces the
on-state switching losses, and ensures an equal voltage distribution regardless of tolerances in the
switching characteristics.

• The proposed topology can improve the overall performance of MT-HVDC systems and increase
the reliability of the DC grids.

2. Configuration and Operation of the Proposed Hybrid DC Circuit Breaker

2.1. Configuration of the Proposed Hybrid DC Circuit Breaker

Figure 1 illustrates the overall structure of the proposed HDCCB with bidirectional current
interruption capability. This structure consists of two main DC CBs in the main branch, a fast mechanical
switch and an auxiliary DC CB in the auxiliary branch, and a residual DC current disconnector.
The residual DC current disconnector (in series with a current limiting reactor) is used to entirely isolate
the DC circuit.

Figure 2 demonstrates the proposed configuration of the main DC CBs in the main branch. In this
configuration, four submodules are considered to be connected back-to-back to isolate the DC current
fault. Each submodule includes a diode, D, and a low resistance switch, S, in series and a capacitor,
C, in parallel with the diode and switch. The switches are capable of breaking the bidirectional fault
current. Also, the polarity of the capacitor changes with respect to the direction of the fault current.
In order to protect the back-to-back submodules and prevent the capacitors from overvoltage, a Metal
Oxide Varistor, MOV, is used.

The auxiliary DC CB consists of two switches, as shown in Figure 3. This CB matches lower
voltage and current capability.
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Figure 1. Overall structure of the proposed HDCCB.

Figure 2. Configuration of the main DC CBs in the main branch.

Figure 3. Configuration of the auxiliary DC CB.

2.2. Principle Operation of the Proposed Hybrid DC Circuit Breaker

Predefined states of each component in the submodule determine the operation modes of the
proposed HDCCB. Considering the operation modes, the switches can be either turned on or off.
During the normal operation, the DC current flows through the auxiliary branch. In case of the DC
fault, the auxiliary DC CB commutes the current to the main branch, and the fast mechanical switch
opens. During the current breaking, the fast mechanical switch isolates the auxiliary DC CB from the
voltage across the main DC CB. As a result, the rating voltage of the auxiliary DC CB reduces. Therefore,
the majority of the power losses would be related to the switching losses. The fast mechanical switch
opens when zero current and/or low voltage stress can be detected. The recovery voltage of the fast
mechanical switch determines by the proactive level of the surge arresters, while both the main and
auxiliary DC CBs are open. By connecting several mechanical switches, the operation time exceeds
30 ms. Proper control of the HDCCB leads to minimizing the time delay of the mechanical switching
elements. Hence, the operation time of the multiple switches should be less than the time for selective
protection. Figure 4 depicts the typical proactive control of the HDCCB. The proactive control system
enables when the level of the DC line current exceeds the predefined overcurrent level. In this case,
two events are expected: (1) The selective protection sends a trip signal. (2) The DC current of the
faulty line reaches the maximum breaking current capability of the main DC CB. In both cases, there
would be a time delay for the current breaking of the main DC CB.
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Figure 4. The current waveform of a typical proactive HDCCB.

To extend the operation time until the main DC CB sends the trip signal, the main DC CB may
disconnect the line in the current limitation mode prior to the current breaking. To prevent sudden
increases in the line current, the voltage drop across the DC reactor should be controlled by the main
DC CB. The energy dissipation capability of the surge arrester determines the maximum operation time
of the current limiting mode. Also, to allow maintenance on demand while not interrupting the power
transfer in the DC grids, scheduled current transfer of the line current from the auxiliary DC CB to the
main DC CB is required. Considering the proactive mode, overcurrent in the DC grid can activate the
current transfer from the auxiliary branch into the main branch of the DC CB prior to the trip signal of
the protection device. Considering the CB failure, the backup CB activates within less than 0.2 ms to
avoid large disturbances in the DC grids and maintain the breaking current capability of the backup
CB at the reasonable levels. After clearing the fault, the HDCCB returns to its normal operation mode.

According to Figure 2, when the DC CB, which is located at the power receiving, is closed, the
power flows from the output of the DC CB, based on the unidirectional conduction ability of the diode
that is paralleled with the IGBT in the submodule. When the DC CB, which is placed at the power
sending end, is closed, the power flows from the input of the DC CB with the conduction of the IGBT
in the submodule. Under the normal operation, the IGBT in the submodule is conducted and cascaded
into the circuit. In case of DC fault, the IGBT of the submodule is shut down to prevent the diode and
capacitor from being cascaded into the fault loop. By charging the capacitor, the back Electromotive
Force (EMF) forces both ends of the equivalent capacitor on the short-circuit path to surpass the peak
line voltage on the AC side to block the fault current. The fault tolerance capability can be significantly
improved as the diode in the submodule, and the arm inductance in the AC/DC converter station in
the DC fault are both shock resistance. This structure limits the rate of rise of the voltage across the DC
CB, reduces the on-state switching losses, and guarantees an equal voltage distribution regardless of
tolerances in the switching characteristics. Table 1 shows the operation status of the components in
each submodule.

Table 1. The operation status of the components in each submodule.

Operation Mode Diode IGBT Capacitor

Mode 1: Power Receiving End Bypass No Action Bypass
Mode 2: Power Sending End Bypass Conducted Bypass
Mode 3: Shut Down Accessing to the Circuit Shut Down Charging
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3. Design Parameters in the Proposed Hybrid DC Circuit Breaker

The designed parameters of the proposed HDCCB should be properly determined successfully to
interrupt the fault current. Figure 5 illustrates the equivalent circuit of the DC CB in the DC grid in
case of a short-circuit fault. As shown in this figure, the AC/DC converter station can be modeled as a
DC voltage source, UDC, and the line reactor in the DC grid is replaced by LDC [28].

Figure 5. Equivalent circuit of the DC CB in the DC grid.

After the DC fault occurrence, the induced voltage, VL, is generated by the inductor of the DC
grid. Considering that the inter-terminal voltage of the DC CB is VBreaker, then:

UDC = VL + VBreaker = LDC
di
dt

(1)

By establishing the transient state of the voltage of the DC CB, VL reverses, and VBreaker limits by
the voltage of MOV, VMOV. Therefore:

UDC = VL + VBreaker = LDC
di
dt

+ VMOV (2)

According to Equations (1) and (2), the fault current can be derived as follows:

i =

 UDC
LDC
·t

UDC−VMOV
LDC

·t
(3)

Hence, the rate of rise of fault current can be calculated as follows:

di
dt

=

 UDC
LDC

UDC−VMOV
LDC

(4)

Considering the time of the fault, t f ault, the maximum breaking current capability of the DC CB is
as follows:

i(max) =
di
dt
·t f ault =

UDC
LDC
·t f ault (5)

In addition, the maximum rate of rise of fault current can be derived as follows:

di
dt (max)

=
UDC
LDC

(6)

The energy dissipation capability of the HDCCB is from the DC power source and the stored
energy in the line reactor. The energy dissipation from the DC power supply can be written as follows:

Esource =

∫
UDC·idt =

∫
UDC·

UDC −VMOV
LDC

·tdt (7)
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In addition, the energy dissipation from the line reactor can be written as follows:

Ereactor =
1
2

LDC(i(max))
2 (8)

The summation of the energy dissipation from the DC power source and the line reactor gives the
total energy dissipation of the HDCCB.

EMOV =
1
2
·

UDCVMOV
UMOV −VDC

·

 1
di
dt (max)

·i(max)


2

(9)

4. Results and Discussions

4.1. Simulation Results

In order to check the performance of the proposed HDCCB, a DC-link representing a DC-pole of
the VSC-HVDC system is modeled on PSCAD/EMTDC environment, as shown in Figure 6. An HDCCB
is located at the end of the DC-link. As one of the most common faults in the VSC-HVDC systems, a
single line-to-ground fault on the DC-link is selected for the fault mechanism analysis. It is assumed
that the output voltage of the VSC-HVDC converter station, UDC, is constant. Tables 2 and 3 show the
main parameters of the DC-link and the specifications of the proposed HDCCB, respectively.

Figure 6. Configuration of the DC-link for fault analysis.

Table 2. DC-link parameters.

Parameter Value

UDC 320 kV
Rsource 0.001 Ω
LDC 100 mH

Table 3. Specifications of the proposed HDCCB.

Parameter Value

Capacitor (C) 6.8 µF
Time delay of residual disconnector 20 ms
Time delay of fast mechanical switch 2 ms
Forward Breakover Voltage (IGBT) 100 kV
Forward Breakover Voltage (Diode) 100 kV
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4.1.1. Rated Current Interruption

To give a general perspective about the relation of the designed parameters, considering 2 ms as
the breaking time, and the fact that DC line fault is close to the DC switchyard, the maximum rate of rise
of fault current is 3.5 kA/ms for a DC reactor of 100 mH in a 320 kV DC power grid with 10% maximum
overvoltage. If the rated line current is 2 kA, the minimum required current breaking current capability
of the HDCCB should be 9 kA. When there is no fault in the DC grid, the voltage drop across the DC
CB is 0.04 V, and the total current passing through the DC grid is 1.6 kA. Figure 7 shows the behavior
of the DC line current, and the current passing through the capacitors and switches of the HDCCB after
applying a short-circuit DC fault at 5 s. As shown in Figure 7, the breaking time is less than 2.5 ms.
The maximum current passing through the capacitors and switches of the HDCCB is 2.3157 kA and
8.0713 kA, respectively. The auxiliary CB opens into 50 µs. At 5.00195 s., the fast mechanical switch
opens, where the corresponding value of the current limiting is 8.0713 kA. According to Figure 7,
the maximum value of the DC fault current is 8.4425 kV, which is less than the minimum required
breaking current capability of the HDCCB and the fault is successfully cleared within 16 ms. Based
on the provided results, the maximum breaking current capability of 9 kA is confirmed. It should be
noted that in Figure 7, the DC current passing through the line and the DC current of the proposed
HDCCB are the same.

Figure 7. The DC line current, and the current passing through the capacitors and switches of the
proposed HDCCB after applying a short-circuit DC fault at 5 s.

As there are some limitations in terms of breaking current capabilities of the IGBTs, by rising the
current, voltage drop across the IGBTs increases significantly. To overcome this issue, the press-back
IGBTs are used to ensure a reliable short-circuit without mechanical damage and failure of the IGBTs’
modules. Therefore, in case of the failure of one of the IGBT modules, the fault can be cleared by the
rest of IGBTs.

Figure 8 illustrates the CB voltage and voltage at the fault location (VFault) after applying a
short-circuit DC fault at 5 s. As shown in Figure 8, the voltage across the proposed HDCCB exceeds
approximately 180 kV during the current commutation, and the proposed HDCCB successfully clears
the fault within 16 ms.
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Figure 8. The CB voltage and voltage at the fault location after applying a short-circuit DC fault at 5 s.

By increasing the capacity of the capacitors of the main DC CBs, the maximum breaking current
capability of the HDCCB increases. However, due to the discharge time of the capacitors, it takes
longer time to entirely clear the DC fault.

Figure 9 demonstrates the dissipated energy of the surge arrestors in the two main DC CBs of the
proposed HDCCB. The maximum dissipated energy of the surge arrestors in the main DC CB 1 and 2
is 12.6209 kJ and 7.7952 kJ, respectively.

Figure 9. The dissipated energy of the surge arrestors in the two main DC CBs of the proposed HDCCB
after applying a short-circuit DC fault at 5 s.

4.1.2. Reverse Current Interruption

In order to demonstrate the reverse current interruption of the proposed HDCCB, the direction
of designed CB is reversed, so that the fault current flows in the opposite direction. Figure 10 shows
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that the same as the rated current interruption, the maximum breaking current capability of −9 kA
is confirmed.

Figure 10. The DC current of the proposed HDCCB after applying a short-circuit DC fault at 5 s after
changing the direction of the proposed HDCCB.

Figure 11 illustrates the CB voltage and voltage at the fault location after applying a short-circuit
DC fault at 5 s after changing the direction of the proposed HDCCB. As shown in Figure 11, the
proposed HDCCB successfully clears the fault within 16 ms.

Figure 11. The CB voltage and voltage at the fault location after applying a short-circuit DC fault at 5 s
after changing the direction of the proposed HDCCB.

4.1.3. Reclosing and Rebreaking Capabilities

To evaluate reclosing and rebreaking capabilities of the proposed HDCCB, a short time (dead time)
between the first trip signal and the closing signal is considered. During this period of the time, there
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is no response from the proposed HDCCB to the test system. After the first trip signal, the proposed
HDCCB opens and performs the first current interruption. The reclosing signal is sent to the proposed
HDCCB 50 ms after the first trip, and the proposed HDCCB attempts to reconnect the source to the line.
As the fault is not cleared from the system, the fault current rises as soon as the CB is closed. The second
trip signal is sent to the proposed HDCCB 50 ms after the CB is closed, and then the proposed HDCCB
performs the second current interruption. After that, the proposed HDCCB remains open to insulate
the DC fault. Figures 12–15 show reclosing and rebreaking capabilities of the proposed HDCCB in
both the rated and reverse current interruptions. The simulation results validate the reclosing and
rebreaking capabilities of the proposed HDCCB in both the rated and reverse current interruptions.

Figure 12. The DC current of the proposed HDCCB in reclosing and rebreaking test in the rated
current interruption.

Figure 13. The CB voltage and voltage at the fault location in reclosing and rebreaking test in the rated
current interruption.
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Figure 14. The DC current of the proposed HDCCB in reclosing and rebreaking tests in the reverse
current interruption.

Figure 15. The CB voltage and voltage at the fault location in reclosing and rebreaking test in the
reverse current interruption.

4.2. Comparison

To evaluate and compare the performance of the proposed HDCCB over the conventional DC
CB in [22,29,30], replication is done, and proper matching is noticed in all cases. Figure 16 illustrates
a comparison between the CB voltage responses of the proposed HDCCB and the conventional DC
CB. As shown in Figure 16, the voltage response of the proposed HDCCB tracks the voltage of the
conventional DC CB. However, due to the fact that the DC capacitors have some charges, the level of
DC voltage of the proposed HDCCB after the fault is more than the level of voltage of the conventional
DC CB.
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Figure 16. Comparison between the voltage response of the proposed HDCCB and the conventional
DC CB after applying a short-circuit DC fault at 5 s.

Figure 17 demonstrates the comparison between the DC current response of the proposed HDCCB
and the conventional DC CB after applying a short-circuit DC fault at 5 s. As shown in Figure 17,
good matching is observed. The maximum breaking current capability of the proposed HDCCB and
conventional DC CB are 8.4425 kA and 8.4207 kA, respectively. Thus, the difference between the
maximum breaking current capability of the proposed HDCCB and conventional DC CB is 21.8 A.

Figure 17. Comparison between the DC current response of the proposed HDCCB and the conventional
DC CB after applying a short-circuit DC fault at 5 s.

The maximum dissipated energy of the surge arrestor in the DC CB 1 of the conventional DC CB
is 12.6388 kJ, which is 17.9 J more than the corresponding value of the proposed HDCCB. However,
because of the capacitor charge, the dissipated energy of the surge arrestor in the DC CB 2 of the
conventional DC CB is 7.7952 kJ which is 16.1 J less than the corresponding value of the proposed
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HDCCB. But, the total dissipated energy of the surge arrestor of the proposed HDCCB and the
conventional DC CB are approximately the same.

5. Conclusions

This paper presents a new topology of a fast proactive Hybrid DC Breaker (HDCCB) to isolate
the DC faults in Multi-Terminal VSC-HVDC (MT-HVDC) grids in case of fault current interruption,
along with lowering the conduction losses and lowering the interruption time. All modes of operation
of the proposed topology are studied. Simulation results verify that compared to the conventional
DC CB, the proposed topology has lower interruption time, lower on-state switching losses, and higher
breaking current capability. Due to the fact that MT-HVDC systems can share the power among the
converter stations independently and in both directions, and considering the fast bidirectional fault
current interruption, and reclosing and rebreaking capabilities, the proposed HDCCB can improve the
overall performance of MT-HVDC systems and increase the reliability of the DC grids.
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