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Abstract: Computational fluid dynamics (CFD) is a powerful tool to estimate accurately the
aerodynamic loads on wind turbine blades at the expense of high requirements like the duration
of computation. Such requirements grow in the case of blade shape optimization in which several
analyses are needed. A fast and reliable way to mimic the CFD solutions is to use surrogate models.
In this study, a machine learning technique, the support vector regression (SVR) method based on
a set of CFD solutions, is used as the surrogate model. CFD solutions are calculated by solving the
Reynolds-averaged Navier–Stokes equation with the k-epsilon turbulence model using a commercial
solver. The support vector regression model is then trained to give a functional relationship between
the spanwise twist distribution and the generated torque. The smooth twist distribution is defined
using a three-node cubic spline with four parameters in total. The optimum twist is determined for
two baseline blade cases: the National Renewable Energy Laboratory (NREL) Phase II and Phase
VI rotor blades. In the optimization process, extremum points that give the maximum torque are
easily determined since the SVR gives an analytical model. Results show that it is possible to increase
the torque generated by the NREL VI blade more than 10% just by redistributing the spanwise twist
without carrying out a full geometry optimization of the blade shape with many shape-defining
parameters. The increase in torque for the NREL II case is much higher.

Keywords: wind turbine blade; support vector regression; optimum twist distribution; NREL II;
NREL VI

1. Introduction

Power extraction from wind energy is a sustainable and popular option in the renewable energy
sector [1–3]. Its growing popularity is mainly due to the fact that fuel cost is getting more expensive
in addition to the global warming problems based on the usage of fossil fuels [4]. Moreover, the cost
of energy harvesting from wind has been significantly reduced during the last years [5]. Therefore,
the budget for other costs such as the reinforcement of the blade structure may be relaxed so that
less restrictive bending moment constraints are considered in aerodynamic shape optimization of the
turbine blades compared to the designs made in the past.

The full design of a wind turbine is a multidisciplinary optimization problem that incorporates the
aerodynamic loads, structural requirements, and the investment/operation costs [6,7]. However, such
an optimization includes many constraints that make the problem highly difficult and complex. Studies
by Yu and Kwon [8] and Imiela et al. [9] are a few examples in the literature for the multidisciplinary
analysis of wind turbines using high fidelity methods. A common approach to simplify the complexity
of such a design is to use low fidelity methods on one or more branches of the multidisciplinary
research. Employing the blade element momentum (BEM) method instead of computational fluid
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dynamics (CFD) to predict the aerodynamic performance of the turbine blade or making modal
analysis of the blade structure instead of computing the loads using a solver based on the finite
element method (FEM) is commonly preferred. Low fidelity models are easily implemented using low
computational resources. For example, the blade design study conducted by Giguère et al. [10] rook
into account both aerodynamic and structural considerations based on the BEM method constrained
with the analytical relations between the mass, moment of inertia, and strength. However, the turbine
performance calculations based on the low fidelity methods generally lead to less accurate results [11].

Recent works on the aerodynamic performance optimization of wind turbines by solving the
Reynolds-averaged Navier–Stokes (RANS) equations to compute the three-dimensional flowfields
around the blades include the studies of Dhert et al. [11], Vorspel et al. [12], Economon et al. [13],
Elfarra et al. [14], and Shrestha [15]. Dhert et al., Vorspel et al., and Economon et al. implemented the
adjoint method to determine the optimum blade geometry for maximum torque by choosing the NREL
VI rotor blade as the baseline. Dhert et al. applied a discrete adjoint method with about 250 design
variables, while Vorspel et al. and Economon et al. employed a continuous adjoint method with nine
and 50 shape variables, respectively. Elfarra et al. optimized the winglet shape to be mounted on
the NREL VI rotor blade to maximize the power generation using a genetic algorithm. Shrestha also
optimized the NREL VI rotor blade for maximum torque. In that work of Shrestha, the blade shape
was characterized by 14 design variables for the discrete chord length and twist values along the span
and optimized employing the adaptive single objective algorithm.

The researchers cited above focused on demonstrating CFD-based wind turbine optimization after
validating their CFD model against the results of the NREL experiments. However, the validation of the
turbulence models to understand their suitability for computing the flowfields around the wind turbine
blades is an ongoing study in the wind energy community [11]. Currently, the common approach
is to use the k-ε turbulence model for the attached flow conditions in wind energy applications [11].
However, some researchers have shown that the computed results based on the k-ε turbulence model
do not agree well with the experimental results in the separated flow conditions [16,17]. Another
important work is by Rogowski et al. [18] who presented CFD solutions based on the detached
eddy simulation (DES) technique. DES is a hybrid approach that combines the best aspects of the
Reynolds-averaged Navier–Stokes and large eddy simulation methods. The numerical results obtained
by Rogowski et al. showed that DES captures well the aerodynamic characteristics in the case of
separated flows at high Reynolds numbers. Fortunately, since the attached flow conditions are
considered in this study, the k-ε turbulence model is selected for the compatibility with the other
researchers’ CFD validation works against the NREL experiments [14,19–21].

In contrast to a few CFD-based wind turbine optimization studies, there are many applications of
the BEM method to design wind turbines for an objective function [22–30]. Ma et al. [22] optimized
the offshore wind turbine blades using the particle swarm optimization technique. They determined
optimum chord and twist distributions in terms of a number of discrete values along the span. Their
results showed about a 4% increase in the generated power. Another discrete distribution of chord
and twist was optimized by Chaudhary and Prakash [23] with an increase of around 8% in the power
coefficient. Erturk [24] modified the baseline NREL VI rotor blade by defining piecewise constant chord
and twist distributions along the span. The optimized blades were observed to produce almost the same
power as the baseline blade. However, the author reported that they were less expensive and easier to
manufacture. Using an analytical approach for the optimum chord length and twist angle values at
the sections in the spanwise direction, Tenghiri et al. [25] designed a small wind turbine blade that
was expected to generate the maximum power. The ant colony optimization algorithm implemented
by Tahani et al. [26] successfully increased the power output from a wind turbine by about 14%.
In their optimization process, six chord distribution functions (polynomial or logarithmic), ten twist
distribution functions (polynomial or exponential), and also, 12 airfoils were considered. Capellaro
and Cheng [27] obtained the optimum discrete twist angle values such that the equilibrium torsional
deflection led to the maximum power generation. The study by Liu et al. [28] presented a heuristic
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approach for optimizing the blade shape of fixed-pitch fixed-speed small wind turbines by linearizing
the chord and twist angle distributions along the span. They achieved about 3% higher annual energy
production. Polat and Tuncer [29] optimized the shape geometry of a wind turbine blade using the
genetic algorithm for maximum power. They took the sectional chord length, the sectional twist, and
the blade profiles at the root, mid, and tip regions of the blade as design variables. Their results showed
an increase of around 10% in the power production. Another study that used the genetic algorithm
to optimize the blade shape was performed by Selig and Coverstone-Carroll [30]. They maximized
the annual energy production by determining the optimum chord and twist distributions based on
movable spline supports and the blade pitch. Then, they examined the sensitivity of annual energy
production to changes in the rotor blade length and peak rotor power. Their conclusion stated that if
the blade radius and peak power were fixed constraints, wind turbine blades designed for high-speed
wind sites were likely to be equally well designed for lower speed sites.

In order to account for the advantages of both the CFD and BEM methods, some researchers
conducted wind turbine optimization by combining these two methods. In this way, the design
accuracy and flexibility were improved while maintaining the low computational cost [31,32]. Another
approach to reduce the computational cost of a CFD solution to a level as low as that of a BEM
solution is to use a surrogate model such as the response surface method. For example, Zahle et al. [33]
optimized the blade tip extension for maximum energy production using the response surface method
based on the incompressible flow solutions by a Navier–Stokes solver.

Similarly, other surrogate models like machine learning tools may also be implemented. Once a
set of CFD-based flow solutions has been obtained in terms of the given values of a number of design
variables, a machine learning model was trained to obtain the flow solutions for the other values of
the design variables. In this study, the support vector regression method (SVR), which was firstly
introduced by Vapnik et al. [34], is implemented as the machine learning model. This method has been
used by many researchers [35–43] in various engineering problems in the last two decades. As other
machine learning tools, it is generally preferred as an approximation tool for the solutions of the
problems requiring high computational resources (CPU time, floating operations, memory, etc.) [35–39].
A well-defined support vector regression model may provide a highly-accurate functional relationship
between some arbitrary input-output pair by minimizing the approximation error bound [42,43].
Balabin and Lomakina [44] observed that SVR was superior in both extrapolating and interpolating
problems over the artificial neural network method in terms of the stability, generality, and robustness
of the final model. They also stated that the SVR model did not require a wider dataset for accurate
prediction results. For this reason, the SVR method is selected in this study to build the regression
models for the twist distributions.

SVR applications cited in the wind energy literature are mainly about the fault detection and
condition monitoring of wind turbines [45–51]. The studies by Shamshirband et al. [52], Erfort et al. [53],
and Mohandes et al. [54] were more directly related to wind turbine performance. Sharmshirband et al.,
using SVR, obtained the optimum combination of the wind speed and the rotor speed for the maximum
torque generated by a wind turbine. Their results showed that SVR can be considered as a promising
alternative for other surrogate models. Erfort et al. applied SVR to determine the aerodynamic
loads quickly as a function of the shape geometry of wind turbine profiles. It was indicated in the
comparative study by Mohendes et al. that SVR is better in the predicting wind speed compared to the
multilayer perceptron neural networks.

In this study, continuous spanwise twist distributions are optimized for maximum torque.
The generated torque values are estimated using the support vector regression based on a set
of CFD solutions. These CFD-based flow solutions are obtained employing a three-dimensional
Reynolds-averaged Navier–Stokes solver. The continuous and smooth variation of the twist along the
blade span is defined using a cubic spline. The parameters defining the cubic spline are input into the
SVR model, which outputs the torque. Since the SVR provides an analytical function for the generated
torque, the optimum spline parameters are easily determined. The baseline blades to be optimized are
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selected as the National Renewable Energy Laboratory (NREL) Phase II [55,56] and Phase VI [57,58]
rotor blades. The taper distribution of the blades is kept fixed while optimizing the twist. All CFD
solutions are obtained assuming the blade is rigid. The influence of the pitching moment on the blade
twist is not considered.

2. Methodology

2.1. Flow Solver

The commercial CFD software FINE/Turbo by NUMECA International was employed to compute
the flowfields around the wind turbine blades. The FINE/Turbo is a three-dimensional, compressible,
structured, multi-block finite volume solver, which is specially developed to simulate the internal or
external flows for turbomachinery, including wind turbines [59]. It can simulate the incompressible
flows using low Mach number preconditioning.

The solver FINE/Turbo solves the unsteady Reynolds-averaged Navier–Stokes (URANS)
equations formulated in the rotating frame. The equations are solved for the absolute velocities
so that the freestream flow is taken as uniform. The 3-dimensional URANS equation according to this
approach is given below:

∂

∂t

∫

V
Q dV +

∮

S
(F · n) dS−

∮

S
(Fv · n) dS =

∫

V
sT dV (1)

where Q is the vector of conservative variables Favre-averaged over some time interval, T. T is
sufficiently large compared to the time scales of the turbulent fluctuations, but also less than all
other time-dependent effects. The difference between the averaged and the instantaneous values of a
variable is called the turbulent fluctuation of this variable. Favre-averaging of a variable, φ, is defined
as φ̃ = ρφ/ρ where:

ρ =
1
T

∫ t+T

t
ρ(~x, t) dt ρφ =

1
T

∫ t+T

t
ρ(~x, t)φ(~x, t) dt (2)

In the above expressions, V is the control volume inclosing the flowfield and S is the surface,
which surrounds the control volume, V. n is the normal direction of S, and ~x is the 3-dimensional
coordinates of a point within V.

The conservative variables, Q, the jth component of the inviscid fluxes, F, the jth component of
the viscous fluxes, Fv, and the source term, sT are defined as follows:

Q =




ρ

ρũ1

ρũ2

ρũ3

ρẽ0 + k




(3)

Fj =




ρw̃j

ρw̃1w̃j + pδ1j
ρw̃2w̃j + pδ2j
ρw̃3w̃j + pδ3j
ρh̃0w̃j + kw̃j




Fj
v =




0
τ̃1j − τ

1j
T

τ̃2j − τ
2j
T

τ̃2j − τ
2j
T

ũiτ̃ij − q̃j + Θj
T




(4)

where i, j = 1, 2, 3 refers to the component in each coordinate. ũ, w̃, ẽ0, p, and h̃0 are absolute velocity,
relative velocity, total energy, pressure, and total enthalpy, respectively. k is the kinetic energy of
turbulent fluctuations. δij is the Kronecker delta, which is equal to one if i = j or equal to zero i 6= j.
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τ̃ij is the viscous stress tensor, while τ
ij
T is the Reynolds stress tensor. q̃j is the jth component of the

heat flux vector. ΘT consists of the turbulent heat flux and all other turbulent terms evolving from
density-velocity correlations and triple velocity correlations of the turbulent fluctuations.

The viscous stress tensor was calculated based on Stokes’ hypothesis and assuming the air is
a Newtonian fluid. Sutherland’s law was used to determine the value of the viscosity term in this
tensor. The CFD software FINE/Turbo is capable of computing the Reynolds stress tensor using a
number of different algebraic and differential turbulence models. In this study, a two-equation model,
the k-ε turbulence model, was selected to simulate the turbulent flow around the wind turbine blades.
The motivation for selecting this turbulence model is explained in Section 1.

~ω is the angular velocity of the relative frame of reference. The source term due to the rotation of
the blades is given as:

sT =




0
−ρ(~ω× ~̃u)1

−ρ(~ω× ~̃u)2

−ρ(~ω× ~̃u)3

0




(5)

Finally, the URANS equations were closed under the perfect gas assumption, which relates the
pressure and the internal energy.

The computational domain was discretized using a multi-block structured grid topology, which is
described in the next section. Then, the solution was computed based on the finite volume method.

Grid Topology

The mesh around the blades was generated using the so-called O4Hgrid topology. As an example
of the O4H grid topology, the schematic of a 5-block mesh is given in Figure 1. The description of the
figure is as follows:

1. An O block around the blade
2. An H block upstream the leading edge of the blade
3. An H block downstream the trailing edge
4. An H block up to the blade section
5. An H block down to the blade section
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3. A H block downstream the trailing edge187

Figure 1. O4Hgrid topology used to generate meshes.

2.2. Boundary Conditions

The blade, hub, and shroud components of the wind turbine were modeled as solid boundaries on
which adiabatic and nonslip boundary conditions were applied. The nonslip condition was satisfied
by setting the fluid velocity on the solid surface equal to the blade velocity. The flow variables on the
far-field boundary were estimated using the Riemann invariants based on the freestream values taken
from the experimental data [55,57]. The far-field value of the turbulent kinetic energy, k, was calculated
assuming a 1% freestream turbulent intensity. A 1/1 eddy viscosity ratio (the ratio of the turbulent
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viscosity to the molecular dynamic viscosity) at the far-field was used to predict the far-field value
of the turbulent dissipation, ε. This 1/1 eddy viscosity ratio was in the value range suggested by the
developers of the solver FINE/Turbo [59]. A schematic for the flow domain is shown in Figure 2.
Version August 15, 2019 submitted to Sustainability 6 of 25
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flow domain.

2.3. Unsteady Aerodynamics Experiments by the National Renewable Energy Laboratory

The National Renewable Energy Laboratory (NREL) conducted the unsteady aerodynamics
experiments for quantifying the full-scale 3D aerodynamic behavior of horizontal axis wind
turbines [55,57]. The experimental setup was installed to characterize rotating blade aerodynamic
performance, structural responses, and atmospheric inflow conditions. Many blade configurations
were tested and reported under different phase and sequence names.

The experimental results obtained by NREL have been used by many researchers to validate
their numerical solutions for the aerodynamic and structural analyses. Especially, the NREL VI blade
has been taken into consideration as the baseline blade by most of the studies on the blade shape
optimization using the three-dimensional CFD solutions [11–15]. There are also recent works by some
researchers who have validated their CFD solutions against the experimental results of the NREL II
blade, which has a simpler geometrical shape [60,61]. These two popular blades are also selected in this
study. The details of the NREL Phase II and NREL Phase IV Sequence H experimental configurations
are given in the next section.

2.3.1. National Renewable Energy Laboratory II Rotor Blade

These experiments [55] were carried out at NREL’s National Wind Technology Center located in
Colorado. The wind turbine of this phase was a downwind, three-bladed, horizontal axis wind turbine.
The blades were untapered and untwisted. This wind turbine had the S809 airfoil as the blade profile
from root to tip with a span length of 5.029 m and a constant chord length of 0.4572 m. A pitch of 12 deg
was assigned to the blade at the 30% chord location from the leading edge. The blades were attached
to the hub through a circular section. The airfoil thickness was 43.0% chord length at 14.4% blade span
in the radial direction, where the transition from the circular section ended. The thickness decreased
linearly from 43.0%–20.95% until the 30% span location. Outboard of 30% span, the thickness was
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maintained constant at a 20.95% chord length value. The rotational speed of the NREL II rotor blade
was 72 rpm. An illustration of a single blade of the NREL II rotor is given in Figure 3.
Version August 15, 2019 submitted to Sustainability 7 of 25
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2.3.2. National Renewable Energy Laboratory VI Rotor Blade

These experiments [57] were carried out at the NASA Ames wind tunnel facility in California.
The Phase VI experiments included several tests and sequences. In this study, Sequence H was
selected as the baseline configuration. The wind turbine of this sequence was an upwind, two-bladed,
horizontal axis wind turbine. The blades were tapered and twisted. This wind turbine had the S809
airfoil as the blade profile from root to tip with a span length of 5.029 m. A pitch of 4.815 deg was
assigned to the blade at the 30% chord location from the leading edge. The blades were attached
to the hub through a circular section. The airfoil transition started at 17.6% of the blade span in the
radial direction. The taper and twist axes were located at the 30% chord location from the leading
edge. The taper and twist distributions of this blade were optimized based on a trade-off design [58].
The rotational speed of the NREL VI Sequence H rotor blade was 72 rpm. Figure 3 also shows a single
blade of the NREL VI rotor.

2.4. Support Vector Regression

The general form of SVR to approximate the function y = y(~x) is expressed as follows:

y∗(~x) = 〈 ~w , ~φ(~x) 〉+ b (6)

where 〈 . , . 〉 denotes the dot product, ~x is the vector of input variables, y∗ is an approximation function
to the target function y, ~w is the weight vector, ~φ is a vector-valued function of ~x, and b is a constant.
In the literature, ~φ and b are respectively called the (non-linear) feature mapping function and the bias.

There were two aims while building the SVR model. The first aim was to determine the
approximation function, y∗(~x), which had at most ε deviation from the actual target, y(~x). The second
aim was to make y∗(~x) as flat as possible. Therefore, the following optimization problem is solved:

minimize
~w, ξ+i , ξ−i

1
2
‖~w‖2 + C

m

∑
i=1

(
ξ+i + ξ−i

)

subject to 〈 ~w , ~φ(~xi) 〉+ b− yi ≤ ε + ξ+i

yi − 〈 ~w , ~φ(~xi) 〉 − b ≤ ε + ξ−i
ξ+i , ξ−i ≥ 0, i = 1, . . . , m

(7)

where ~xi and yi denote the ith input-output pair in the training dataset. m is the number of data pairs
in the entire set or in a subset of the entire set, depending on the training algorithm. ε is called the loss
function and is a model parameter that must be supplied before solving the minimization problem in
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Equation (7). The penalty parameter, C > 0, is also a model parameter and must be supplied a priori as
well. It determines the trade-off between the flatness of y∗(~x) and the amount up to which deviations
larger than ε are tolerated. Finally, ξ+i , ξ−i are the slack variables to provide a solution to Equation (7)
in the feasible domain by coping with the ε constraint. The explanations and comments about ~φ(~x)
and b will be given at the end of this section.

Since the Lagrange dual form is simpler (in terms of constraint handling), it is solved rather than
Equation (7) itself:

maximize
α+i , α−i

−1
2

m

∑
i,j=1

(α+i − α−i )(α
+
j − α−j )k(~xi, ~xj) +

m

∑
i=1

(α+i − α−i )yi −
m

∑
i=1

(α+i + α−i )ε

subject to
m

∑
i=1

(α+i − α−i ) = 0, i = 1, . . . , m

0 ≤ α+i , α−i ≤ C, i = 1, . . . , m

(8)

where α+i and α−i are the Lagrange multipliers. k(~xi, ~xj) = 〈 ~φ(~xi) , ~φ(~xj) 〉 is called the kernel
function. As seen from its definition, it is symmetric and positive definite. The Lagrange multipliers
are determined by satisfying the Karush–Kuhn–Tucker conditions assuming that the kernel function,
k(~x, ~xi), and C are both supplied. Finally, SVR is obtained as follows:

y∗(~x) =
m

∑
i=1

(α+i − α−i )k(~x, ~xi) + b (9)

It is seen from Equation (9) that the weight vector ~w and the feature mapping function ~φ(~x) were
eliminated from the original definition of SVR in Equation (6). The most popular kernel function in
the literature is the Gaussian kernel [62]. It has only one model parameter: γ. This kernel function is
defined as follows:

k(~x, ~xi) = e−γ‖~x−~xi‖2
(10)

In this study, the Gaussian kernel was chosen as the kernel function when building the SVR
models due to its popularity and simplicity. The last parameter to be determined is the bias, b.
The detailed information about choosing b was given by Keerthi et al. [63]. As the simplest way, it may
be chosen arbitrarily provided that the following condition is satisfied:

max {yi − 〈 ~w , ~φ(~xi) 〉 − ε | α+i <C or α−i >0, i = 1, . . . , m} ≤ b ≤ (11)

min {yi − 〈 ~w , ~φ(~xi) 〉 − ε | α+i >0 or α−i <C, i = 1, . . . , m}

In this work, the open source library LIBSVM by Chang and Lin [64] was employed to build
the SVR models. The parameters ε, C, and γ that must be supplied a priori for building the model
were selected such that the mean squared error between y(~x) and y∗(~x) was minimum based on
a cross-validation study. For this purpose, the strategy stated by Yan et al. [62] was used. A brief
explanation of the cross-validation is also given in Section 4.

3. Optimization

The SVR model was trained for the twist parameters explained in Section 4 as input variables
and the torque values calculated based on the CFD solutions as output variables. Once the model was
built, we had an analytically-defined fitting function (Equation (9)) between the input and the output.
The extremum of this known analytical function, that is the maximum generated torque value, can be
easily found by making its first derivative vanish since there is no constraint on the twist parameters:

dy∗(~x)
d~x

=
m

∑
i=1

(α+i − α−i )
dk(~x, ~xi)

d~x
= 0 (12)
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or:

m

∑
i=1

(α+i − α−i )
dk(~x, ~xi)

dx(1)
= 0

... (13)
m

∑
i=1

(α+i − α−i )
dk(~x, ~xi)

dx(4)
= 0

where x(1), . . . , x(4) are the components of the input vector ~x, which are the parameters of the cubic
spline to define the spanwise twist distribution (see Section 4 for details):

~x =




x(1)

x(2)

x(3)

x(4)


 =




θroot

θmid
θtip

dθ
dr |root


 =




Root twist angle
Mid twist angle
Tip twist angle

Twist slope at the root


 (14)

Since the system of equations in Equation (13) is non-linear due to the Gaussian kernel, k(~x, ~xi)

defined in Equation (10), it should be solved numerically. In this work, it was solved iteratively using
Newton’s method.

4. Design of Experiment

Any model based on a machine learning algorithm is trained using a dataset that consists of
input-output pairs. In this study, the input was a vector of four parameters, which defined the
spanwise twist distribution using a cubic spline, while the output was the corresponding torque value
calculated based on this twist. The number of the input-output pairs in a training dataset depends on
the topology used to construct the design of experiment (DOE). A typical topology provides the list
of the element-wise combinations of the input based on the minimum, maximum, and intermediate
values of the input vector elements. In this work, the dataset for the SVR model was obtained using
the Box–Behnken design of experiment [65]. The Box–Behnken method suggests 25 input-output pairs
for a four-element input vector.

Table 1 gives the minimum, maximum, and intermediate values of the input vector elements for
both of the baseline blade cases. According to these values, a total of 50 CFD simulations was carried
out: 25 simulations for the NREL II case and 25 simulations for the NREL VI case. It should be noted
that two separate SVR models were generated for two baseline blade cases.

When building the SVR model for a baseline blade case, the dataset was split into five sections
(so-called folds), each of which included five CFD results. Then, each fold was used as a testing set.
Finally, the average of the approximation errors of five testing sets was considered as the performance
of the SVR model based on the parameters ε, C, and γ. Such a validation method for a machine
learning algorithm is called as K-fold cross-validation, where K = 5 in this study.

As stated earlier and also seen from Table 1, there were four parameters that defined the cubic
spline-based smooth twist variation along the span:

1. Twist angle value at the root, θroot

2. Twist angle value at the mid-span, θmid

3. Twist angle value at the tip, θtip

4. Spanwise rate of change of the twist angle at the root, dθ
dr |root

where the root and tip locations of the blade span are shown in Figure 3. The mid-span location is the
middle point between the root and the tip. r denotes the radial direction along the span.
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Table 1. Minimum, maximum, and intermediate input values to construct the Box–Behnken DOE.

Parameter Minimum
Value

Intermediate
Value

Maximum
Value

Root twist angle in degrees, θroot 5.0 15.0 25.0
Mid twist angle in degrees, θmid −2.5 5.0 12.5
Tip twist angle in degrees, θtip −5.0 0.0 5.0

Twist slope at the root in degrees per meter, dθ
dr |root −20.0 0.0 10.0

Cubic Spline-Based Twist Distribution

A cubic spline is a spline constructed of piecewise third-degree polynomials that pass through a
set of control points, which are generally called knots. First and second derivatives of a cubic spline
are continuous at each knot, providing the smoothness of the data. Moreover, when constructing a
cubic spline, the first (or second or third) derivatives of the spline at the endpoints must also be known.
The convention is to select the second derivatives at the first and second knots as zero, which is called
the natural cubic spline.

In this study, three knots (rroot, rmid, and rtip) were used to construct the cubic spline together with
three corresponding twist angle values (θroot, θmid, and θtip). Unlike the conventional (natural) cubic
spline, the first derivatives at the root and the tip were provided. The first derivative at the first knot,
that is dθ

dr |root, was included as the fourth parameter in the input vector, while the first derivative at the
last known on, that is dθ

dr |tip, was taken as zero.
A mathematically-expressed summary of the cubic spline used to define the spanwise twist

distribution θ = θ(r) is as follows:

θ(r) =

{
θ1(r) = a1(r− rroot)3 + b1(r− rroot)2 + c1(r− rroot) + d1 if rroot ≤ r ≤ rmid

θ2(r) = a2(r− rmid)
3 + b2(r− rmid)

2 + c2(r− rmid) + d2 if rmid ≤ r ≤ rtip
(15)

where the unknown coefficients a1, b1, c1, d1, a2, b2, c2, and d2 are determined according to the
following conditions:

θ1(rroot) = θroot

θ1(rmid) = θmid
θ2(rmid) = θmid
θ2(rtip) = θtip

dθ1/dr|mid = dθ2/dr|mid
d2θ1/dr2|mid = d2θ2/dr2|mid
dθ1/dr|root = dθ/dr|root

dθ2/dr|tip = 0

(16)

Equation (16) leads to a linear system for eight unknowns, which is easily solved.

5. Validation Study

The CFD software FINE/Turbo was previously validated against the results of the NREL II and
NREL VI experiments [66,67]. A validation study was also conducted in this work. The results of
the grid sensitivity analysis performed before the validation are given in Table 2. For this purpose,
six different meshes at varying resolutions were studied. The number of cells on the finest mesh was
about 11 million, while the coarsest mesh had around 800 thousands cells. It is seen from Table 2 that
the mesh with about seven million cells gave almost the same results as the finest mesh. Therefore,
in this study, the mesh settings used in the fight mesh were employed for all analyzed cases including
validation. In fact, these were the same spatial and temporal resolutions stated previously by Kaya
and Elfarra [67]:
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The number of nodes in each mesh was around seven million. In order to have a y+ value close
to one, which was suitable for the implemented k-ε turbulence model and the freestream Reynolds
number of Re =106, the first nodes had a fixed distance of 3×10−6 m in the orthogonal direction to the
solid boundaries. One hundred forty five nodes were employed to define each two-dimensional blade
section, that is airfoil profiles along the span with the normalized grid spacing of 1.5×10−3 on the
leading edge and 2.0×10−4 on the trailing edge. These normalized values were based on the sectional
chord length.

Table 2. Mesh study results.

Mesh Number of Cells Torque (Nm) Wall Clock Time of Computation

1 0.8× 106 754.4 6 min
2 1.6× 106 776.4 12 min
3 3.2× 106 781.6 26 min
4 4.8× 106 784.0 35 min
5 6.9× 106 784.1 55 min
6 10.7× 106 784.4 78 min

All the meshes used in this study were generated for a single blade, imposing the periodic
condition to account for the other blade(s). A typical mesh generated according to these settings is
shown in Figure 2, while Figure 4 gives the surface mesh around the rotor blade.
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Figure 4. Typical surface mesh around a rotor blade.

Figures 5 and 6 show the chordwise variations of the pressure coefficients calculated at different
span locations of the baseline blades NREL II and NREL VI. The validation study was carried out for
the wind speed of w∞ = 7.2 m/s as in the NREL II experiment and for w∞ = 7.0 m/s as in the NREL
VI experiment. It is seen from the figures that the computed values for both blades agreed well with
the experimental data.
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Figure 5. Comparison of calculated pressure coefficient with the result of NREL II experiment [55]
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Figure 5. Comparison of the calculated pressure coefficient with the result of the NREL II
experiment [55].
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6. Results

The analyzed cases for the NREL II blade were investigated at a wind speed of 7.2 m/s as given
in the NREL II experiment. For the NREL VI cases, the solutions were obtained at 7 m/s, which was
one of the reported wind speeds in the experiment. The turbulent flowfields were solved using the
k-ε model as stated by Elfarra et al. [14]. Low Mach number preconditioning for compressible solvers
was employed to overcome the incompressible nature of the flows around the wind turbine blades.
The steady-state flow solutions were obtained using cell size-based local time stepping.

The flowfields for all the cases were computed in parallel using 16 processors. A typical CFD
solution with about a sixth-order convergence requires almost an hour of wall clock time. Figure 7
shows the convergence history of residual and generated torque for an analyzed case. A total of
50 CFD solutions (25 for NREL II, 25 for NREL VI) was computed as stated in Section 4. Consequently,
it took about 50 h to complete the samples in the dataset. The time spent for building the SVR
models and obtaining the optima was in the order of minutes, that is negligible. Therefore, the total
time cost for the machine learning-based solutions of the optimization problems in this study was
approximately two days. However, instead of being based on a machine learning model, a classical
or modern optimum seeking technique based on iterative function evaluations would be much
more expensive in terms of the time consumption. For example, the conjugate gradient method
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needed gradient calculations and line searches in each optimization step, which meant a large number
of function evaluations. It should be also noted that as the number of optimization parameters
increased, the number of the function evaluations increased as well. Similarly, since a genetic algorithm
theoretically converges after infinitely many generations, the number of the function evaluations may
be quite high, although there is no need for the gradient calculation. In that algorithm, the size of
the population (function evaluation) in each generation is the main cause for the time consumption
because it is generally in the orders of hundreds. Machine learning methods like SVR appear to be
a good remedy to reduce the computational costs for the solutions of the optimization problems in
which a function evaluation requires a highly long computation duration [35–39].
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SVR models were separately constructed for the NREL II and NREL VI cases. Then, the optimum
parameters were determined for the maximum torque. The maximum torque predictions at the
optimized twist conditions of the NREL II and NREL VI blades are given in Table 3. The baseline
values are also reported to compare with the maximum ones. It is seen from the table that the maximum
torque was more than twice the baseline value for the NREL II case. In fact, such a high increase was
expected because the baseline NREL II was an untwisted blade. The effect of spanwise twist was
significantly observed in this optimization process.

Table 3. Maximum torque predictions for the optimum twist distributions.

Blade Torque (Nm) Increase in Torque (%)

Baseline NREL II 362 -
NREL II with optimum twist 835 131

Baseline NREL VI 784 -
NREL VI with optimum twist 856 9.2

The increase in torque was almost 10% for the NREL VI case. It should be noted that the twist
variation of the baseline NREL VI blade was stated to be optimum in terms of a trade-off design [58].
The result showed that it was possible to increase the torque of the NREL VI blade just by redistributing
the twist. The present maximum torque value was quite significant compared to the torque reported
by Economon et al. [13] in their shape optimization work for the NREL VI blade. They obtained
an increase of 4% in the torque generation after they optimized the shape geometry of the NREL
VI blade using a continuous adjoint method with 50 optimization variables. Another optimization
study for maximizing the torque generation of the NREL VI blade was by Shrestha [15] who obtained
approximately a 6% increase in the torque. Shrestha used 14 optimization variables for both taper and
twist variations along the span. Applying a discrete adjoint method with 12 variables (one variable
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was the pitch angle) to define the twist, Dhert et al. increased the torque of the NREL VI blade by
about 6% [11]. It is clearly seen that the present study, which only used four variables, was able to
obtain more torque generation. It is worthwhile mentioning that Dhert et al. observed a maximum
torque value about 22% higher than the baseline when they increased the number of optimization
variables from 12 to 252, including variables to define the sectional airfoil profiles.

Table 4 provides information about the validation of the SVR predictions. In order to validate the
SVR predictions, extra CFD solutions were computed for the optimized blades. As seen from the table,
SVR successfully estimated the torque values for the optimized twist parameters.

Table 4. Validation of SVR predictions by CFD computations.

Blade Torque by SVR (Nm) Torque by CFD (Nm) Difference (%)

NREL II with optimum twist 835 832 0.36
NREL VI with optimum twist 856 853 0.35

The optimum parameters determined by the SVR models of both NREL II and NREL VI cases are
shown in Table 5. The corresponding twist distributions based on the cubic spline interpolation are
depicted in Figure 8. The interesting observation about the results is the fact that the twist slope at the
root was very high in the NREL II case where the blade was untapered, in contrast to the low twist
slope at the root for the NREL VI case, which had a designed taper distribution. Moreover, for the
NREL VI case, the twist angle at the root was significantly less compared to the baseline value.

Table 5. Optimum parameters for the cubic spline-based twist distribution.

Parameter Optimized NREL II Optimized NREL VI

Root twist angle in degrees, θroot 12.1 4.2
Mid twist angle in degrees, θmid −9.6 −2.9
Tip twist angle in degrees, θtip −11.4 −5.0

Twist slope at the root in degrees per meter, dθ
dr |root −22.6 −2.9

The chordwise distributions of the pressure coefficient for the optimized NREL II blade are shown
in Figure 9. The distributions are plotted at various span locations and compared to the baseline
distributions. The pressure coefficient distribution at the 30% span location was almost the same
for both baseline and optimized twist conditions. This was due to the fact that the optimized twist
distribution gave almost zero twist at this span location as the baseline distribution (see Figure 8 for
NREL II). In the other span locations of the optimized blade, the pressure coefficient difference between
the upper and lower surfaces was relatively higher, as expected.

Figure 10 shows the pressure coefficient distributions for the NREL VI blade with the optimum
twist. The baseline distributions are also plotted for comparison. Taking into consideration that the
difference between the twist angle values of the optimized and baseline blades was approximately
five degrees as a spanwise average (See Figure 8 for NREL VI), the difference between the optimized
and baseline pressure coefficient distributions was not as pronounced as the NREL II case. Yet, this
difference was sufficient to increase the torque by 10%.
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Table 5. Optimum parameters for the cubic spline based twist distribution

Parameter Optimized NREL II Optimized NREL VI

Root twist angle in degrees, θroot 12.1 4.2
Mid twist angle in degrees, θmid -9.6 -2.9
Tip twist angle in degrees, θtip -11.4 -5.0

Twist slope at the root in degrees per meter, dθ
dr |root -22.6 -2.9
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Figure 8. Optimized twist distributions for NREL II and NREL VI blades

at the root for the NREL VI case which has a designed taper distribution. Moreover, for the NREL VI408

case, the twist angle at the root is significantly less compared to the baseline value.409

Figure 8. Optimized twist distributions for the NREL II and NREL VI blades.
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Figure 9. Pressure coefficient distribution at different span locations for the optimized NREL II blade
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Figure 9. Pressure coefficient distribution at different span locations for the optimized NREL II blade.
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Figure 10. Pressure coefficient distribution at different span locations for the optimized NREL VI
blade
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Figure 10. Pressure coefficient distribution at different span locations for the optimized NREL VI blade.

The optimization was carried out at a single wind speed for both NREL II and NREL VI. As stated
earlier, the wind speed at which the twist optimization was conducted for NREL II was 7.2 m/s, while
the wind speed for the NREL VI optimization was 7 m/s. The torque performance of both optimized
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blades were also investigated for other wind speeds. The investigation was done for the speed values
ranging from 5 m/s–9 m/s. The result is given in Figure 11. As seen from the figure, although the
optimization was carried out at a single wind speed, the torque of both optimized blades increased
for the whole speed range. The only exception was the wind speed of the 9 m/s case of the NREL VI
blade. Elfarra [66] showed that 9 m/s was the threshold speed at which the flow separation started
for the NREL VI blade. Therefore, such a discrepancy in the flow regime may be the reason for this
particular result, as stated by Volikas et al., Aksenov et al., and Rogowski et al. [16–18].
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Figure 11. Generated torque at wind speeds other than the speed used in the optimization
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Figure 11. Generated torque at wind speeds other than the speed used in the optimization.

Previous works by other researchers on the CFD-based shape optimization of wind turbine blades
either maximized the torque [11,13–15] or minimized the thrust [12]. However, torque generation
may also be maximized while maintaining the baseline thrust value. For this purpose, new SVR
models were built to output the thrust in addition to the SVR models outputting the torque. Then,
the optimum twist parameters providing the maximum torque at the baseline thrust condition were
determined. The results are given in Table 6. It is clearly seen from the table that if the baseline
thrust value was maintained when optimizing the twist distribution for the maximum torque, then
the increase in the torque was not as significant as in the unconstrained maximization of the torque
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generation. Corresponding twist variations are plotted in Figure 12. As seen from the figure, for the
NREL II case where the blade was untapered, the twist angle first increased, then decreased along the
span. For the NREL VI case, the twist distribution was almost the same except for the root. It was
again observed that the optimum twist angle at the root was much less than the baseline value for the
NREL VI case.
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Figure 12. Optimized twist distributions for maximum torque at baseline thrust
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Table 6. Maximum torque for the baseline thrust condition.

Blade Torque (Nm) Thrust (N) Increase in Torque (%)

Baseline NREL II 362 588 -
NREL II with optimum twist 398 588 9.9

Baseline NREL VI 784 1307 -
NREL VI with optimum twist 795 1307 1.4

Since the SVR models were ready for both torque and thrust outputs, one may also obtain the
maximum torque variation along the specified values of thrust. This approach is depicted in Figure 13.
The figure shows also the baseline torque and thrust values as a single point in the plot. As observed
from the figure, the torque was maximized at the expense of higher thrust. Therefore, it may be
concluded that a wind turbine blade designed for maximum torque must be reinforced to withstand
the increased thrust.
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7. Conclusions

This study presents a framework to determine the optimum twist distribution for the wind
turbine blades. The suggested method can also be applied for taper distribution or any other geometric
definitions of the blade shape. The optimization was carried out for maximum torque. For this purpose,
a machine learning approach based on the support vector regression was implemented. Since support
vector regression models provide analytical functions for the input-output relations, the optimization
problem was easily solved. Support vector regression models used in this study were built based on
the three-dimensional flowfield solutions computed by a CFD solver.

The twist distribution was defined using a cubic spline with three knots at which the twist angle
values were given. The knots were selected as the root, mid, and tip span locations. The fourth
parameter to define the twist distribution was the rate of change of the twist angle at the root. Since
the twist distribution was based on the cubic spline, it was smoothly continuous along the span.

NREL II and NREL VI rotor blades were chosen as the baseline blades to be optimized. All CFD
solutions were computed for the rigid blade assumption. It was observed that the optimized twist
distribution for the NREL II blade provided 130% more torque compared to the baseline distribution.
The torque for the optimized NREL VI blade was determined to be 10% higher relative to the baseline
blade. The optimum torque value obtained for the NREL VI case in this study was quite significant
compared to the results given by other researchers who even used more optimization parameters to
define the blade shape.

SVR predictions were also validated using extra CFD solutions at the optimum conditions in
order to assess the accuracy of the models for the input, which was not in the dataset (design of
experiment). It was observed that the torque values estimated by the SVR models were almost the
same as the values given by the CFD solution. This is a good demonstration for the reliability of the
suggested framework.

The optimization of the NREL II blade, which is an untapered blade, led to a high twist slope at
the root, while a low twist slope was observed in the optimization of the NREL VI blade, which had a
designed spanwise distribution of the chord length. Moreover, the optimized NREL VI blade had a
significantly less twist angle value at the root compared to the baseline value.

The torque performance of both optimized blades was also investigated for other wind speeds.
It was observed that the torque of both optimized blades increased for the whole speed range except
for the 9 m/s speed of wind flowing through the NREL VI blade. The reason was thought to be the
separated flow conditions at this speed.

CFD-based blade shape optimization studies by other researchers either maximized the torque
or minimized the thrust. In this study, torque generation was also maximized, while not allowing an
increase in the thrust value. However, it was observed that if the baseline thrust value was maintained
when optimizing the twist distribution for the maximum torque, then the increase in the torque was
not as significant as in the unconstrained maximization of the torque generation.

The maximum torque variation along the specified values of thrust was also obtained in this
study. As expected from the observation mentioned above, the torque was maximized at the expense
of higher thrust. Therefore, one may say that if a wind turbine blade were designed for maximum
torque, then it must be reinforced to withstand the increased thrust.

The summarizing remark for the conclusion of this study is the fact that the suggested method
based on SVR and CFD was reliable, fast, and easy for determining the blade shape geometry.
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