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Abstract: Global climate change and intensifying heat islands have reduced human thermal comfort
and health in urban outdoor environments. However, there has been little research that has focused
on how microclimates affect human thermal comfort, both psychologically and physiologically. We
investigated the effect of a range of landscape microclimates on human thermal comfort and health
using questionnaires and physiological measurements, including skin temperature, skin conductance,
and heart rate variability, and compared the results with the effect of prevailing climate conditions
in open spaces. We observed that in landscape microclimates, thermal sensation votes significantly
decreased from 1.18 ± 0.66 (warm–hot) to 0.23 ± 0.61 (neutral–slightly warm), and thermal comfort
increased from 1.18 ± 0.66 (uncomfortable–neutral) to 0.23 ± 0.61 (neutral–comfortable). In the
landscape microclimates, skin temperature and skin conductance decreased 0.3 ± 0.8 ◦C and 0.6 ± 1.0
µs, respectively, while in the control, these two parameters increased by 0.5 ± 0.9 ◦C and 0.2 ± 0.7 µs,
respectively. Further, in landscape microclimates, subject heart rate variability increased significantly.
These results suggest landscape microclimates improve human thermal comfort and health, both
psychologically and physiologically. These findings can provide an evidence base that will assist
urban planners in designing urban environments for the health and wellbeing of residents.

Keywords: thermal comfort; landscape microclimate; skin temperature; skin conductance; heart
rate variability

1. Introduction

Rapid urbanization, especially in developing countries, has led to massive migrations to urban
areas, where the proportion of the world population is over 55% and increasing [1]. However,
due to global climate change and intensifying urban heat island effects, urban living environments
have deteriorated, becoming increasingly detrimental to human thermal comfort and health, not
only psychologically, such as in terms of thermal sensation, mood, and concentration [2–4], but also
physiologically by way of, for example, sunburn, heat stroke, and heat cramps [5,6].

In order to achieve the sustainability of urban areas, the increasing research interest in thermal
comfort and health has heightened the need to figure out how the human body responds, both
psychologically and physiologically, to different microclimates.

Research has been broadly conducted to study the influencing factors of thermal comfort. For
example, researchers have concluded that in some situations, air temperature and solar radiation are
the two most significant variables affecting outdoor thermal comfort and behavior [7–9]; Lenzholzer
found that wind speed and experience influenced thermal comfort perceptions more than other
parameters in the Netherlands [10]; and Nikolopoulou suggested psychological adaption including
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thermal expectation effected the use of outdoor environments [11]. A large number of indices have
been developed to evaluate human comfort based on microclimate parameters; for instance, the
comfort formula (ComFA) [12,13], universal thermal comfort index (UTCI) [14–16], physiological
equivalent temperature (PET) [17], predicted mean vote (PMV) [18], etc. Much research has focused on
investigating human thermal comfort in different climate zones [9]. Employing numerical simulation
to explore thermal comfort performance of various environment settings has drawn much attention.
For example, researchers suggested that, in Cuba, aspect ratios of streets between 1 and 1.5 could
achieve acceptable thermal comfort levels for people in both summer and winter [19]; others found
that the aspect ratio had a greater influence on thermal condition than street orientation [20]. Fahmy
et al. suggest 15 m high Ficus elastica trees could provide the best indoor thermal levels in Cairo’s
urban area [21]. Much recent research has emphasized the physical and psychological aspects of
thermal comfort by combining thermal questionnaires with microclimate parameters and thermal
comfort models.

Other research has suggested that green space can benefit human physiological health. For
example, Gladwell et al. suggested that viewing natural environments can alter autonomic control of
the heart, as well as increase vagal activity [22], while Lee found viewing garden landscapes could
increase the mean oxygenated hemoglobin of subjects [23]. Likewise, better indoor microclimates can
also provide better thermal perception and wellbeing [24–26].

There is a call for research that synthesizes the physiological, psychological, and microclimatology
for the health and wellbeing of people in outdoor urban areas. However, few studies have provided
evidence of the effect of microclimate on human thermal comfort from both the psychological and
physiological perspectives simultaneously [27].

The purpose of this study was to investigate the psychological and physiological benefits provided
by landscape microclimates compared with open spaces covered by pavement, used as the control, in
an urban square.

First, we employed weather stations to collect and compare the microclimate parameters of both
sites on three experiment days, including air temperature (TA), solar radiation (SR), relative humidity
(RH), wind speed (WS), and ground temperature (GT). Second, we conducted on-site surveys to assess
participants’ psychological responses to thermal comfort. Third, we used the ErgoLAB platform to
measure the physiological parameters, including skin temperature (SKT), skin conductance (SC), and
heart rate variability (HRV) simultaneously, during 3-min periods. Finally, we statistically analyzed
the data and compared the significant difference of both psychological and physiological responses
between landscape microclimates and the control. Results demonstrated landscape microclimates can
significantly improve human psychological and physiological thermal comfort and health.

2. Methods

2.1. Study Area and Participants

The experiment took place between 4–6 August 2018 at Century Square in Shanghai, China.
Shanghai experiences a subtropical humid climate [28], located between 120◦52′ to 122◦12′ east
longitude and 30◦40′ to 31◦53′ north latitude. In winter, the lowest temperature is usually between
0 ◦C and 5 ◦C, while in summer, the highest temperature can reach between 35 ◦C and 40 ◦C. Further,
the wind direction is predominantly from the southeast and the annual average relative humidity is
about 68%. Century Square is located in the Pudong New Area of Shanghai, with a side length about
220 m, and the main axis is at an angle of about 45◦ to the east–west direction (Figure 1a).
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Site 1 is an open space with a granite ground surface and is framed by several small flower beds 
with a sky view factor (SVF) of 0.91 (Figure 1d). Site 2 is a greenery space with the top covered by a 
crown of Cinnamomum camphora (L.) Presl with an SVF of 0.25 and granite ground surface material. 
In site 2, subjects stood by a row of shrubs of Photinia serrulata Lindl. with grass lawn ahead (Figure 
1c). 

Twenty-two healthy voluntary college students (13 male, 9 female, age 24.6 ± 5.2) from Tongji 
University were recruited via a poster for the field experiment (Table 1). Clothing information was 
recorded in the demographic information in the questionnaire and clothing levels were estimated 
according to ASHRAE(American Society of Heating, Refrigerating and Air-Conditioning 
Engineers) [29]. Metabolic rate was calculated based on the age, weight, and activities according to 
Livingston and Kohlstadt [30]. All subjects were without cardiovascular disease history or skin 
disease. In addition, subjects were informed not to stay up late and drink alcohol the day before the 
experiment to ensure physical and mental health during the test. 

2.2. Experiment Design 

Preparation: Before the experiment, subjects rested under a shelter to stabilize their 
physiological state. Simultaneously, we helped subjects attach experimental instruments to their 
bodies and explained the experimental procedure and precautions again. 

Each test involved two subjects. The sequence of experience was from site 1 to site 2. At each site 
subjects were first required to rest for 1 minute, then experience the microclimate for 3 minutes, then 
complete the questionnaire. During the microclimate experience period, physiological parameters 
were measured, and subjects were required to remain near the weather station, remain at rest, and 
avoid intense body movement (Figure 2). 

This experiment was approved by the university’s ethics committee and conformed to the 
guidelines contained within the Declaration of Helsinki. 

 
Figure 1. (a) Century Square plan and space location of two sites, (b) site 2: landscape space, (c) sky 
view factor of site 2, (d) site 1: open space, and (e) sky view factor of site 1. 

Table 1. Subjects’ information summary 

Gender 
Subjects 

(n) 

Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Clothing 

(clo) 

Metabolic Rate 

(kJ) 

Male 13 26.1 ± 5.4 173.8 ± 0.1 66.8 ± 5.8 0.42 ± 0.1 103.3 ± 2.7 

Female 9 22.6 ± 4.2 163.2 ± 0.1 52.6 ± 2.9 0.49 ± 0.1 93.1 ± 2.2 

Figure 1. (a) Century Square plan and space location of two sites, (b) site 2: landscape space, (c) sky
view factor of site 2, (d) site 1: open space, and (e) sky view factor of site 1.

In order to investigate the benefit of landscape microclimates, we chose site 2 (Figure 1b) as a
representation of a landscape space and site 1 as the control.

Site 1 is an open space with a granite ground surface and is framed by several small flower beds
with a sky view factor (SVF) of 0.91 (Figure 1d). Site 2 is a greenery space with the top covered by a
crown of Cinnamomum camphora (L.) Presl with an SVF of 0.25 and granite ground surface material. In
site 2, subjects stood by a row of shrubs of Photinia serrulata Lindl. with grass lawn ahead (Figure 1c).

Twenty-two healthy voluntary college students (13 male, 9 female, age 24.6 ± 5.2) from Tongji
University were recruited via a poster for the field experiment (Table 1). Clothing information
was recorded in the demographic information in the questionnaire and clothing levels were
estimated according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning
Engineers) [29]. Metabolic rate was calculated based on the age, weight, and activities according to
Livingston and Kohlstadt [30]. All subjects were without cardiovascular disease history or skin disease.
In addition, subjects were informed not to stay up late and drink alcohol the day before the experiment
to ensure physical and mental health during the test.

Table 1. Subjects’ information summary.

Gender Subjects
(n)

Age
(Years)

Height
(cm)

Weight
(kg)

Clothing
(clo)

Metabolic Rate
(kJ)

Male 13 26.1 ± 5.4 173.8 ± 0.1 66.8 ± 5.8 0.42 ± 0.1 103.3 ± 2.7
Female 9 22.6 ± 4.2 163.2 ± 0.1 52.6 ± 2.9 0.49 ± 0.1 93.1 ± 2.2

Total 22 24.6 ± 5.2 169.1 ± 0.7 60.9 ± 8.5 0.45 ± 0.1 99.1 ± 5.6

Values are means ± standard deviation.

2.2. Experiment Design

Preparation: Before the experiment, subjects rested under a shelter to stabilize their physiological
state. Simultaneously, we helped subjects attach experimental instruments to their bodies and explained
the experimental procedure and precautions again.

Each test involved two subjects. The sequence of experience was from site 1 to site 2. At each
site subjects were first required to rest for 1 min, then experience the microclimate for 3 min, then
complete the questionnaire. During the microclimate experience period, physiological parameters
were measured, and subjects were required to remain near the weather station, remain at rest, and
avoid intense body movement (Figure 2).
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Figure 2. Experiment design. 

2.3. Microclimate 

Two watchdog 2000 series weather stations (Spectrum Technologies, Inc., Aurora, IL, USA, 2012) 
were employed to measure microclimate parameters, including solar radiation (SR), air temperature 
(TA), wind speed (WS), relative humidity (RH), and ground temperature (GT). Parameters, except 
the GT, were measured at 1.5 m height above the ground with a 1-minute data logged interval from 
8:00–18:00. Measurement range and accuracy of each parameter of the weather stations are shown in 
supplementary materials Table S1. 

2.4. Questionnaire 

Subjects were required to fill in a questionnaire about their thermal comfort during the previous 
3-minute period. The questionnaires consisted of two parts, with the first part asking for 
demographic information and the second part used to evaluate their thermal comfort, including 
thermal sensation vote (TSV), thermal comfort vote (TCV), solar radiation sensation vote (RSA), air 
temperature sensation vote (ASV), humidity sensation vote (HSV), wind speed sensation vote (WSV), 
etc. Questions were designed based on five- to nine-point Likert scales, consistent with ASHRAE [29] 
(see supplementary material Table S2). 

2.5. Physiological Measurements 

The ErgoLAB “Human–Machine–Environment” synchronization platforms (Kingfar Inc. 
Beijing, China, 2014) were employed to measure skin temperature (SKT), skin conductance (SC), and 
heart rate variability (HRV). ErgoLAB consists of wireless wearable sensors and a computer-based 
platform, connected by a wireless receiver. The validity of ErgoLAB has been verified by researchers 
in related fields [31–33]. 

2.5.1. Skin Temperature 

For the relationship between skin temperature and thermal comfort, researchers suggested that 
the change of skin temperature of an extremity and the forehead should be used as they are the most 
sensitive to the thermal environment in warm or hot climate [34]. Others provided evidence that hand 
skin temperature is closely related to body temperature regulation processes and has a high 
correlation with thermal sensation [35]. In the experience period, we measured the fingertip skin 
temperature using the wireless skin temperature sensor, which has a 10 °C to 60 °C measurement 
range, 0.1 °C accuracy, and 32 Hz sampling frequency. The temperature probe was attached to the 
fingertip of the left hand using medical adhesive tape. 

2.5.2. Skin Conductance 

Skin conductance is the conductivity between two points on the surface of the skin, which 
characterizes the electrodermal response of the skin and is one of the important indicators for 

Figure 2. Experiment design.

This experiment was approved by the university’s ethics committee and conformed to the
guidelines contained within the Declaration of Helsinki.

2.3. Microclimate

Two watchdog 2000 series weather stations (Spectrum Technologies, Inc., Aurora, IL, USA, 2012)
were employed to measure microclimate parameters, including solar radiation (SR), air temperature
(TA), wind speed (WS), relative humidity (RH), and ground temperature (GT). Parameters, except
the GT, were measured at 1.5 m height above the ground with a 1-min data logged interval from
8:00–18:00. Measurement range and accuracy of each parameter of the weather stations are shown in
Supplementary Materials Table S1.

2.4. Questionnaire

Subjects were required to fill in a questionnaire about their thermal comfort during the previous
3-min period. The questionnaires consisted of two parts, with the first part asking for demographic
information and the second part used to evaluate their thermal comfort, including thermal sensation
vote (TSV), thermal comfort vote (TCV), solar radiation sensation vote (RSA), air temperature sensation
vote (ASV), humidity sensation vote (HSV), wind speed sensation vote (WSV), etc. Questions were
designed based on five- to nine-point Likert scales, consistent with ASHRAE [29] (see Supplementary
Materials Table S2).

2.5. Physiological Measurements

The ErgoLAB “Human–Machine–Environment” synchronization platforms (Kingfar Inc. Beijing,
China, 2014) were employed to measure skin temperature (SKT), skin conductance (SC), and heart
rate variability (HRV). ErgoLAB consists of wireless wearable sensors and a computer-based platform,
connected by a wireless receiver. The validity of ErgoLAB has been verified by researchers in related
fields [31–33].

2.5.1. Skin Temperature

For the relationship between skin temperature and thermal comfort, researchers suggested that
the change of skin temperature of an extremity and the forehead should be used as they are the most
sensitive to the thermal environment in warm or hot climate [34]. Others provided evidence that hand
skin temperature is closely related to body temperature regulation processes and has a high correlation
with thermal sensation [35]. In the experience period, we measured the fingertip skin temperature
using the wireless skin temperature sensor, which has a 10 ◦C to 60 ◦C measurement range, 0.1 ◦C
accuracy, and 32 Hz sampling frequency. The temperature probe was attached to the fingertip of the
left hand using medical adhesive tape.

2.5.2. Skin Conductance

Skin conductance is the conductivity between two points on the surface of the skin, which
characterizes the electrodermal response of the skin and is one of the important indicators for studying
the thermophysiology of the human body. The skin electrodermal response is related to the diastolic
contraction of blood vessels and the function of skin sweat glands [36]. To a certain extent, it can
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reflect the tension and sweating of the body, thus reflecting the physiological status of people in a
microclimate environment. In the experience period, we measured the fingertip skin conductance
using wireless skin electrodermal sensor with a 0–30 µs measurement range, 0.1 µs accuracy, and 32
Hz sampling frequency. Two electrodes of the sensor were attached to two fingertips of the left hand to
form a loop.

2.5.3. Heart Rate Variability

Heart rate variability (HRV) represents how much the human body changes in adjacent heartbeat
intervals within a certain time segment [37]. It has been reported that HRV is highly correlated
with ambient temperature, as well as being an objective indicator to evaluate a subject’s thermal
comfort [26,38,39]. When the human body is experiencing thermal discomfort, the HRV will be lower,
the parasympathetic nerve activity will decrease or the sympathetic nerve activity increase, and at the
same time, the body sweats or the blood vessels contract causing skin temperature changes in order to
adapt to the ambient temperature.

It has been reported that high frequency (HF) is mainly affected by parasympathetic activity, while
low frequency (LF) is mainly affected by sympathetic activity, and LF/HF can reflect the balance of
sympathetic and parasympathetic nerves [40]. Researchers have found that higher LF/HF might result
from thermal discomfort, and subjects are thermally neutral when LF/HF is low [41]. In the experience
period, we used ultra-short-term (3 min) sampling to measure HRV [42,43].

A wireless wearable sensor, based on a photoplethysmogram (PPG), was attached to the fingertip
of the left hand to measure HRV with a 64 Hz sampling frequency. HRV data was analyzed in both the
time and frequency domains. Indices such as heart rate (HR), the average of all NN (normal to normal)
intervals (AVNN), the standard deviation of all NN intervals (SDNN), and root-mean-square of the
successive differences (RMSSD) of the time domain were selected to compare the HRV for the two sites.
Likewise, LF power, HF power, and LF/HF of frequency domain were also measured.

2.6. Statistical Analysis

Physiological data including HRV, SKT, and SC were processed on the ErgoLAB platform. HRV
was processed using filters such as white de-noise, low-pass de-noise, baseline de-noise, and band
stop, then ectopic values were replaced to analyze the time domain and frequency domain. Skin
conductance and skin temperature data were processed using a moving average filter.

All data were expressed as mean ± standard deviation or mean (standard error). SPSS 20.0
(IBM Corp, Armonk, NY, USA, 2011) was employed to conduct the Wilcoxon signed-rank test for the
statistical significance between two groups of data. The level of significance was set at p < 0.05.

3. Results

3.1. Microclimate

Watchdog weather stations were employed to measure the microclimate, including five parameters
at two sites, over the experiment days from 8:00 a.m–18:00 p.m. Figure 3 and Table 2 show the trends
and mean values of the microclimate parameters of the two sites, where values are given for each hour
over the three experiment days. For SR, values of the landscape space were always lower than the
control (59.42 ± 54.84 vs. 497.60 ± 334.11 W/m2, p < 0.001), with the largest gap appearing around 12:00
p.m., while values decreased to their lowest and were close to each other around 18:00 p.m. In addition,
the SD of the landscape space was much higher than the control. For TA, values of the landscape space
were lower than the control (32.49 ± 1.25 vs. 34.74 ± 1.94 ◦C, p < 0.001). Their lowest and highest
values both appeared at 8:00 a.m. and 13:00 p.m., respectively. For RH, the value of the landscape
space was higher than the control (62.62 ± 4.60 vs. 56.89 ± 6.54%, p < 0.001), with the lowest appearing
around noon. The WSs of landscape space were much lower than the control (0.31 ± 0.83 vs. 2.41 ±
2.41 km/h, p < 0.001), and likewise for the GT (32.68 ± 1.34 vs. 45.44 ± 5.58 ◦C, p < 0.001).
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(°C) 

Control 
497.6 ± 
334.11 34.74 ± 1.94 56.89 ± 6.54 

2.41 ± 
2.41 45.44 ± 5.58 
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space 
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54.84*** 32.49 ± 1.25*** 62.62 ± 4.60*** 

0.31 ± 
0.83*** 32.68 ± 1.34*** 

Values are means ± standard deviation. 

*** p < 0.001 (Wilcoxon-signed rank test) 
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respectively, p < 0.001. The CSV of landscape microclimates was significantly higher than the control, 
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and “neutral”), respectively, p < 0.01. For ASV, the values of landscape microclimates were 
significantly lower than the control, with 0.45 ± 0.11 (between “neutral” and “slightly high”) and 1.18 
± 0.66 (between “slightly high” and “high”), respectively, p < 0.01. The RSV of landscape 
microclimates was significantly lower than the control, with −0.64 ± 0.95 (between “slightly low” and 
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Figure 3. Microclimate parameters trends during experiment days: (a) solar radiation trend, (b) air
temperature trend, (c) relative humidity trend, (d) wind speed trend, and (e) ground temperature trend.

Table 2. Microclimate parameters summary during the experiment days.

Site
Solar

Radiation
(W/m2)

Air
Temperature

(◦C)

Relative
Humidity

(%)

Wind Speed
(km/h)

Ground
Temperature

(◦C)

Control 497.6 ± 334.11 34.74 ± 1.94 56.89 ± 6.54 2.41 ± 2.41 45.44 ± 5.58
Landscape

space 59.42 ± 54.84 *** 32.49 ± 1.25 *** 62.62 ± 4.60 *** 0.31 ± 0.83 *** 32.68 ± 1.34 ***

Values are means ± standard deviation. *** p < 0.001 (Wilcoxon-signed rank test).

3.2. Thermal Comfort

The thermal comfort survey was conducted after the experience period, and subjects were asked
to vote on thermal sensation, comfort sensation, solar radiation, air temperature, humidity, and wind
speed. In total, 44 samples were collected. Figure 4 shows the results of the thermal comfort survey. For
TSV, the values of landscape microclimates were significantly lower than the control, with 0.64 ± 0.66
(between “neutral” and “slightly warm”) and 2.59 ± 0.91 (between “warm” and “hot”), respectively,
p < 0.001. The CSV of landscape microclimates was significantly higher than the control, with 0.23 ±
0.61 (between “neutral” and “comfortable”) and −0.41 ± 0.66 (between “uncomfortable” and “neutral”),
respectively, p < 0.01. For ASV, the values of landscape microclimates were significantly lower than the
control, with 0.45 ± 0.11 (between “neutral” and “slightly high”) and 1.18 ± 0.66 (between “slightly
high” and “high”), respectively, p < 0.01. The RSV of landscape microclimates was significantly lower
than the control, with −0.64 ± 0.95 (between “slightly low” and “neutral”) and 1.59 ± 0.79 (between
“slightly high” and “high”), respectively, p < 0.001. However, for WSV and HSV, there were no
significant differences between the control and landscape microclimates.

Table 3 shows the correlation analysis for thermal response votes. TSV showed a significant
correlation with CSV, ASV, and RSV, with coefficients of −0.61, 0.69, and 0.79, respectively. This
reveals that RSV was most positively correlated with TSV, while TSV decreased when CSV increased.
Furthermore, CSV had a significant correlation to ASV and RSV, with coefficients of −0.56 and −0.44,
which meant CSV tended to decrease when ASV and RSV increased. Finally, RSV significantly increased
when ASV increased. Meanwhile, there were no significant correlations between WSV, HSV, and
other variables.
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were processed using a moving-average filter, then analyzed using IBM SPSS Statistics 20.0. 

Figure 5 shows the trend of mean skin temperature of the 22 subjects in the control and landscape 
microclimates. There was a clear upward pattern of skin temperature in the control, compared with 
a downward trend in the landscape microclimates. This reveals that skin temperature constantly 
increased during the experience period in the control, while it continuously decreased in the 
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Figure 4. Thermal comfort response votes in landscape microclimates and the control; n = 22, mean ±
SD, ** p < 0.01, *** p < 0.001 (Wilcoxon-signed rank test).

Table 3. Correlation analysis for thermal response votes.

TSV CSV ASV RSV WSV HSV

TSV 1 −0.61 ** 0.69 ** 0.79 ** 0.03 −0.16
CSV 1 −0.56 ** −0.44 ** 0.02 0.19
ASV 1 0.56 ** −0.14 −0.13
RSV 1 0.23 −0.11
WSV 1 0.08
HSV 1

** p < 0.01 (Wilcoxon-signed rank test).

3.3. Physiological Wellbeing

3.3.1. Skin Temperature

Skin temperature was measured on the middle fingertip using a wearable sensor from the ErgoLAB
platform during the 3-min experience period with a 16 Hz sampling frequency. Signals were processed
using a moving-average filter, then analyzed using IBM SPSS Statistics 20.0.

Figure 5 shows the trend of mean skin temperature of the 22 subjects in the control and landscape
microclimates. There was a clear upward pattern of skin temperature in the control, compared with
a downward trend in the landscape microclimates. This reveals that skin temperature constantly
increased during the experience period in the control, while it continuously decreased in the landscape
microclimates. Mean skin temperature in the control were significantly higher than its value in the
landscape (36.3 ± 0.2 ◦C vs. 35.2 ± 0.1 ◦C, p < 0.01). Likewise, results for the ∆SKT were 0.5 ± 0.9 ◦C
versus −0.3 ± 0.8 ◦C, p < 0.05, respectively for the control versus landscape, which meant that after
3 min, the subjects’ skin temperature decreased on average nearly 0.3 ◦C in landscape microclimates,
while it increased on average nearly 0.50 ◦C in the control (Table 4).

Table 4. Skin temperature and skin conductance summary during the 3-min experience period.

Mean SKT
(◦C)

∆SKT
(◦C)

Mean SCT
(µs)

∆SCT
(µs)

Control 36.3 ± 0.2 0.5 ± 0.9 3.1 ± 0.1 0.2 ± 0.7
Landscape space 35.2 ± 0.1 ** −0.3 ± 0.8 * 3.2 ± 0.2 −0.6 ± 1.0 ***

Values are means ± standard deviation (n = 22). *** p < 0.001, ** p < 0.01, * p < 0.05 (Wilcoxon-signed rank test).
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and processed on the ErgoLAB platform (Kingfar Inc., Beijing, China, 2014). Data were filtered using a
moving-average then analyzed based on the time domain. Because of the steady-state characteristic of
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control, mean skin conductance continuously increased during the period, while it decreased more
steeply in the landscape microclimates. There was no significant difference in mean SCT between
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3.3.3. Heart Rate Variability

The HRV signal was measured using a wireless wearable sensor, based on the blood volume pulse
(BVP), with a 64-Hz sampling frequency, during the 3-min experience period and processed on the
ErgoLAB platform. Signals were filtered using the white de-noise method and ectopics were replaced.
Then, the time and frequency domain analyses were conducted. As a short-term measurement,
the average heart rate (AVHR); average normal-normal intervals (AVNN); standard deviation of
normal-normal intervals (SDNN); root-mean-square of the successive differences (RMSSD) of the time
domain; and LF power, HF power, and LF/HF of the frequency domain were used to compared the
differences between the two sites.

Figure 7 shows that the mean LF/HF in the control was significantly higher than in the landscape
(2.41 ± 1.21 vs. 1.04 ± 0.32, p < 0.001). Furthermore, according to Table 5, in the frequency domain, HF
in the landscape was significantly higher than in the control (396.2 ± 87.3 vs. 196.1 ± 51.1, p < 0.05).
Whereas, for LF, it was the reverse (298.5 ± 52.0 vs. 595.2 ± 132.1, p < 0.05). Further, in the time domain,
there were significant differences in SDNN and RMSSD between in the control and landscape spaces,
while no significant differences were seen in AVNN and AVHR between these two sites.
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Table 5. Time and frequency domain analyses of the HRV summary during the 3-min experience period.

AVHR
(bpm)

AVNN
(ms)

SDNN
(ms)

RMSSD
(ms)

LF Power
(ms2)

HF Power
(ms2)

Control 96.6 (2.6) 622.3 (15.7) 40.9 (4.1) 47.8 (7.9) 595.2 (132.1) 196.1 (51.1)
Landscape space 96 (2.5) 621.9 (14.7) 51.4 (4.6) * 57.6 (5.6) * 298.5 (52.0) * 396.2 (87.3) *

Values are means (SEM) (n = 22). * p < 0.05 (Wilcoxon-signed rank test).

4. Discussion

In this investigation of landscape microclimates in relation to the subjects’ psychological responses
and physiologically wellbeing, we found the landscape substantially ameliorated microclimatic
conditions, thus improving human thermal comfort and physiologically wellbeing compared with
the control.

Among those microclimate parameters modified, solar radiation was the most affected. The
landscape space was measured to have a lower solar radiation by up to 400 W/m2, resulting mostly
from the different SVF. This resulted in a 2.23 decline of RSV in the thermal comfort survey (Figure 4).
This is similar to previous study findings [2,44]. In contrast, air temperature changed the least among
the five parameters, with decreases of less than 2 ◦C. This was an expected result and was likely caused
by very efficient mixing of air at 1.5 m above the ground [45]. Similar results have been documented
in previous studies. For examples, Thorsson et al. found that the air temperature in a park was only
about 1.1 ◦C lower than in an adjacent urban square [46].

For the psychological responses, similar to other previous results [47,48], we found that solar
radiation and air temperature had the strongest positive correlation with the thermal sensation vote.
In contrast to previous investigations [10,49], there were no significant correlations between WSV and
other sensation votes, and likewise for the HSV. This may have been due to the steady and low wind
speed during the experiment days.

Further, after the 3-min rest in the landscape microclimates, subjects’ mean skin temperature had
decreased by approximately 0.3 ◦C compared with an increase of nearly 0.5 ◦C in the control. Yao
et al. found that a variation of 2 ◦C of ambient temperature can cause a pronounced change in skin
temperature [24]. Previous research in biological theory has demonstrated that in hot environments,
skin temperature increases due to the stimulation of the nervous system because the temperature
regulator, located in the hypothalamus, senses the sympathetic tone of skin vessels, which results in an
increase of blood flow [50,51].
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We also found that the mean ∆SCT in the landscape microclimates was significantly lower than in
the control. This meant there was a 0.6 µs decrease of SCT induced by the landscape microclimates
compared with an increased 0.2 µs in the control. These results indicated that landscape microclimates
may relieve the thermal stress on a human body. Few studies have reported the relationship between
SCT and thermal comfort or stress outdoors. Our findings are similar with References [52,53]. They
found skin conductance in a state of thermal comfort was significantly lower than in a state of thermal
discomfort indoors. Researchers suggested that in uncomfortable thermal environments, human
receptors, i.e., finger skin, are stimulated by external heat stress, thus sweat glands are activated to
dissipate heat, resulting in an increase of skin electrodermal activity [36].

Unexpectedly, no significant difference of mean SCT was found between the two sites during the
3-min experience period. This may have been due to the gradual change of skin conductance, which
may have increased between the two measurements, then remained at a higher value at the beginning
of measurement in landscape microclimates (Figure 6).

Lastly, for HRV, similar to References [24–26], researchers indicated that LF/HF was higher
at a discomfort level compared with a comfort level. We found that LF/HF in the landscape
microclimates was significantly lower than in the control, which meant that subjects’ HRV in the
landscape microclimates was higher than in the control. It has been shown that the higher the LF/HF,
the more relaxed the subject is [54]. The same trend can also be seen in SDNN and RMSSD, both
indicating higher HRVs [55].

Few research papers have clearly documented the relationship between different thermal comfort
and heart rate. Researchers from environment science suggested there were no differences in heart
rate between walking in a natural setting, compared with in an urban setting [22,56,57], while a small
sample investigation by Tang and Brown found viewing a natural landscape would lower the heart
rate of older women [58]. As shown in Table 5, we observed that neither AVNN nor heart rate showed
significant differences between the two sites.

In conclusion, the major strength of our research is that it is the first evidence-based proof that a
landscape space can substantially ameliorate the microclimate, and as a result, significantly improve
thermal comfort and health, both psychologically and physiologically.

Despite these findings, our research had several limitations. First, our study participants were
young college students, so it is not known whether our results are applicable for other age groups.

Second, the experiment site is in a moderate climate zone. Future study should be conducted in
other climate zones to verify the results.

Third, considering the heat stress suffered by participants outdoors, we used only short-time
measurement in this research. Theoretically, a longer measurement is needed to investigate
physiological parameters, particularly, the heart rate variability.

Lastly, since it is hard to eliminate the interference from other unexpected variables in outdoor
settings, we optimized the experimental design and data processing methods; however, the results
need to be verified by further research.

Notwithstanding these limitations, our research adds to the accumulating evidence that suggests
landscape microclimates can improve thermal comfort and both psychological and physiological health
and assist urban planners to make better use of landscape microclimates to design sustainable and
healthier urban areas.
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