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Abstract: A carbon emission trading system (ETS) is an effective market mechanism for promoting
the reduction of global greenhouse gas emissions and achieving sustainable development between
the economy and the environment. To analyze the emissions reduction effect and economic effect of
China’s ETS and further discuss the mechanisms of economic development differences and industrial
development differences on the final effect of the policy, this study adopts the propensity score
matching-difference in differences method and triple difference method. The empirical results show
the following: (1) The ETS can simultaneously achieve both the emissions reduction effect and
economic effect when key control variables are included. (2) The population, carbon emissions
intensity and per capita GDP have significant positive impacts on carbon emissions; the environmental
pollution control intensity, research structure, and research intensity have negative impacts on carbon
emissions; and the capita stock, employment, and energy consumption have significant positive
economic effects. (3) The ETS has a stronger inhibitory effect on the provinces with higher levels of
economic and service development compared to the provinces with lower levels of economic and
service development. In contrast, the policy has a weaker inhibitory effect on provinces with higher
levels of industrial and construction development compared with the lower level provinces.

Keywords: heterogeneity; Porter effect; PSM-DID; DDD

1. Introduction

Greenhouse gas emissions will aggravate the environmental negative externalities on global
economic development and restrict the sustainable development of human society. A carbon emission
trading system (EST) is a powerful channel for emission reduction and alleviating global warming [1].
According to relevant authorities, the global carbon trade system reached 150 billion tons in 2012, and
it has replaced the oil market as the largest trading market. With the completion of relevant agreements
and the construction of ETS systems in the major economies of the world, the trading volume in 2020 is
expected to approach 3.5 trillion. Following the “Kyoto Protocol” and the “United Nations Framework
Convention on Climate Change,” the European Union fully launched its ETS in 2005, which was the
first ETS in the world and is the international ETS with the most successful operations and widest
coverage [2]. New Zealand, South Korea, and other countries have launched mandatory nationwide
domestic ETSs. Starting with the voluntary Chicago Climate Exchange (CCX), the United Sates has
tried to establish mandatory systems and has gradually established regional ETSs, such as the Regional
Greenhouse Gas Initiative (RGGI).

As the largest carbon emitter in the world, the establishment of an ETS in China will have a
significant impact on global carbon emissions control [3]. China has formally launched a pilot project
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for ETS from 2013 to 2014, which included Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei
and Shenzhen, and gradually began expanding its ETS nationwide starting in 2017. In the initial
implementation of the ETS, Shenzhen, Beijing, and Shanghai included many non-industrial enterprises,
covering construction and service industries; while Guangdong, Tianjin, Hubei, and Chongqing were
mainly industrial enterprises. The principle of quota allocation is mainly based on the baseline method
and the historical intensity method, using a combination of free allocation and auction. It will cover
approximately 3.5 billion tons of carbon emissions from more than 1700 enterprises in the electric
power industry, which accounts for nearly 39% of the CO2 emissions in China, and the trading volume
will far surpass the current largest ETS—the EU-ETS.

However, the full establishment of China’s ETS will face tremendous challenges. Due to the
short implementation time of China’s ETS and its immature mechanism construction, it is difficult to
accurately calculate the emissions standards included in the industry except for the power industry.
Although there are various types of carbon financial products, the actual scale of transactions on
the market is limited. Therefore, there are many uncertainties about the effects of ETS. How can
emission reduction be achieved without negative economic effects? Could it achieve some positive
economic effects? Most scholars generally believe that pilot projects can achieve emission reduction,
but they have different opinions on whether they can simultaneously achieve economic effects, and
some of them think that environmental regulations will decrease GDP [4–6]. In contrast, some believe
that reasonable environmental regulations would stimulate the “innovation compensation” effect,
which would compensate for the related costs of environmental regulations and also promote carbon
productivity and international competitiveness. Thus, it would promote positive economic effects [7,8],
that is, the realization of the famous “Porter hypothesis” effect [9,10]. The existing literature mainly
focus on the evaluation of the effect of a pilot project based on the “Porter hypothesis,” but there
are no deep studies on the heterogeneity of economic development and industrial development.
Do the economic development differences affect the final implementation effect of ETS? How do the
industrial development differences in pilot provinces and cities affect the emission reduction effect and
economic effect?

This study is focused on solving these problems as follows. (1) Twelve control variables are
selected from five perspectives in an attempt to verify the existence of the “Porter hypothesis” in China’s
ETS pilot provinces and cities. (2) The heterogeneity of the final effect of the ETS on the pilot provinces
and cities with different levels of economic development and industrial development is also studied.
For the first problem, the propensity score matching difference in differences (PSM-DID) method under
various matching conditions is adopted. For the second problem, the triple difference (DDD) method
is applied to show the heterogeneity of the policy effect and evaluate the specific mechanism.

The composition of other parts are as follows. Section 2 conducts a related literature review
with respect to ETS implementation effect and relevant policy evaluation methods. Section 3 lists
the research method and data. Section 4 demonstrates the empirical results. Section 5 presents the
discussion. Conclusions and policy suggestions are offered in Section 5.

2. Literature Review

The ultimate effect of an ETS has always been a topic of discussion in the academic community.
As with other environmental regulation policies, scholars are focused on whether an ETS can
simultaneously generate economic dividends while reducing carbon emissions, thus achieving
sustainable social development. Early neoclassical economics suggested that environmental regulations
had negative impacts on a country’s economic welfare [11,12]. However, Porter, whose work was
based on dynamic standards in 1991, believed that reasonable environmental regulations could
encourage enterprises to optimize their resource allocations and conduct technological innovation,
thus stimulating the “innovation compensation” effect. The benefits” of such technological innovation
could both offset the costs of complying with environmental regulations and achieve a win-win
situation between the environment and the economy by improving productivity and international
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competitiveness. The main studies on the validity of ETS, based on the “Porter hypothesis,” are as
follows. Zhang et al. simulated the national ETS scenarios of China by applying the stochastic frontier
approach (SFA), the difference model, and nonlinear programming, and their conclusions show that
the interprovincial carbon emissions could be decreased by 19.79% while the carbon intensity was
decreased by 25.24% under the constraints of GDP output, economic growth, and environmental
regulation [13]. Wang et al. used the panel data of 30 provinces in China and adopted the PSM-DID
method to study the effect of the China ETS provincial pilot project, and the conclusion showed that
a win-win situation between the environment and the economy can be achieved; thus, the goal of
low-carbon economic transformation can be successfully accomplished [14]. Zhou et al. adopted the
same method to study the China ETS pilot, and they found that the policy could reduce the carbon
intensity in the pilot regions by an average of 0.026 tons/RMB 10,000 yuan per year. It was also found
that the impact of the industrial structure on carbon intensity was greater than those on the energy
structure and energy intensity [15]. Dong et al. adopted the DID and DEA models separately to
analyze whether China’s ETS pilot policy could generate both environmental and economic welfare
improvements. The study showed that the ETS could significantly reduce the carbon emissions
in the pilot regions in the short term, but it could not promote GDP growth. In the long run, the
ETS could achieve economic welfare and environmental welfare improvements, thus achieving the
“Porter effect” [16]. Zhang et al. focused on environmental innovation and estimated the effect of
environmental innovation and the initial carbon emission trading (CET) Plan on emission reduction by
using the system generalized method of moments (SGMM) and the PSM-DID model, respectively [17].
The study shows that the energy efficiency, innovative knowledge, and innovative resource factors can
hinder carbon emissions, and there is a lag period in the carbon reduction effect from environmental
regulations. From the perspective of different industries, scholars have studied the impacts of ETS on
different industries and human behavior. It is generally believed that an ETS can significantly reduce
pollution and promote sustainable development [18–23]. Some scholars also studied the efficiency of
China’s ETS pilot provinces and cities with respect to the carbon price. Although inefficiency generally
exists, the efficiency of most pilot provinces and cities increases over time [24–29]. Existing studies
mainly focus on evaluating the mechanism of the effect of an ETS on the carbon intensity, carbon
emissions, and GDP. The literature related to industries is mostly analyzed from a single industry
perspective. It is generally believed that policies can hinder carbon emissions and carbon intensity,
but there are different viewpoints on the economic effects of an ETS, and some verify the “Porter
hypothesis” from different perspectives [30,31].

The difference in differences (DID) method is often used to evaluate a policy’s effect because it can
avoid the endogeneity problems of utilizing a policy as an explanatory variable. Yang et al. studied the
impact of the carbon intensity constraint policy (CICP) that was proposed by China in 2009 on industry
and found that the industrial green production performance (denoted as GPP) in China decreased
after a short increase, and the increase of industrial output was the key driving factor for improving
the GPP [32]. Tu and Chen studied whether the SO2 trading system pilot could stimulate the “Porter
effect” in China by controlling regional environmental regulations and other explanatory variables and
found that the emissions reduction effect is not sufficient to achieve the “Porter effect” [33]. The DDD
method adds a dummy variable on the basis of the DID model, which can solve the situation that the
common trend hypothesis is not established for the DID; therefore, it is commonly used to solve the
related heterogeneity problems. Liu and Zhang analyzed the impact of an ETS on the research and
development (R&D) innovation of A-share listed companies on the micro level, and found that an ETS
policy can improve the R&D investment intensity of the treatment group enterprises; however, it has a
significant positive effect only on the innovation investment of large-scale enterprises, and it has no
significant effect on the R&D innovation of small-scale enterprises [34]. Ren et al. adopted the panel
data of provinces and cities in China to study the effect of an SO2 trading system pilot policy on the
total factor productivity (TFP) of enterprises in 2017, and they found that the policy mainly affects TFP
by promoting enterprises’ technological innovation and optimizing resource allocation efficiency [7].
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Furthermore, with respect to the type of enterprise ownership, non-state-owned enterprises were more
sensitive to the policy than state-owned enterprises. In addition, from the perspective of environmental
enforcement, the higher the environmental enforcement is, the greater the role that enforcement plays
in promoting TFP [7]. The above-mentioned literature on the DID model mainly focuses on the overall
implementation effect of a certain policy, but it seldom involves issues related to industry differences
and enterprise differences. The literature on the DDD model mainly focuses on the heterogeneity
of enterprises. It is generally believed that state-owned enterprises and large-scale enterprises have
greater advantages than non-state-owned enterprises and small-scale enterprises. However, there is
insufficient research on the specific economic differences and industrial differences. On the basis of
previous studies, this study systematically analyzes the “Porter effect” of China’s ETS pilot projects
and further discusses the mechanism of the effects of economic development differences and industrial
development differences on the current regional ETS.

3. Method and Data

3.1. PSM-DID Model

The DID method has been widely used to evaluate the ultimate effect of the implementation of a
public policy. The principle is based on the counterfactual framework that evaluates the variability of
the observations in both cases with and without the policy. The principle is based on the counterfactual
framework that constructs a treatment group with policy interventions and a control group without
policy interventions. If the common trend hypothesis is satisfied, that is, there is no significant
difference between the treatment group and the control group before the policy’s implementation,
then the change of the treatment group before and after the experimental period can be considered
to be the effect of the policy’s implementation (counterfactual results). By comparing the differences
of the treatment group and control group, we can get the actual effect of the policy shock [35–38].
By introducing the PSM model, a random allocation can be achieved by checking the systematic
differences between the samples before and after matching, thus eliminating the endogeneity problems
that may exist in the model and ensuring the effectiveness of the PSM-DID model [39]. In this study, the
pilot projects of ETS in Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei, and Shenzhen are
regarded as a natural experiment. The treatment group is the provinces and cities that implement the
ETS pilot policy, while the control group is the other provinces and cities that have not implemented
the policy (excluding Tibet, Hong Kong, Macao, and Taiwan). To fully reflect the true implementation
effect of the policy and consider the actual operating period of the ETS in Chongqing and Hubei, 2014 is
regarded as the starting year of the pilot programs. After introducing the empirical dummy variables,
the model is formulated as follows:

Cit = α0 + α1provi × perit + α2Controlit + ηi + γt + µit (1)

Yit = β0 + β1provi × perit + β2Controlit + ηi + γt + µit (2)

here, “prov” represents the province dummy variable, the province i belong to pilot projects is set
to 1, and the others are set to 0. “peri” represents the time dummy variable, the pre-pilot period is
2005–2013, and the post-pilot period is 2014–2017, the year t represents post-pilot is 1, while represents
pre-pilot is 0. The interaction term defined as “Z = prov × peri.” Cit represents the CO2 emissions of
province i in year t, which measures the emissions reduction effect of the ETS pilot. Yit represents the
GDP of province i in year t, which measuring the economic effect of the ETS pilot. Control represents
the control variables affecting the emissions reduction effect and economic effect. η is the provincial
fixed effect, γ is the time fixed effect, and µ is the time disturbance term. Based on Equations (1)
and (2), we are interested in the coefficient of the interaction term Z, which indicates the difference
between the pilot provinces and cities and non-pilot provinces and cities during the experimental
period, excluding the difference of the pilot provinces and cities and non-pilot provinces and cities
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outside the experimental period, so as to correctly evaluate the carbon reduction pilot’s emission
reduction and economic effects.

3.2. DDD Model

In the estimation of the above mentioned DID model, for the purpose of further analyzing
the mechanism of the effects of the economic development differences and industrial development
differences on the ETS pilot policy, this study introduces dummy variables for the economic development
differences and industrial development differences to construct a DDD model as follows:

Cit = α0 + α1provi × perit × if_econj + α2provi × perit + α3provi × if_econj

+α4perit × if_econj + α5controlit + ηi + γt + µit
(3)

Cit = α0 + α1provi × perit × if_induj + α2provi × perit + α3provi × if_induj

+α4perit × if_induj + α5controlij + ηi + γt + µit
(4a)

Cit = α0 + α1provi × perit × if_consj + α2provi × perit + α3provi × if_consj

+α4perit × if_consj + α5controlij + ηi + γt + µit
(4b)

Cit = α0 + α1provi × perit × if_servj + α2provi × perit + α3provi × if_servj

+α4perit × if_servj + α5controlij + ηi + γt + µit
(4c)

Yit = β0 + β1provi × perit × if_econj + β2provi × perit + β3provi × if_econj

+β4perit × if_econj + β5controlit + ηi + γt + µit
(5)

Yit = β0 + β1provi × perit × if_induj + β2provi × perit + β3provi × if_induj

+β4perit × if_induj + β5controlij + ηi + γt + µit
(6a)

Yit = β0 + β1provi × perit × if_consj + β2provi × perit + β3provi × if_consj

+β4perit × if_consj + β5controlij + ηi + γt + µit
(6b)

Yit = β0 + β1provi × perit × if_servj + β2provi × perit + β3provi × if_servi

+β4perit × if_servj + β5controlij + ηi + γt + µit
(6c)

here, if_econ is the dummy variable of the economic development differences, and if_indu, if_cons, and
if_serv are the dummy variables of the industrial, construction, and service development differences,
respectively (classified according to the categories of the industries that are involved in carbon trading
in the pilot provinces and cities, as shown in Appendix A). The economic growth level and industry
development levels are characterized by per capita GDP, per capita industrial added value, per capita
construction added value, and per capita service added value, respectively. If above indicators of the
province j ranks at the top 50% of the China, corresponding dummy variables if_econ, if_indu, if_cons,
and if_serv are set to 1, the other provinces are set to 0. The remaining variables are defined as in
Equations (1) and (2). In the above equations, we are also concerned with the coefficient of the triple
cross term. In this paper, the DDD model is based on the DID model and adds the dummy variables
of economic development level difference and industrial development level difference, in order to
further analyze whether the development level difference will affect the impact of ETS. Through the
significance of the double cross term Z, we can initially determine whether the DID satisfies the
common trend hypothesis and the necessity of DDD analysis.

3.3. Data and Variable

The calculation of carbon emissions includes two parts: fossil energy and electricity. The original
provincial data of 2005–2017 are from the China Energy Statistical Yearbook (2006–2018). The standard
coal coefficient, carbon emissions coefficient and average CO2 emissions factor of the regional power
grid are derived from the IPCC guidelines for national greenhouse gas inventories and the general
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principles for computing comprehensive energy consumption (GB/T2589-2008). The control variables
for evaluating carbon emission effect include population factors, economic factors, technological
factors, environmental regulations, and innovation driving factors. Here, population size and the
urbanization rate are population factors, per capita GDP and the industrialization rate are economic
factors, the carbon intensity and the energy structure are technological factors, the intensity of the
environmental pollution control is an environmental regulation factor, and the research structure and
research intensity are innovation driving factors. The selected control variables for GDP are the capital
stock, the labor force, and energy consumption. Environmental effect indicators and economic effect
indicators constitute an indicator system for testing the “Porter effect” of China’s carbon trading pilot.
The original data of population size, urbanization rate, per capita GDP, industrialization rate, capital
stock, and labor force are obtained from the China Statistical Yearbook (2006–2018). The original
data of carbon intensity, energy structure and energy consumption are obtained from China Energy
Statistical Yearbook (2006–2018). The intensity of environmental pollution control, research structure
and research intensity are obtained from the China Environmental Yearbook (2006–2018) and the China
Scientific and the Statistical Yearbook (2006–2018). The specific meaning and calculation method of
each index are shown in Table 1 below.

Table 1. Observable variables and calculation method.

Variable Name Variable Meaning (Unit) Calculation Method

lnc carbon_emission (ten thousand tons) logarithm of CO2 emission

lnp People (ten thousand people) Logarithm of POP at the end of the
year

us urbanization_structure (%) Urban POP/total POP

a average_gdp (RMB ten thousand
yuan/person) GDP/total POP

is industrilization_structure (%) Industrial value added/GDP

ci carbon_emission_intensity (ten thousand
tons/RMB100 million yuan) CO2 emission/GDP

energs energy_structure (%) Coal consumption/fossil energy
environs environment_structure (%) Environmental investment/GDP

rs research_structure (%) R&D personnel/total POP
ri research_intensity (%) R&D expenditure/GDP

lngdp gross_domestic_production (RMB100
million yuan) Logarithm of GDP

lnk Capital (RMB100 million yuan) Logarithm of capital stock
lnl Labour (ten thousand people) Logarithm of employment

lne energy_consumption (ten thousand tons
standard coal) Logarithm of energy consumption

1 GDP converted into constant price in 2005. 2 Capital stock is deducted according to annual depreciation rate in the
base period of 2005.

4. Empirical Results

4.1. Descriptive Statistics and Comparison of Variables

Table 2 shows that the mean and standard error of each variable are within reasonable ranges,
and the existence of extreme outliers can basically be excluded; thus, the data stability is good. Table 3
shows that before the implementation of the policy, the carbon emissions of the pilot provinces were
larger than those of the non-pilot provinces, but after the implementation of the policy, the carbon
emissions of the non-pilot provinces were larger than those of the pilot provinces. This initially indicates
that the ETS pilot policy may generate emissions reductions. After the implementation of the policy,
the GDP gap between the pilot and non-pilot provinces has increased slightly. It seems that the policy
promotes economic development and achieves the “Porter hypothesis.” In addition, it is found that
before the implementation of the policy, there are differences in the indicators of the pilot provinces and
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non-pilot provinces, such as the urbanization rate, per capita GDP, carbon intensity, energy structure,
research structure and research intensity; thus, it was found that the performances of the pilot provinces
are better than those of the non-pilot provinces. Therefore, the differences may not simply a matter
of policy.

Table 2. Descriptive statistics table.

Variable Obs Mean Std. Min Max

lnc 390 10.26 0.83 7.58 12.35
lnp 390 3.55 0.32 2.73 4.05
us 390 52.96 13.96 26.87 89.60
a 390 2.82 1.76 0.54 10.89
is 390 46.40 8.03 19.00 59.05
ci 390 3.87 2.47 1.47 18.26

energs 390 72.01 14.65 11.15 94.33
environs 390 1.36 0.67 0.30 4.24

rs 390 0.23 0.24 0.01 1.24
ri 390 1.42 1.05 0.18 6.01

lngdp 390 9.05 0.95 6.30 11.07
lnk 390 10.08 0.92 7.39 12.04
lnl 390 7.60 0.81 5.67 8.83
lne 390 10.26 0.83 7.58 12.35

Due to the availability of data, Shenzhen is included in the statistics of Guangdong Province.

Table 3. Comparison of variables before and after implementation of the policy.

Variable
Before Pilot Policy (2005–2013) After Pilot Policy (2014–2017)

Un-Pilot Province Pilot Province Un-Pilot Province Pilot Province

lnc 9.98 10.03 10.88 10.73
lnp 3.56 3.48 3.57 3.53
us 45.91 69.50 54.20 74.26
a 2.17 4.35 3.04 5.79
is 48.80 44.51 44.06 38.50
ci 3.69 2.15 5.57 2.60

energs 77.20 66.40 52.33 37.11
environs 1.35 1.26 1.49 1.10

rs 0.13 0.44 0.20 0.60
ri 0.99 2.45 1.25 3.06

lngdp 8.78 9.29 9.31 9.90
lnk 9.73 10.09 10.67 10.88
lnl 7.60 7.43 7.70 7.59
lne 9.98 10.03 10.88 10.73

4.2. Estimation of PSM Method

In Table 4, m1–m6 respectively represent the five nearest neighbors caliper matching (caliper
radius 0.01), the one nearest neighbor caliper matching (caliper radius 0.01), caliper radius matching
(caliper radius 0.01), caliper radius matching (caliper radius 0.05), kernel matching (quadratic kernel),
and kernel matching (Gaussian kernel). From the |bias| values of the six matching methods, we
can see that the biases of the other control variables except population and energy consumption are
significantly reduced after matching, which indicate that the PSM has indeed significantly improved
the data error rate. The criterion for the success of matching is whether each variable passes the balance
test after matching, that is, whether the p value of the t test after matching is significant or not. After all
matching methods, the p > |t| value of each variable in the table below is not significant (more than
10%). That is, the original hypothesis is rejected, indicating that there is no systematic difference in the
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data before and after matching; therefore, the carbon trading pilot policy can be considered to be a
random allocation experiment.

Table 4. Propensity score matching (PSM) estimation.

Variable
m1 m2 m3 m4 m5 m6

|bias| p > |t| |bias| p > |t| |bias| p > |t| |bias| p > |t| |bias| p > |t| |bias| p > |t|

lnp U 0.13 0.13 0.13 0.13 0.13 0.13
M −52.60 0.45 1.70 0.64 −52.60 0.45 −5.90 0.46 −11.80 0.44 78.10 0.90

us U 0 0 0 0 0 0
M 62.80 0.17 58.10 0.12 62.80 0.17 92.80 0.77 91.70 0.73 86.70 0.50

a U 0 0 0 0 0 0
M 37.40 0.11 36.70 0.19 37.40 0.11 95.70 0.93 93.70 0.90 89.60 0.80

is U 0 0 0 0 0 0
M 76.70 0.62 85.20 0.76 76.70 0.62 26.60 0.17 26.50 0.17 86.90 0.83

ci U 0 0 0 0 0 0
M 96.30 0.82 91.40 0.63 96.30 0.82 98.60 0.93 97.60 0.88 98.70 0.92

energs U 0 0 0 0 0 0
M 87.20 0.57 81.80 0.38 87.20 0.57 48.70 0.26 49.30 0.26 81.70 0.65

environs U 0.06 0.06 0.06 0.06 0.06 0.06
M 84.70 0.90 91.50 0.94 84.70 0.90 43.20 0.49 45.70 0.51 25.60 0.36

rs U 0 0 0 0 0 0
M 91.00 0.70 90.20 0.68 91.00 0.70 96.90 0.88 97.40 0.89 98.00 0.91

ri U 0 0 0 0 0 0
M 68.40 0.16 70.90 0.20 68.40 0.16 92.60 0.75 92.30 0.74 98.90 0.96

lnk U 0.01 0.01 0.01 0.01 0.01 0.01
M 89.7 0.83 29.90 0.15 82.90 0.72 74.50 0.50 74.90 0.50 32.20 0.06

lnl U 0.14 0.14 0.14 0.14 0.14 0.14
M 94.5 0.96 −8.10 0.26 86.50 0.89 26.30 0.35 27.00 0.36 −31.00 0.09

lne U 1.00 1.00 1.00 1.00 1.00 1.00
M −7.8 0.75 −7.31 0.79 −3.50 0.84 −5.22 0.81 −2.59 0.91 −2.68 0.91

4.3. “Porter Effect” of ETS Pilot Policy

Based on the DID model in and Equations (1) and (2), we evaluate the effects of the ETS pilot
policy on carbon emissions and GDP. In Table 5, m1 indicates adding the provincial and time-fixed
effect model without control variables. The results show that the interaction term is negative, but the
coefficient is not significant. After adding the control variables, the m2 interaction term’s coefficient
is significant, and the R squared is significantly increased from 0.235 to 0.946, which indicate that
the initial carbon trading pilot policy mechanism is not sufficiently perfect and that it is vulnerable
to other policies. Therefore, it is necessary to introduce important control variables to make the
results more robust. m2 shows that the policy can reduce carbon emissions by 10.0%. The analysis
of the control variables shows that the coefficients of some of the control variables are significant.
Population, carbon intensity, and per capita GDP have significant positive effects on carbon emissions;
and the environmental pollution control intensity, research structure, and research intensity have
negative effects.

The following analyzes the economic effects of the policy. m3 shows that the interaction coefficient
without the control variables is not significant, and m4 shows that the overall result is significantly
positive after adding the control variables. The R squared increases from 0.532 to 0.957, indicating that
the ETS pilot policy can achieve economic effects. Among the variables, the capital stock, employment,
and energy consumption factors all have significant positive effects. This study concludes that the ETS
pilot policy can achieve the “Porter effect,” which is basically consistent with [14,40–42]. Dong et al.
argued that the policy cannot achieve the “Porter effect” in the short term because the economic effect is
not significant [16], which is possibly due to starting the experiment in different years and the different
calculation methods of the control variables.
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Table 5. Difference in differences (DID) estimation.

lnc lngdp

m1 m2 m3 m4

Z −0.101 (−1.21) −0.100 * (−1.80) 0.081 (1.24) 0.064 * (1.85)
lnp 2.393 *** (53.55)
us 0.019 *** (9.22)
a 0.165 *** (9.54)
is 0.013 *** (8.43)
ci 0.172 *** (9.54)

energs 0.007 *** (6.80)
environs −0.072 *** (−2.75)

rs −0.138 * (−1.81)
ri −0.096 *** (−4.74)

lnk 0.618 *** (20.96)
lnl 0.344 *** (16.08)
lne 0.214 *** (8.29)

control no yes no yes
province yes yes yes yes
period yes yes yes yes

R-square 0.235 0.946 0.532 0.957

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.4. Dynamic Effect Test and Placebo Test

The precondition of the consistency of the DID estimation result is that the treatment group and
the control group conform to the hypothesis of parallel trends. That is, without policy intervention,
the development trends of the outcome variables in the treatment group and the control group are
consistent. In Table 6, if_2010-if_2017 in the dynamic effect model represent that the initial years of
the policy implementation are set as 2010-2017, and m1 and m2 represent the emissions reduction
effect and economic effect, respectively. It is found that the interaction coefficients of 2010–2013 (the
years before the policy implementation) are not significant, and the coefficients of 2014–2017 (the years
after the policy implementation) are all significant at the 10% level or better. The analysis shows that
the coefficients of the emissions reduction effect in 2014–2017 are greater than those in 2010–2013 and
much closer to the DID estimation (−10.0%), and the coefficients of the economic effect in 2014–2017 are
stable between 6.1% and 6.9%. It also shows that the ETS pilot policy is achieving a win-win situation
between the emissions reduction effect and the economic effect without a hysteresis effect or decreasing
effectiveness in the pilots.

To further verify the robustness of the results, a regional placebo test was conducted. That is, we
assume that the other regions with similar geographical locations and development levels have actually
implemented the policy, and the policy implementation time remains unchanged. If the empirical
results show that the hypothetical regions can also achieve the policy effect, it cannot be considered
that the policy effect of the pilot regions is due to the policy, and, vice versa, it indicates that the policy
is robust. This study takes reference of the Zhou et al. method on the control group selection for the
regional placebo test [15]. Thus, it was found that the provinces with higher economic growth rates,
stronger environmental regulations, and higher research capabilities are more likely to be selected for
the ETS pilot. Taking Shandong, Jiangsu, Anhui, Zhejiang, and Fujian provinces as the hypothetical
treatment group, the initial year of the policy implementation remains unchanged. m3–m6 represent
the results of the emission reduction effect without control variables, the emission reduction effect with
control variables, the economic effect without control variables, and the economic effect with control
variables, respectively. It is found that the Z.district, which represents the interaction coefficient of
the emissions reduction effect is positive, while the Z.district of the economic effect is not statistically
significant, thus proving the robustness of the previous DID estimation.
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Table 6. Dynamic effect test and placebo test.

Dynamic Effect Regional Placebo Test

m1 m2 m3 m4 m5 m6

Z −0.100 * (1.80) 0.064 * (1.85)
Z.if_2010 −0.052 (−0.68) 0.071 ** (2.44)
Z.if_2011 −0.065 (−1.17) 0.048 (1.64)
Z.if_2012 −0.087 (−1.53) 0.108 (1.66)
Z.if_2013 −0.092 (−1.64) 0.077 (1.07)
Z.if_2014 −0.107 * (−1.91) 0.061 ** (2.31)
Z.if_2015 −0.097 * (−1.86) 0.069 * (1.94)
Z.if_2016 −0.092 * (−1.96) 0.062 * (1.82)
Z.if_2017 −0.101 * (−1.90) 0.063 * (1.90)

Z.district 0.051 (0.30) 0.057 (1.24) 0.039 (0.23) 0.051
(1.44)

control yes yes no yes no yes
province no no yes yes yes yes

time no no yes yes yes yes
R-square 0.832 0.904 0.351 0.942 0.238 0.944

1 * p < 0.05, ** p < 0.01, *** p < 0.001. 2 2009 as the base period of 2010–2013, 2013 as the base period of 2014–2017.

4.5. Heterogeneity Impact on Policy Effect

The PSM-DID estimation shows that China’s ETS pilot policy has indeed achieved an ideal “Porter
effect.” However, for the national ETS that is being gradually established, the impact of interprovincial
differences on economic development and industrial development and their impacts on the final effect
of the policy are bound to be a major problem. Based on the PSM-DID results, this study constructs a
DDD model by introducing dummy variables for the economic development differences and industrial
development differences and also studies the mechanism of the effect of heterogeneity of economic
and industrial differences on the policy.

4.5.1. Economic Development Differences

According to Equations (3) and (5), it can be found from Table 7 that the interaction coefficients of
model m1 without the control variables according to the DID and DDD estimations are not significant.
The DDD estimation is –0.209, which indicates that the ETS policy may have a lower emissions effect
on the provinces with higher economic development rates than the provinces with lower economic
development rates. Thus, the pilot policy strongly inhibits the carbon emissions effect in the provinces
with higher economic development rates. The R-squared in model m2 with control variables increases
significantly from 0.520 to 0.957, and except for the research structure, the coefficients of the other eight
control variables are significant and have better statistical significance. The economic significance
analysis is as follows. (1) The p value of the DID interaction term Z passes the t test at the 10%
significance level. Thus, we can conclude that there may be time trend differences between the control
group and treatment group, and the results of the DDD method are more robust than those of the DID
method. (2) The coefficient of the DDD interaction term Z*if_econ is significant (−0.370), indicating
that the ETS pilot policy has strong carbon emission inhibitory effects on the provinces with higher
economic development rates than the provinces with lower economic development rates. (3) The
mechanism effect, population, per capita GDP and emissions intensity have major positive effects on
carbon emissions. The environmental pollution control intensity and research intensity have negative
effects on carbon emissions (the industrialization rate, the proportion of coal consumption, and the
urbanization rate also have positive effects). The results of models m3 and m4 studying the economic
effect show that the coefficient of the interaction term of the DDD estimation is small and the P-value is
not significant, regardless of whether or not control variables are included, indicating that the level of
economic development has no significant effect on the economic effect of the policy. Compared with
the results of this study and the related literature [7,34], we can find that the ETS policy has a more
significant effect on promoting the development of regions and enterprises with higher development
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levels since these entities are better than the regions and enterprises with lower development levels
in terms of investment intensity and environmental regulation investments, thus achieving better
“environmental welfare” and “economic welfare.”

Table 7. Policy effect of economic development differences.

lnc lngdp

m1 m2 m3 m4

Z*if_econ −0.209 (−0.71) −0.370 ***(−3.96) 0.001 (0.59) 0.007 (0.87)
Z −0.044 (−0.20) 0.089 * (1.85) 0.013 (1.03) −0.052 * (−1.77)

lnp 2.248 *** (43.73)
us 0.010 *** (4.41)
a 0.176 *** (10.55)
is 0.012 *** (7.77)
ci 0.167 *** (9.90)

energs 0.008 *** (8.01)
environs −0.053 ** (−2.34)

rs −0.048 (−0.78)
ri −0.032 * (−1.84)

lnk 0.565 *** (23.03)
lnl 0.523 *** (30.57)
lne −0.023 (−1.53)

control no yes no yes
province yes yes yes yes

time yes yes yes yes
R-square 0.520 0.957 0.568 0.981

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.5.2. Industrial Development Differences

By introducing the dummy variables of the industrial development differences, we study whether
there is heterogeneity in the policy effect of the ETS pilot project in provinces with different industries.
These industries are divided into industry, service and construction according to the seven ETS pilots
(see Appendix A for the details). According to Equations (4a–4c), as shown in Table 8, the DID
and DDD interaction term coefficients of models m1, m3, and m5 without the control variables are
not significant. The interaction coefficients of models m2, m4, and m6 with the control variables
are significant, and the R-squared significantly increases to 95%. Due to the length limitations of
this paper, in the following, we mainly focus on the results of models m2, m4, and m6. From a
statistical perspective, the coefficients of the control variables for these three models are significant
with better statistical significance. The economic significance analysis is as follows. (1) The Z value
and the DID interaction coefficients of models m2, m4, and m6 all pass the t-test at the 10% level
or better, thus indicating that there may exist time trend differences between the control group and
the treatment group. Therefore, the DDD estimation provides more robust results than the DID
estimation. (2) The coefficients of Z*if_ are 0.058, –0.488, and 0.081, respectively, which indicate that
the policy has a weaker inhibitory effect on the carbon emissions of provinces with higher levels of
industrial and construction development compared with the provinces with lower levels of industrial
and construction development. Furthermore, the policy has a stronger inhibitory effect on the carbon
emissions in the provinces with higher levels of service development compared with the provinces
with lower levels of service development. (3) From the perspective of the mechanism’s effect, the
population size, emissions intensity, and per capita GDP factors have major positive effects on carbon
emissions; the environmental pollution control intensity, research structure, and research intensity
have negative effects on carbon emissions (the urbanization rate, industrialization, and proportion of
coal consumption proportion have positive economic effects).
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From Table 9 (Equations (6a)–(6c)), we can see that although the coefficients of lnk, lnl, and
lne are significant, the interaction coefficients in the DDD estimation of Z*if_ are not significant,
showing that the level of industrial development has no significant impact on the economic effect
of the policy. By comparing the results for the economic development differences and the industrial
development differences, we can see that the policy has a stronger inhibitory effect on the carbon
emissions in provinces with higher levels of economic and service development, and the level of
the service industry’s development is often the most important indicator of economic development,
indicating the rationality and practical significance of the empirical results in this study.

Table 8. Emission reduction effect of industrial development differences.

lnc
if_indu if_serv if_cons

m1 m2 m3 m4 m5 m6

Z*if_ 0.0622 (0.84) 0.058 * (1.87) −0.298 (−0.85) −0.488 *** (−5.14) 0.097 (0.69) 0.081 * (1.79)
Z −0.141 * (−1.83) −0.124 * (−1.84) −0.116 (−0.68) 0.267 *** (4.52) −0.318 * (−1.87) −0.121 * (−1.80)

lnp 2.390 *** (40.47) 2.427 *** (54.75) 2.431 *** (46.16)
us 0.019 *** (8.99) 0.018 *** (8.33) 0.020 *** (9.36)
a 0.165 *** (9.76) 0.177 *** (9.53) 0.172 *** (9.19)
is 0.012 *** (7.23) 0.014 *** (8.28) 0.014 *** (8.61)
ci 0.175 *** (9.46) 0.171 *** (9.33) 0.164 *** (9.01)

energs 0.007 *** (7.23) 0.007 *** (7.00) 0.007 *** (6.66)
environs −0.070 *** (−2.62) −0.078***(−2.87) −0.071 *** (−2.88)

rs −0.164 ** (−2.01) −0.124 * (−1.82) −0.026 * (−1.81)
ri −0.115 *** (−5.25) −0.093 *** (−4.44) −0.045 * (−1.92)

control no yes no yes no yes
province yes yes yes yes yes yes

time yes yes yes yes yes yes
R-square 0.570 0.949 0.506 0.950 0.435 0.952

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table 9. Economic effect of industrial development differences.

lngdp if_indu if_serv if_cons

m1 m2 m3 m4 m5 m6

Z*if_ −0.020 (−0.20) −0.033 (−0.21) −0.019 (−0.18) −0.027 (−0.28) −0.150 (−0.48) −0.169 (−1.27)
Z 0.012 (0.70) 0.128 (1.23) 0.004 (1.53) 0.080 ** (2.08) 0.129 (1.620) 0.193 ** (2.02)

lnk 0.602 *** (21.26) 0.594 *** (21.19) 0.534 *** (19.54)
lnl 0.337 *** (14.48) 0.315 *** (13.61) 0.381 *** (15.90)
lne 0.209 *** (8.47) 0.188 *** (7.81) 0.275 *** (11.08)

control no yes no yes no yes
province yes yes yes yes yes yes

time yes yes yes yes yes yes
R-square 0.532 0.962 0.568 0.967 0.451 0.967

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.5.3. DDD Mechanism Test

By successively using each control variable as an explanatory variable, we study the conduction
mechanism of the economic differences and industrial differences on the carbon reduction effect and
economic effect. According to the analysis in Table 10, the following is found. (1) From the coefficients
of the Z-values, it is found that the causes of the carbon reduction effect in the ETS pilot provinces are
mainly from the reductions of the industrialization rate, carbon intensity, and energy structure and the
increases of the research structure and research intensity. Furthermore, the economic effect in the ETS
pilot provinces is due to the increased capital, employment and energy consumption. (2) According
to the coefficients of Z*if_econ, Z*if_indu, Z*if_serv, and Z*if_cons, compared with the provinces
with lower levels of economic and industrial development, the population size, carbon intensity and
per capita GDP have positive effects on the carbon emissions in the provinces with higher levels of
these variables. Further, the intensity of the environmental pollution controls, research structure and
research intensity have negative effects on carbon emissions in the provinces with higher levels of
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economic and industrial development. The levels of economic and industrial development have no
significant economic effect on the policy implementation (due to this paper’s length limitations, the
table is not reported).

Table 10. Mechanism effect on carbon emission trading system (ETS) pilot policy.

lnp us a is ci energs environs rs ri lnk lnl lne

Z*if_econ 0.137 **
(1.95)

1.299
(0.63)

0.666 **
(1.93)

0.961 *
(1.86)

0.719
(0.43)

0.181
(0.78)

−0.050
*(−1.82)

−0.165 *
(1.84)

−0.128 **
(−1.97)

0.035 **
(1.95)

0.182 *
(1.82)

0.188 *
(1.81)

Z*if_indu 0.004 **
(1.97)

0.585
(0.52)

0.043 *
(1.86)

0.781 *
(1.82)

0.394 **
(1.99)

0.068
(0.68)

−0.008 **
(−1.96)

−0.701 *
(−1.82)

−0.099 **
(−1.96)

0.018 **
(1.99)

0.057 *
(1.85)

0.002
(1.67)

Z*if_cons 0.118 **
(2.00)

0.058
(0.67)

0.744 **
(1.99)

0.861 *
(1.84)

0.047
(1.51)

0.032
(0.83)

−0.177 **
(−1.98)

−0.025 *
(−1.79)

−0.115 **
(−1.94)

0.133 *
(1.81)

0.215 *
(1.82)

0.032 *
(1.80)

Z*if_serv 0.063 **
(1.90)

0.929
(0.49)

1.041
***

(2.19)

1.011
(1.52)

0.571 **
(1.95)

0.100
(0.70)

0.988 ***
(2.84)

−0.701 *
(−1.86)

−0.159 **
(−1.96)

0.162 *
(1.85)

0.014 *
(1.80)

0.232 *
(1.87)

Z 0.082 **
(1.99)

0.180 *
(1.77)

1.036 *
(1.84)

−0.284 *
(−1.79)

−0.202 **
(−1.97)

−0.052 *
(−1.75)

−0.018 **
(−2.01)

−0.186 *
(−1.78)

−0.171 ***
(−2.31)

0.043 ***
(2.18)

0.083 *
(1.85)

0.020 ***
(2.13)

control yes yes yes yes yes yes yes yes yes yes yes yes
province yes yes yes yes yes yes yes yes yes yes yes yes

time yes yes yes yes yes yes yes yes yes yes yes yes

* p < 0.05, ** p < 0.01, *** p < 0.001.

4.6. Implications of the Empirical Results

This study proves that China’s ETS policy in the seven pilot provinces and cities has indeed
achieved the “Porter effect” and discusses the heterogeneity of the development levels in different
provinces and cities. Compared with the existing literature, there are two major contributions in this
study. The first is the research method. To systematically evaluate the policy effect of China’s ETS
pilot projects, the PSM-DID method was combined with the DDD method, and a variety of matching
methods and different placebo tests were adopted in the empirical analysis. This approach allowed the
study to avoid the endogeneity problems existing in traditional measurement methods, thus improving
the policy effect. Furthermore, it also allowed for further study of the common trend violation of
the DID method, thus expanding the breadth of the policy effect. The second is the research field.
Although there have been studies on the “Porter effect” of China’s ETS pilot policy, there have been no
definitive conclusions yet, and few publications that have discussed the policy effect of the economic
development differences and industrial development differences of provinces and cities. On the basis
of proving the existence of the “Porter effect” of the policy without the hysteresis effect and declining
effect, we further prove that the policy has a stronger inhibitory effect on carbon emissions in the
provinces and cities with higher levels of economic and service development, and it has a weaker
inhibitory effect on the carbon emissions in the provinces and cities with higher levels of industrial and
construction development. Regardless of the economic and industrial development differences, there is
no significant impact on the economic effect of the policy. Previous studies that analyzed the impact of
enterprise heterogeneity on the ETS policy showed that listed enterprises and state-owned enterprises
had achieved better “policy welfare.” This study holds that provinces and cities with higher levels
of economic and service development have also achieved stronger carbon reduction effects, and the
development level of the service industry is the decisive factor for economic development. The results
indicate that the policy is conducive to the development of entities with better qualities by comparing
the enterprise, economic, and industrial aspects. Therefore, this study could provide an effective basis
for China to build a national carbon market by considering the imbalance of the development in the
different provinces and cities and providing a reasonable reference for the successful completion of
the industrial transformation and connection with national policies. Furthermore, this work fills the
research gap on the heterogeneity of the policy effects that are caused by the developmental differences
of provinces and cities.

Although this paper further studies the impact of heterogeneity on China’s ETS pilot policy, it also
has some deficiencies. First, the time dimension is not long enough, although it will not affect the basic
conclusions. Future research should extend the time period of the data to eliminate the interference
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caused by various factors in the initial stage of the policy’s implementation and enhance the robustness
of the empirical results. Second, there is a lack of comparative analysis. In the future, different methods
can be adopted to analyze the relevant policy effects on the treatment of sulfur dioxide, carbonitride
and other pollutants, as well as the policy effects of the ETS in the relevant countries and regions.
This can establish a complete and systematic evaluation system and propose a series of more accurate
and effective policy suggestions, which will be future research directions.

5. Conclusions and Policy Implications

Starting from 2013 to 2014, China formally launched an ETS pilot project in the seven provinces
and cities of Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei, and Shenzhen, and it planned
to gradually expand the pilot to a national ETS in 2017, which would replace the EU ETS as the
largest ETS in the world. Therefore, studying the policy effects of the ETS pilot will provide important
enlightenment on the establishment of the national ETS [15]. This study selected 30 provincial panel
data from 2005 to 2017 and used the PSM-DID model to analyze the policy effect of the ETS pilot. Then,
the DDD model was introduced to further study the impact of the heterogeneity of the economic and
industrial differences on the policy. The empirical conclusions can be summarized as follows:

(1) China’s ETS pilot policy has achieved the “Porter effect,” but due to the incomplete mechanism
and short establishment time, it is necessary to add key control variables to improve the robustness
of the results. The study finds that the policy increases GDP by 6.4% while reducing carbon
emissions by 10.0%, and it can be found from the dynamic effect table that the carbon reduction
effect and economic effect remain stable over a certain range.

(2) The analysis of the mechanism of the effect of a single control variable shows that the population,
carbon intensity, and per capita GDP have major positive effects on carbon emissions. However,
the environmental pollution control intensity, research structure and research intensity have
negative effects. Finally, the capital stock, employment and energy consumption have significant
positive economic effects.

(3) After adding dummy variables for the economic and industrial differences, the coefficient of the
interaction term in the DID model is found to be significant, which indicates that it is necessary to
introduce the DDD model to further analyze the impact of heterogeneity on the final effect of the
policy. Empirical analysis shows that compared with the provinces with lower levels of economic
development, the ETS pilot policy has a stronger inhibitory effect on the carbon emissions in
the provinces with higher levels of economic development. Compared with the provinces with
lower levels of industrial and construction development, the pilot policy has a weaker inhibitory
effect on the carbon emissions in the provinces with higher levels of industrial and construction
development. Finally, compared with the provinces with lower levels of service development, the
pilot policy has a stronger inhibitory effect on the carbon emissions in provinces with higher levels
of service development. The levels of economic and industrial development have no significant
impacts on the economic effect of the policy.

(4) In recent years, the reductions of the industrialization rate, carbon intensity, and energy structure
and the increases of the environmental regulation intensity, research structure, and research
intensity in the pilot provinces have generated emissions reduction effects. The economic effect
comes from the increased capital, employment, and energy consumption. Compared with the
provinces with lower levels of economic and industrial development, the population, carbon
intensity and per capita GDP of the provinces with high levels of development have positive
effects on carbon emissions, while the environmental pollution control intensity, research structure
and research intensity have negative effects on carbon emissions. The level of economic and
industrial development has no significant impacts on the economic effect of the policy.
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As a policy tool to control greenhouse gas emissions, according to the total quota setting and
allocation scheme, the baseline method and the historical intensity method can be used as the standards
to reduce carbon emissions by forcing enterprises to save energy and enhance efficiency, thereby
improving the output value of their products and achieving energy conservation and emission
reduction. Based on the relevant research results of this study, the related policy recommendations are
as follows:

(1) Establish a reasonable initial carbon quota allocation and ETS. The conclusion of the PSM-DID
model shows that ETS has indeed achieved economic and environmental benefits in China’s
carbon trading pilot provinces and cities, that is, the “Porter effect” has been achieved, but a
sound and clear carbon trading allocation mechanism is required as a prerequisite. The “Porter
effect” of the ETS policy is based on the fact that it can encourage enterprises to independently
develop energy-conversation and emissions-reduction technologies and increase the added value
of their products. Advanced enterprises can trade surplus carbon quotas to make up for their
“innovation cost” and realize “environmental welfare” and “economic welfare.” Therefore, it is
an essential system guarantee to reasonably allocate carbon quotas and set effective carbon price
ranges based on accurate historical emissions statistics and the green technology investment of
various enterprises.

(2) The results of the DDD model in this paper indicate that differences in economic development
and industrial development will affect the carbon emissions reduction effect of ETS. Due to the
economic development and industrial development differences, such as those in the industry,
service and construction in different regions and enterprises, the national ETS can achieve
a successful connection and smooth transition with regions only by sticking to the unified
nationwide operations and management, increasing trade transparency, formulating a strict
supervision mechanism, and seeking a balance between equity and efficiency

(3) Compared with a carbon tax, an ETS has a better emissions reduction effect, but the social costs
are higher. Based on the mechanism analysis, relevant measures should be formulated according
to the key factors, such as the carbon intensity, energy structure, environmental regulation
investments, and research factors. For instance, intensifying efforts to develop renewable
energy, utilize carbon capture and storage technology (denoted as CCS), advocate for the use of
environmental protection materials and services, and provide “innovation compensation” to key
R&D institutions can reasonably control the total costs.
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Appendix A

Table A1. Industry coverage of seven ETS pilots.

Pilot Industry Coverage Standard Quantity

Shenzhen
Industry (electricity, water, manufacturing etc.) construction
(industry & construction)

Industry: above 5000 t industry: 635
Public buildings: above
20,000 m2 construction: 197

Office building: above
1000 m2

Beijing Electricity, Thermal, Cement, Petrochemical, Other Industries
and Service industry (industry & services industry)

Annual emission: above
10,000 t 543

Shanghai

Industry: electricity, steel, petrochemical, chemical,
non-ferrous, building materials, textiles, rubber and chemical
fibers; non-industrial industry: aviation, airport, port,
shopping mall, hotel, commercial office buildings and railway
stations (industry & construction & service industry)

Industry: above 20,000 t

191
Non-industry: above
10,000 t

Guangdong Electricity, cement, steel, petrochemical (industry) Annual emission: above
20,000 t 193

Tianjin Electricity, thermal, steel, petrochemical, oil and gas
exploitation (industry)

Annual emission: above
20,000 t 114

Hubei
Electricity, glass, electrolytic aluminium, calcium carbide,
papermaking, automobile manufacturing, steel, titanium alloy,
synthetic ammonia, cement, petroleum processing (industry)

Annual Comprehensive
Energy Consumption:
60,000 t Standard Coal

138

Chongqing Industrial enterprises, excluding construction and
transportation (industry)

Annual CO2 equivalent
emission: 20,000 t any
year in 2008–2012

242
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