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Abstract: With regard to task distribution in a ridesharing company, both the suitability of the
tasks assigned to the drivers and the acceptability of the riders receiving the service should be
simultaneously considered to improve the sustainability regarding Hitch services. Firstly, the process
of the bi-directional choice between the drivers and the riders is described as a one-to-one two-sided
matching problem. Next, prospect theory is used to characterize the psychological perceived behavior
of both sides towards the matching scheme under the multiple criteria. Thus, the suitability function
concerning the drivers and the acceptability function regarding the riders are naturally constructed.
Following this, a two-sided matching decision model with two objectives is proposed. Finally,
numerical experiments are presented to verify the feasibility and effectiveness of the proposed model.
Besides, managerial insights associated with how to set the optimization objectives under unbalanced
supply-demand in ridesharing companies are given. Increasingly, this paper aims to not only
validate the proposed methodology, but also to highlight the importance and urge of incorporating
sustainability into the task distribution problem in ridesharing.
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1. Introduction

Ridesharing allows riders to split travel costs, which is beneficial for the development of the
economy and environment [1]. Specifically, it can save travel costs, reduce travel time, mitigate traffic
congestions, conserve fuel, and reduce air pollution. Ridesharing is gradually becoming a popular way
to travel. DiDi Chuxing (“DiDi”) is the world’s leading mobile transportation platform. The company
offers a full range of app-based transportation options for 550 million users, including Car Sharing, Taxi,
and so on. In 2017, DiDi closed over USD 5.5 billion financing round to support global strategy and
technology investments on April and completed 7.43 billion rides in December [2]. Uber, an app-based
service, operates in more than 58 countries and 300 cities across the world, as of August 2015 [3].
It is obvious that ridesharing is in a period of rapid development. However, ridesharing as a new
way to travel also raises new challenges in its operations and management in the context of sharing
economy. For example, four months after DiDi discontinued its Hitch business due to operational
problems, Hello chuxing launched its Hitch business, which has developed rapidly. Now, the number
of registered drivers of Hello’s Hitch has exceeded 2 million, the total number of issued orders has
exceeded 7 million, and it is still growing rapidly [4]. Therefore, the Hitch market still exists and the
demand for that is large.
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Ridesharing can be divided into two types according to the willingness of drivers. One is
the drivers taking ridesharing as a job. Without a specific travel route and departure time, based
on system’s dispatch requirements they will pick up riders at designated places, then complete
pick-up and drop-off tasks according to the requirements of riders, which is similar to internet taxis.
Some scholars have begun to focus on this issue. For instance, Pelzer et al. presented a ride-matching
algorithm to increase the success rate of ridesharing service in matching drivers and riders [5].
Barann et al. developed an innovative concept for one-to-one taxi ridesharing [6]. In the process of
their task distribution, some ridesharing companies quantify their profit-making in terms of matching
success-rate, travel mileage, and other functions. To improve the profit-making level by optimizing the
model objectives from the whole, it calculates matching scheme and adopts the task distribute mode
through system dispatching.

The other type is the drivers are more willing to accept the matching scheme along the way,
emphasizing more convenient task execution, and paying more attention to travel route and departure
time of the tasks. This type of ridesharing service is known as the Hitch service by most ridesharing
companies in China. It has also attracted some scholars’ attention. For instance, Lee et al. focus on
ridesharing schemes that involve drivers who will make their planned trip regardless of whether
they are matched with a rider (as supported by Flinc (Germany) and Carma (America), instead
of ridesharing systems in which a driver is making a trip for the sole purpose of earning the fare
(as offered by Uber, Lyft, and SideCar) [7]. These drivers operate for-nonprofit and typically provide
rides incidental to their own trips [8]. This differs from for-profit taxis and jitneys in its financial
motivation. When a ridesharing payment is collected, it partially covers the drivers’ cost. It is not
intended to result in a financial gain. Moreover, the driver has a common origin or destination with the
riders [9]. The first thing a driver may have wondered is whether the rider meets their requirements.
Many ridesharing companies (such as: DiDi, Hello) have launched Hitch services for this type of driver.
In Hitch service, compared with ridesharing companies taking profit-making as the purpose of system
dispatching, drivers are more willing to accept the matching scheme so that drivers feel satisfied with
specific concerns in in Hitch service.

To solve the aforementioned problems, some ridesharing companies (e.g., DiDi) have made new
progress in operating the Hitch business to replace system dispatch. For instance, in the development
of DiDi’s Hitch business, the company firstly selects a suitable task from the database based on the
related information provided by drivers (e.g., departure time, location, and destination), then a list to
show the rides’ travel information is formed and presented to the drivers. In this context, the drivers
can choose a task according to their preferences and own concerns. This measure practically solves the
aforementioned problem. Nevertheless, the asymmetric disclosure of information and ridesharing
companies only grants drivers the selection, but may sacrifice the perceived acceptability of riders.
Thus, there are unfair and unreasonable problems in the ridesharing task processing procedure of
drivers’ one-side menu. In this sense, the ridesharing companies should replace the manual menu with
an effective system dispatch, which is more responsive to perceptions of the ridesharing participants.
It is necessary to design a new matching model to obtain the satisfactory matching scheme (for the worst
condition is accepting the matching scheme). This will provide technical support for the ridesharing
companies to realize operable system dispatching for Hitch services.

It is important to build a system dispatching model to optimize the perceptions of drivers and
riders and improve the sustainability of ridesharing operations. In terms of the concept of sustainability,
different scholars hold different opinions. So there is no unified definition. However, as a common
cognition, the mainstream idea in nature of sustainability is to reduce, reuse, recover, and recycle.
Additionally, its measurement dimensions include society, economy, and ecology [10]. Many agencies
internationally now refer to the need for urban transport to become more sustainable, but definitions
of sustainability differ. Ridesharing is an important component of sustainable urban transportation
as it increases vehicle utilization while reducing road utilization [11]. Carter et al. clearly elaborated
that sustainability was able to be characterized by the triple bottom line model regarding social,
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economic, and ecological dimensions [10]. The United Nations World Commission on Environment
and Development (1987) highlighted that sustainable development was suggested to meet the needs of
the present without compromising the ability of future generations to meet their own needs. Seuring and
Müller considered sustainable supply chain management as the management of material, information,
and capital flows, as well as cooperation among companies along the supply chain while taking goals
from all three dimensions of sustainable development, i.e. economic, environmental, and social, into
account, which are derived from customer and stakeholder requirements [12]. In this context, we
leverage and extend the insights of the existing literature to present a comprehensive definition of
sustainability considered in the ridesharing problem. The term ‘sustainability’ refers to the ability to
motivate the coordinated development of the overall state of a system towards a better direction which
is helpful for all stakeholders with respect to social, environmental, and economic objectives.

The contributions of this paper include two points. Firstly, sustainable operations differing from
the previous ones are the focus of this paper. Most of them concentrate on operational efficiency,
but fail to examine the operation process in a sustainable manner from the points of view of direct
stakeholders’ (drivers and riders) rights. This paper attempts to examine the operation process of
the ridesharing companies from the perspective of the rights and interests of direct stakeholders and
achieve the sustainability of companies’ operations. Secondly, a bi-objective one-to-one two-sided
matching model to maximize the perceived suitability of drivers and the perceived acceptability
of riders is proposed. The characteristics of bi-directional choice between drivers and riders are
captured by two-sided matching theory. The value function of prospect theory is used to formulate the
psychological perception of different agents in the matching scheme. Thus, the behavior including
“reference dependence”, “loss aversion”, and “diminishing sensitivity” can be quantified. Additionally,
the integer programming function ‘intlinprog’ of Matlab (R2017b) is used to solve this model.

The rest of this paper is organized as follows: the next section presents a literature review,
and Section 3 presents a definition of the problem in detail, analyzes the characteristics of the
ridesharing task distribution problem, and determines the types of two-sided matching, as well as the
benchmark of the matching scheme. This problem is formulated as a two-sided matching decision
model for task distribution in a ridesharing company in Section 4. Section 5 uses numerical experiments
to validate this bi-objective programming model. Finally, the implication of the findings and future
directions are provided in Section 6.

2. Literature Review

In recent years, the task distribution problem of ridesharing has garnered increasing attention.
Some scholars have concentrated on ridesharing problems under specific scenarios (commute, intercity,
etc.) to achieve the goals of optimizing pricing, improving mileage, and increasing the menu.
For instance, Hong et al. illustrated a ride matching method for commuting trips based on clustering
trajectories to reduce the traffic demand and encourage more environment-friendly behaviors [13].
Agatz et al. presented a systematic overview of the relevant optimization models of the dynamic
ridesharing problem [14]. Furuhata et al. focused on service pricing and driver-rider matching problems
in ridesharing to foster the development of effective formal ridesharing [1]. Nourinejad et al. applied
an agent-based model to formulate the ridesharing service in matching drivers and riders [15].
Barann et al. developed a one-to-one TRS approach to match rides with similar start and end points [6].
Pelzer et al. designed a method, which aims to best utilize ridesharing potential while keeping detours
below a specific bound [5]. Wang et al. highlighted the impacts of appropriate cost-sharing strategies
on the success of ridesharing programs [16]. Rayle et al. identified the objects, reason, and traffic impact
of ridesourcing based on the investigation of San Francisco’s ridesourcing data [8]. Ma et al. took
into account the traffic flow patterns in a single bottleneck corridor problem regarding a dynamic
ridesharing mode and dynamic parking charges [17]. Lee et al. delineated that dedicated drivers had
potential benefits for the ridesharing problem [7]. Liu et al. examined the dynamic user equilibrium of
the morning commute problem in the presence of a ridesharing program [18]. Mallus et al. focused
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on the dynamic carpooling services in urban areas to address the needs of mobility in real-time by
proposing a two-fold contribution [19]. As mentioned above, the existing studies concentrate on
operational efficiency (e.g., increasing the success rate of matching and maximizing travel mileage),
but fail to examine the operation process in a sustainable manner from the perspective of direct
stakeholders’ (both the drivers and riders) rights. Yousaf et al. argued that ridesharing systems
should combine environmental protection (through a reduction of fossil fuel usage), socialization,
and security [20]. Therefore, the main objectives of the corresponding model are: (1) economic
(e.g., minimization of cost), (2) social (e.g., equity or similarity), and (3) environmental (e.g., emissions
or congestion). In summary, Table 1 summarizes the literature related to ridesharing problems from
various objectives.

Table 1. Summary of the literature pertaining to the ridesharing problem.

Reference Year
Main Objectives

Economic Social Cost Environment

Hong et al. 2017
√ √

Nourinejad et al. 2016
√

Barann et al. 2017
√ √

Pelzer et al. 2015
√

Wang et al. 2018
√

Ma et al. 2017
√

Lee et al. 2015
√

Liu et al. 2017
√

Mallus et al. 2017
√ √

Yousaf et al. 2014
√ √

Fortunately, some researchers have started to investigate the aforementioned gaps to develop
a sustainable scheme with the goal of optimizing stakeholders’ interests. For instance, Lee & Tang explored
new operations management problems from the point of view of stakeholders [21]. Jaehn proposed the
concept of sustainable operations [22], and Cao et al. studied the emergency resource allocation problem
based on the beneficiary perspective on sustainability [23,24]. The aforementioned research provides
support for this paper. However, to model the task distribution problem regarding ridesharing, how does
one reflect the bi-directional choice between drivers and riders in the matching model? Furthermore,
how does one reflect the subjectivity and incomplete rationality of the participants? These problems need
to be highlighted. In this context, a two-sided matching model can be used to formulate the bi-directional
problems. Prospect theory can be employed to characterize the subjective characteristics of both sides to
judge the matching scheme.

Specifically, on the one hand, two-sided matching refers to the process in which decision makers
search for the optimal matching object based on the demand information provided by both sides,
and aims to optimize the indicators related to satisfaction, fairness, and stability. Gale et al. were
the earliest scholars to apply two-sided matching decisions to college admissions and the stability
of marriage problem [25]. Korkmaz et al. constructed a two-sided matching decision-making
model for military personnel and work tasks [26]. Nowadays, two-sided matching theory is widely
used in many fields, such as finance and management. Cheng et al. used a supply–demand
matching hypernetwork (Matching-Net) approach to model the supply–demand matching problems
in service-oriented manufacturing systems [27]. Uetake et al. applied a two-sided matching model
to formulate banks’ entry and merger decisions with externality [28]. Liang et al. developed
a quantitative matching decision model to balance evaluative criteria in the Two-Sided Matching
(TSM) decision [29]. Many researchers have studied two-sided matching problems from different
perspectives, including matching type, the benchmarks of the matching scheme, and the processing of
the preference ordinal information of both sides. Vecchio et al. discussed the role that information
has in shaping individual mobility choices, and how it may interact with individual preferences and
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needs [30]. Yousaf et al. considered the personal preferences of the riders and the drivers so that they
can have the best possible match along the dimensions of compatibility that will make the ride more
pleasant [20]. Fan et al. clarified that the psychological behavior of agents on both sides should be
considered in the existing two-sided matching methods [31]. Chen et al. opined that the expectation
levels of attributes given by demanders and suppliers should be considered in suitable knowledge
service matching problems [32]. Echenique et al. investigated the testable implications of the theory of
stable matchings [33]. Zhong et al. studied a one-to-many two-sided matching problem and converted
it into a one-to-one two-sided matching problem [34]. Nevertheless, the topics associated with task
distribution based on two-sided matching decision theory can only be found in the bounded literature.

On the other hand, Kahneman et al. presented a critique of expected utility theory as a descriptive
model of decision making under risk, and developed an alternative model, called prospect theory, in which
the value function can be used to describe the characteristics of the subject’s behavior, such as “reference
dependence”, “loss aversion”, and “diminishing sensitivity” [35]. At present, the prospect theory has
been widely applied in the field of economy and management to characterize the subject’s incomplete
rationality behavior. Fulga et al. focused on the incorporation of investor’s preferences into the Mean-Risk
framework to better capture the practical behavior of the loss-averse investor [36]. Based on prospect
theory and psychological behavior (e.g., judgmental distortion, reference dependence, and loss aversion)
of the decision maker, Tan et al. designed a method to solve a discrete stochastic multiple-criteria decision
making (MCDM) problem with aspiration levels [37]. Wang et al. elaborated that novel group emergency
decision making was related to experts’ psychological behavior in the group emergency decision making
process [38]. Guan et al. took into consideration both the loss aversion and sensitivity analysis for the
risk management in a defined contribution (DC) pension plan [39]. With respect to the risk decision
making problem, Liu et al. devised a multi-attribute decision making method based on prospect theory,
which considers the influence on different parameters of value function [40]. The aforementioned literature
indicates that the application of prospect theory is scenario-dependent. That is, different problems should
be combined with specific scenarios. There are different effects for different decision-making reference
points and decision making for different parameters of value function on the feasibility of the method.
In this sense, the parameters involved in the models are related to the specific issues.

3. Problem Description

Hitch was a group ridesharing service along preset routes. Hitch was for casual drivers who
wanted to recoup some gas money and toll fees on their daily commute—by inputting their start and
end points into the app, Hitch connected them with nearby passengers heading in the same direction,
allowing them to share the ride. This was different from the traditional taxi-type service as drivers
had control over where the ride ended, and they did not make a profit off the service—passengers
only paid for the cost of gas and tolls [41]. In order to achieve the system dispatch of Hitch services,
the information pertaining to drivers and riders needs to be collected within a bounded time by
ridesharing companies. Besides, a matching relationship is constructed with the premise of meeting
the basic requirements, such as the departure time, destination, and coincidence rate of driving
routes. Constructing a set of potential matching objects, calculating the comprehensive evaluation
value regarding matching parties to potential matching objects based on the participants’ preferences
and concerns, and then, aiming at optimizing the perception of the participants to the matching
scheme, a matching relationship between supply and demand for the task can be presented, as shown
in Figure 1.
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Figure 1. Task distribution for ridesharing.

3.1. Description of the Notations

This subsection presents the necessary notations depicted in Table 2.

Table 2. Table of notations.

Notation Description

m The number of drivers

n The number of riders

A Set of drivers, where A = {A1, A1, . . . , Am}, Ai denotes driver i, and i ∈ I, where I = {1, 2, . . . , m}

B Set of riders, where B = {B1, B1, . . . , Bm}, B j denotes rider j, and j ∈ J,where J = {1, 2, . . . , n}

Pi

The comprehensive evaluation vector regarding the perceived suitability of Ai to n potential matching
schemes provided by riders, where Pi =

{
pi1, . . . , pi j, . . . , pin

}
, pi j denotes the comprehensive evaluation value

regarding the perceived suitability of Ai to potential matching scheme provided by B j

P
The comprehensive evaluation matrix regarding the perceived suitability of m potential drivers to n potential
matching schemes provided by riders, where P =

(
pi j

)
m×n

Q j

The comprehensive evaluation vector regarding the perceived acceptability of B j to m potential matching

schemes provided by drivers, where Q j =
{
q j1, . . . , q ji, . . . , qim

}
, q ji denotes the comprehensive evaluation

value regarding the perceived acceptability of B j to potential matching scheme provided by Ai

Q
The comprehensive evaluation matrix regarding the perceived acceptability of n potential riders to m
potential matching schemes provided by drivers, where Q =

(
q ji

)
n×m

li The historical evaluation mean regarding the perceived suitability of Ai to historical matching scheme

pt
i

The comprehensive evaluation value regarding the perceived suitability of Ai to historical matching scheme t,
t ∈ T, where T = {1, 2, . . . , h}, h denotes the numbers of success matching scheme

L
The historical evaluation mean vector regarding the perceived suitability of m drivers to historical matching
scheme, where L =

{
l1, l2, . . . , li, . . . , lm

}
k j The historical evaluation mean regarding the perceived acceptability of B j to historical matching scheme

qt
j

The comprehensive evaluation value regarding the perceived acceptability of B j, to historical matching
scheme t, t ∈ T, where T = {1, 2, . . . , h}, h denotes the numbers of matching scheme

K
The historical evaluation mean vector regarding the perceived acceptability of n riders to historical matching
scheme, where K =

{
k1, k2, . . . , ki, . . . , km

}
vi The perception function of Ai to matching scheme

u j The perception function of B j to matching scheme

3.2. One-to-One Two-Sided Matching

The Hitch tasks can be divided into two types: intercity and commuting. This paper studies the
task matching problem during a commute. During commuting, the drivers are more willing to pick
up one rider in order to avoid wasting time caused by a detour to pick up more riders. Therefore,
we assume that a one-to-one two-sided matching relationship is formed between drivers and riders
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during commuting. As shown in Figure 2, the possible matching schemes are marked with the thin
lines, and each of them corresponds to a set of bi-directional comprehensive evaluation information that
meets the basic requirements. The bold lines represent the matching pairs of final matching schemes.
Furthermore, for general ridesharing service problems, a one-to-many two-sided matching model or
stages of a many-to-many two-sided matching model can be adopted. The general ridesharing service
problems and their models will also be our focus in the future.
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3.3. The Benchmark of the Two-Sided Matching Scheme

This paper is dedicated to answering how to model and optimize the bi-directional choice
between drivers and riders. Optimization objectives of a two-sided matching decision-making
model are related to satisfaction, stability, and fairness [42]. Specifically, satisfaction refers to both
parties obtaining acceptable matching objects, thus making it easier to accept the matching scheme.
Stability ensures a stable matching relationship between subjects in the matching scheme. Fairness
can be achieved by equalizing the ranking values of both parties. In the process of ridesharing task
distribution, the matching relationship of both sides is short-term. The matching objects focus on
whether an acceptable scheme can be obtained in time, but do not compare in detail whether the
ranking of both sides in the queue of the matching scheme is balanced and whether a stable matching
relationship can be established. In the context of this, the objective function regarding comprehensive
evaluation of the matching scheme is used to optimize satisfaction, which is to optimize the perceived
suitability of drivers and the perceived acceptability of riders.

4. Two-Sided Matching Decision Model Formulation

4.1. Characterization of Two-Sided Matching Relationships

4.1.1. The Comprehensive Evaluation Vector and Matrix Regarding Matching Scheme

A ridesharing company comprehensively evaluates each potential matching object according to
the participants’ concerns, and obtains the comprehensive evaluation value of the matching object.
The comprehensive evaluation vector Pi =

{
pi1, . . . , pi j, . . . , pin

}
is obtained, collecting the comprehensive

evaluation values of all drivers, and the comprehensive evaluation matrix P =
(
pi j

)
m×n

is constructed.

Similarly, the comprehensive evaluation vector Q j =
{
q j1, . . . , q ji, . . . , qim

}
regarding the perceived

acceptability of B j and the comprehensive evaluation matrix Q =
(
q ji

)
n×m

of all riders can be obtained.
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4.1.2. The Comprehensive Evaluation Mean Vector for Historical Matching Scheme

The companies comprehensively consider the characteristic values of potential tasks (such as the
fit degree of the task time window, the coincidence rate of driving routes, and the matching degree of
supply and demand vehicles) and the behavior characteristics of potential task executors (such as the
punctuality of travel, driving habits, attitudes, and so on) of potential matching objects, to evaluate
each potential matching scheme, and obtain the evaluation indicators towards a potential matching
scheme. After the participants complete the matching scheme, the comprehensive evaluation value of
the task is obtained, and the historical evaluation value of the individual can be calculated accordingly.
The historical evaluation value regards the perceived suitability of Ai to historical matching scheme
li =

∑h
t=1 pt

i/h. Collecting the comprehensive evaluation mean values of all drivers, the historical

evaluation mean vector L =
{
l1, l2, . . . li, . . . , lm

}
is obtained. Similarly, the historical evaluation value

regarding the perceived acceptability of B j to historical matching scheme k j =
∑h

t=1 qt
j/h, B j and vector

K =
{
k1, k2, . . . , ki, . . . , km

}
of all riders can be obtained.

4.2. Establishment of Perception Function of Both Sides Based on Prospect Theory

Kahneman et al. proposed the value function of the prospect theory with ‘α’, ‘β’, and ‘λ’, which can
better characterize subjective behavior characteristics of “reference dependence”, “loss aversion”,
and “diminishing sensitivity” [35]. Therefore, the perception function of drivers and riders to the
matching scheme is established in this section.

4.2.1. Determination of Reference point

The drivers and the riders will compare the comprehensive conditions of the matching objects
with their historical scheme and then judge the “loss” and “gain”. Thus, the historical evaluation mean
li or k j is set as the reference point.

4.2.2. The Perception Function of the Drivers

Based on the value function of the prospect theory, by analyzing the task distribution problem of
the drivers, the perception function curve of drivers to the matching scheme is obtained. It is presented
in Figure 3.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 17 
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1O The origin (the reference point) measures the comprehensive evaluation value regarding the
perceived suitability of the drivers equal to their historical evaluation mean, in which vi(pi j) = 0.
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2O In the first quadrant curve (yield curve), it measures the comprehensive evaluation value regarding
the perceived suitability of drivers to the matching scheme. As the comprehensive evaluation
value of the matching objects (riders) increases, the perceived suitability of the drivers to the
matching scheme increases. Due to the “marginal diminishing effect”, the growth rate of perceived
suitability gradually declines, and the perceived suitability of drivers gets the upper limit vi

′.
3O The third quadrant curve (loss curve) measures whether drivers think the matching scheme is

unreasonable, which is in the state of “loss”. Combined with “loss-averse”, as the comprehensive
evaluation value of the matching object decreases, the suitability of drivers to the matching
scheme decreases obviously, and the loss aversion coefficient is set. The perceived suitability of
drivers would get the lower limit vi.

vi(pi j) =


(pi j − li)α , pi j > li
0 , pi j = li
−λ(li − pi j)

β , pi j < li

i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n} (1)

where α and β are power parameters related to gains and losses, respectively, and 0 ≤ α, 1 ≤ β,
and λ is the risk-aversion parameter, which has the characteristic of being steeper for losses than
for gains, where λ > 1 [38].

4.2.3. The Perception Function of Riders

Similarly, the perception function curve of the rider to the matching scheme is shown in Figure 4.

u j(q ji) =


(q ji − k j)

α , q ji > k j

0 , q ji = k j

−λ(k j − q ji)
β , q ji < k j

i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n} (2)
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4.3. A Two-Sided Matching Decision Model Considering Psychological Perceived Behavior.

With the objectives of maximizing the perceived suitability of drivers and the perceived
acceptability of riders, combined with the constraints, a two-sided matching decision model considering
psychological perceived behavior is constructed as follows:

Max V =
m∑

i=1

n∑
j=1

vi(pi j)xi j (3)
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Max U =
n∑

j=1

m∑
i=1

u j(q ji)xi j (4)

n∑
j=1

xi j = 1 i ∈ {1, 2, . . . , m} (5)

m∑
i=1

n∑
j=1

xi j = min{m, n} (6)

xi j =

{
1, Aiis well matched with B j
0, other

}
(7)

Herein, Equations (3) and (4) present objective functions in a two-sided matching model.
Equation (3) is used to maximize the perceived suitability of drivers to the matching scheme. Equation (4)
is employed to maximize the perceived acceptability of riders to the matching scheme. The expressions
are shown in Equations (1) and (2). Formulas (5) and (6) represent all constraints. Constraint (5) limits
the driver so that they can only match with one rider in a trip, constraint (6) represents the total number
of matching pairs equal to the minimum number of drivers and riders, and expression (7) represents
the range of decision variables.

5. The Numerical Example

5.1. Description of the Test Data

The practical investigation results on finding the number of drivers and riders is affected by
multiple factors (e.g., regional population scale, the generalization of ridesharing services, weather
conditions, day, date, and so on). We made an actual investigation of Hello’s Hitch service of the Alibaba
group. We know that the number of drivers and riders ranges from 20 to 50. In the ridematching
problem with time windows experimental design [43], the number of drivers is 250, and the number of
riders is 448, and the experimentation data comes from “a travel and activity survey for northeastern
Illino”. The market of northeastern Illino is relatively mature, however. Hello chuxing is a new
ridesharing business in a relatively small but fast growing market. Considering that the Hitch business
in the Chinese market is in the ascendant stage, this paper use the data scales of (50,50)–(300,300)
to verify the feasibility of the model and algorithm. In addition, both the case data and the actual
investigation show that the supply and demand are unbalanced, so it is necessary to study the matching
problem of the ridesharing task under unbalanced supply-demand. Thus, the medium data size
(100,150) is designed in the experiment under unbalanced supply-demand.

It is a complex process to effectively quantify the pi j and q ji, and involves a multi-factor
comprehensive evaluation of the time window, itinerary, and matching objects. Overall, the evaluation
indicators towards a potential matching scheme can be divided into two types: one evaluates potential
tasks’ attributes by evaluating whether the characteristics of ridesharing tasks match (such as the fit
degree of task time window, the coincidence rate of driving routes, and the matching degree of supply
and demand vehicles), the other one evaluates potential task executors by evaluating whether the
behavior characteristics of potential task executors match (e.g., the punctuality of travel, driving habits,
attitudes, and so on).

The evaluation value of the first type can be obtained by calculating the characteristic values
of potential tasks (such as task time windows and displacement space). The evaluation value of the
second type can be obtained from the historical evaluation of potential task executors.

At present, in the ridesharing business operation, the matching of the first type of indicator is
realized through system dispatching and a manual menu in the process of task execution. Therefore,
ex-post evaluations of ridesharing participants only include an evaluation regarding the behavior of
ridesharing task executors, not including the time and itinerary matching of the ridesharing scheme.
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The ex-post evaluations cannot be used as the evaluation value toward the matching scheme (the pi j and
q ji). For further research, we will focus on quantization of pi j and q ji in the future. The research in this
paper focuses on constructing a model to optimize the perception of the ridesharing participants in the
acquisition of pi j and q ji. Therefore, this paper has tried to simulate the pi j and q ji. When the number of
both survey samples and reference points is large, the data generally shows a normal distribution [44].
The comprehensive evaluation value of drivers and riders is normalized (standardized) and distributed
at interval (0, 1). Therefore, the computer randomly generates the pi j and q ji at interval (0, 1) according
to the normal distribution.

The historical evaluation mean values li and k j are established based on the comprehensive
evaluation values of the matching scheme experienced by the ridesharing participants. Therefore,
the range of li and k j is affected by the range of pi j and q ji. At the same time, the historical evaluation
mean value is random due to the numbers participated in Hitch services and the comprehensive
evaluation value of each matching scheme of drivers and riders is uncertain. Therefore, li and k j are
randomly generated by a computer at interval (0, 1).

Simulated data of different scales is generated according to the above numerical range and data
distribution. Tversky and Kahneman experimentally estimated the parameters of the typical individual
as α = β = 0.88, λ = 2.25 [45]. The integer programming function ‘intlinprog’ of Matlab (R2017b)
is used to solve the Hitch matching problem of different scales. The results are shown in Table 3.
The numerical size (m,n) column denotes the number of drivers and riders, w denotes the weight of
drivers, at the same time riders’ weight is (1−w), and the operation time (s) column denotes the time
required to find a matching scheme under a single w.

Table 3. Results in the context of a balanced number of drivers and riders

Numerical Size
(m,n)

w = 1 w = 0 Operation Time
(s)V U V U

(50,50) 28.7921 −20.4788 −18.1376 31.4482 0.1596
(100,100) 45.2423 −25.4568 −21.3699 44.1580 0.2456
(150,150) 79.3023 −33.0059 −31.4955 76.4522 0.5130

(200,200) 105.3567 −44.2357 −52.2579 109.2479 1.3174
(250,250) 123.2316 −46.8948 −61.9862 129.0581 2.3250
(300,300) 153.0194 −74.3257 −89.2357 159.3575 2.9516

The results in Table 3 show that the integer programming function ‘intlinprog’ of Matlab (R2017b)
can be used to solve the problem concerning the Hitch matching of realistic data scales within a limited
time. All the experiments are conducted on the server machine with Intel core i5 7th gen CPU 2.7 GHZ
made in Intel Products (Chengdu) Co. Ltd in China, and an installed memory (RAM) of 8 GB.

5.2. Analysis of the Weights Assigned to Different Objectives

There will be differences in the matching scheme under different objectives. Therefore, this section
analyzes the impact of different objective weights on the matching scheme, discusses how to combine
characteristics of the supply and the demand to select the appropriate objective weights, and generates
a matching scheme. As shown in Figure 5, the number of drivers and riders that is simulated is 100,
that is, the numerical size (m,n) = (100,100). The abscissa represents objective weights of the ridesharing
participants (the sum of the driver’s objective weight and the rider’s objective weight is 1), the ordinate
represents the perception of the matching scheme regarding the ridesharing participants, the solid line
in Figure 5 represents the sum of perceived suitability of all drivers, and the dotted line represents the
sum of the perceived acceptability of all riders.
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The following conclusions can be obtained based on Figure 5.

1O Both drivers and riders can get a better comprehensive perception when their perception of
matching scheme is taken into consideration;

2O With the improvement of the weight of the perception regarding one side, the weight of the
perception regarding the other side can be correspondingly decreased. Causing the integral
perception of the weight increase side in the matching scheme is improved, and the integral
perception of the weight reduction side is decreased;

3O The perception of the matching scheme regarding the other objects decreases rapidly based on
only optimizing the perception of one object. For example, DiDi’s Hitch business was used to
encourage drivers to provide sharing services by adopting the task distribute mode of priority
dispatching for drivers. The results of this approach have proved to be a failure.

5.3. Analysis of Multi-Objective Weight Setting and Managerial Insights Under Unbalanced Supply-Demand

The randomness of the supply and demand in Hitch services causes unbalanced supply-demand,
that is, m , n (the number of drivers is not equal to the number of riders). At present, the travel time
and itinerary of the Hitch business meet the basic requirements of riders, and the costs paid by riders
is lower than that of taxis, meaning that the supply and demand relationship is usually in short supply.
Therefore, this section studies the multi-objective weight setting under unbalance supply-demand by
taking the ridesharing task matching problem under unbalance supply-demand as an example.

When matching tasks, ridesharing companies will pay attention to the perceived suitability of
drivers, and attract drivers to continuously provide Hitch services by optimizing their perception
of the matching scheme under unbalanced supply-demand. However, the optimization of drivers‘
perception will inevitably lead to an integral increase in their historical evaluation mean value, and the
change of drivers’ historical evaluation mean value will affect their perception of the matching scheme
in the subsequent task matching.

As shown in Figure 6, the numerical size (m,n) = (100,150). The abscissa (θ) represents the sum
of the historical evaluation mean value of drivers, the ordinate represents the perceived suitability
of drivers, and the lines in Figure 6 represent the sum of the perceived suitability of drivers under
different perceived objective weights.
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The following can be seen from Figure 6. Firstly, under the premise that the historical evaluation
mean value of driver’s is constant, with the improvement of the weight of the driver’s perception, the
integral perceived suitability of drivers increases. Secondly, with the improvement of the lower limit
of the historical evaluation mean value, the integral perception suitability of drivers decreases.

Managerial insights are proposed, and taking measures to stimulate participants in the short
term can improve the side of deficit’s perception. However, such measures will increase the historical
evaluation mean value of the side of deficit, resulting in it becoming more and more difficult to meet
their requirement in the long term. Therefore, in the case of short-term shortage of one party or
alternating shortage of both parties, more attention can be paid to the insufficient party and give the
insufficient party higher weight in the matching task. However, if one party is in an insufficient state for
a long time, it is not suitable to optimize its perception by simply increasing the weight in the matching
task. Attracting more external personnel to make up for the deficiency is becoming more importantly.

6. Conclusions and Future Works

This paper proposes a multi-objective one-to-one two-sided matching model for the Hitch
task distribution problem regarding sustainability. Participants’ (drivers and riders) perspective
on sustainability manifests access and equity, and needs fulfilment. The model design reflects the
bi-directional choice of matching agents. In terms of objective functions, the perception functions
of drivers and riders are considered. In addition, they are designed based on the value function of
prospect theory, in order to reflect the characteristics of the subjective behaviors, such as “reference
dependency”, “loss avoidance”, and “decreasing sensitivity”, in which the historical comprehensive
evaluation mean value of drivers and riders is regarded as a reference point. Furthermore, in the
section “The numerical example”, the integer programming function ‘intlinprog’ of Matlab (R2017b)
is used to solved the Hitch matching problem of different scales, the feasibility of the model and
the solution are verified, and an analysis of the multi-objective weights’ setting and the proposal of
managerial insights are then presented.

The results demonstrate that the proposed model has potential advantages for distributing Hitch
tasks. That is, an optimized one-to-one matching scheme concerning Hitch task distribution can be
obtained. The sustainable operations of ridesharing companies can be realized by constructing a fair
and satisfactory matching scheme. Increasingly, this paper aims to not only evaluate the proposed
model, but call for the incorporation of sustainability in the two-sided matching problem regarding
task distribution in ridesharing companies.

However, in the model, the comprehensive evaluation value and the historical evaluation mean
value of the matching objects (the experimental data) are obtained by a computer simulation based on
the investigation. The mutual evaluation between riders and drivers is a complex process. It involves
multi-dimensional evaluation indicators, and comprehensive evaluation regarding the Hitch drivers to
obtain information is uncertain and fuzzy. We will work on data acquisition of the ex-post evaluations
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provided by drivers and riders to the matching objects, analyzing the concerns and preferences of
different participants in the matching scheme in different scenarios, and design the comprehensive
evaluation functions of the Hitch participants to the matching objects based on the fuzzy multi-attribute
decision making theory.
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