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Abstract: Energy-related environmental problems have been hot spot issues in regional energy
system sustainable development. Thus, comprehensive planning of energy systems management
is important for social and economic development, as well as environmental sustainability. In
addition, uncertainties and complexities, as well as their potential interactions pose a great challenge
for effective management in energy and environmental system. This study proposes a stochastic
factorial energy systems management model to conduct uncertainties and risks in the energy systems,
as well as handle their interaction effects among different environmental policies. The developed
method can not only tackle uncertainties expressed as probability distributions and even interval
values, but also be applied to determine decision alternatives associated with multiple economic
penalties if the formulated environmental policy targets are violated. Meanwhile, by introducing
the factorial technology, it can analyze a parameter’s impact on the system and their coordination
effect. To verify the feasibility and effectiveness of the proposed method, the developed model was
applied to a hypothetical case study for energy structure optimization under considering energy
supply, SO2 emissions reduction, and environmental quality requirements. Multiple facilities, related
environmental pollutants, and energy demand levels were taken into account. Moreover, the key
factors of the system and their interaction effect were discovered. The results indicated that the
developed method can resolve meritorious uncertainties in decision-making and analysis, generate
effective management programming under multi-levels of the proposed energy and environmental
systems. The method can be used for supporting the adjustment for allocating fossil fuels and
renewable energy resources, analyzing the tradeoff between conflicting economic and environmental
objectives and formulating the local policies.

Keywords: energy systems management; pollution control; policy making; sensitive
analysis; sustainability

1. Introduction

Along with the rapid development of economic, the energy demands are also increasingly growing.
According to the International Energy Agency, the world energy consumption has more than doubled
in the past thirty years, and it is estimated that the consumption will continue to rise by 50% over the
next thirty years. The massive fossil fuel consumption produces adverse effects, including climate
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change, regional air-quality deterioration, and energy resource depletion. Thus, effective planning of
energy systems management is important for accelerating social and economic development, as well as
environmental sustainability. Comprehensive management is vital for reducing system costs, carbon
emissions and risks. It is essential to keep economies growing while preventing catastrophic effects.
However, the energy management processes and the related factors contain multiple uncertainties,
such as distributing energy demand, planning power generation, or dealing emission reduction [1–4].
In addition, the energy system contains numerous factors. It is also important to determine the
key factors affecting the system and analyzing their potential interactions. Therefore, to tackle the
existing challenge, it is required to develop effective decision-supporting tools for adjusting energy
systems management.

Previously, there were research efforts focusing on a variety of complexities and uncertainties
in energy and environmental systems management [5–11]. Among them, stochastic programming
methods are widely devised and analyzed to provide reliable assistance for decision making. In general,
there are two kinds of stochastic programming approaches, which are two/multi-stage programming
(T/MSP) and chance constrained programming (CCP) approaches. The T/MSP is effective for policy
related problems, where coefficients in variables are provided with given probability distributions
or it could be easily estimated [12–15]. The CCP is most used for risk based random issues. In this
case, system constraints are not required to be totally satisfied, but it should meet the requirements not
less than the provided confidence level [16,17]. Thus, the method combination has an advantage in
reflecting complexities of system uncertainties, and it is well suited for policy analysis with pre-setting
targets which might be violated during the actual operation. For example, Fleten and Kristofferson [18]
developed short-term planning to demonstrate a hydropower plant operating system, where a
stochastic programming method was introduced to address the uncertain beyond the operation day to
maintain a balance between current profits and expected future benefits. Rong and Lahdelma [19]
established a carbon emission trading optimization model with stochastic methods. The scheme
shows satisfactory transaction efficiency in terms of profit turnover rate. Wang et al. [20] optimal CO2

trading model with stochastic programming under uncertainty. Desired policies could be identified by
analyzing decision alternatives. Cai et al. [21] proposed an inexact method based on community-scale
energy management systems to balance the tradeoffs between system costs and violation risks in the
constraint. Cheng et al. [22] discussed how energy structure optimization process could reduce air
pollution in China.

However, in the energy management system, it always contains multiple parameters and
components with multiple periods, multiple objectives and dynamic constraints. Many system
parameters and components may be associated with different formats of uncertainties. Particularly,
these uncertainties may be correlated with each other, leading to significant impacts on the resulting
energy management strategies and the associated risks. The stochastic optimization methods provide
a powerful scheme to address the uncertain random information. But it fails to distinguish the
different degrees of importance and their relationships. It is thus advisable to develop modified tools
for identifying the main factors and their potential interactions, and also reveal their impact on the
system objectives.

Therefore, a stochastic factorial energy systems management (SFESM) model will be proposed for
optimal energy systems management under considering environmental pollutants emission reduction,
energy resources consumption control, and multiple uncertainties. The SFESM model will be able to
reflect interactions among multiple uncertainties in energy and environmental management systems. In
detail, two-stage stochastic programming will be employed to reflect the conflicts between developing
an economy and protecting the environment; method of inexact chance-constrained programming will
be used for tackling uncertainties in the system’s capacity limitations. Moreover, a factorial analysis
will be undertaken to locate the main effects of crucial factors and their interactions to the system
objective, since factorial technique has been recommended as a useful tool for sensitive analysis [23–31].
Through the introduction of factorial analysis to energy environmental systems research, the reflection
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of high-dimension complexities that are beyond the coverage of regular energy management models
with the related environmental problems would become possible. The proposed SFESM model will
then be applied to a case study of energy systems management for improving air-environmental
quality to demonstrate its applicability. The following optimization scheme will be obtained: (I)
energy purchasing plan, (II) electricity generation scheduling and (III) contamination control strategy.
The results can be helpful for identifying energy allocation patterns, addressing conflicts between
economic objectives and environment, as well as examining the linkage between existing policies and
economic penalties.

2. Methodology

Optimization techniques are considered as effective tools to identify suitable strategies for
management with various complexities. On the basis of traditional deterministic models, uncertain
optimization programming is widely used for supporting sustainable energy system planning.

2.1. Two-Stage Programming

A general linear programming model can be formulated as follows:

max f = cx, (1)

subject to:
ax ≤ b, (2)

x ≥ 0, (3)

where f is the objective function, x is the decision variable, a, b and c are the parameters in the objective
and constraints.

In the real-world applications, the biggest weakness for the linear programming model is that
most variables and parameters are uncertain and cannot be expressed as a definite number [32,33].
That means in instance study, a, b and c are random variables all along, decisions should be made at
the proper discrete points or probability levels. TSP method is efficacious to handle uncertain dada, or
an analysis of multiple scenarios are desired. In TSP, the first-stage planning is made with historical
experience. After a random event, the remedial measure could be taken at the second-stage to deal
with the “penalties” [34]. In general, a typical TSP model can be formulated as follows:

Max f =
T∑

t=1

(Xt ·Ct) +
M∑

m=1

T∑
t=1

pm ·Wm,t ·Dm,t, (4)

subject to:
T∑

t=1

(
Xt −Wm,t

)
≤ Qm, ∀m, (5)

Wm,t ≤ Xt ≤ Xmax, ∀m, t, (6)

Xt ≥ 0, ∀t, (7)

Wm,t ≥ 0, ∀m, t, (8)

where pm is the probability of occurrence for scenario m, with pm ≤ 1 and
∑ M

m=1pm = 1. In this model,
decision variables Xt must be determined at the first stage. Then, the correction variable Wm,t can be
introduced after randomness is revealed [35].
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2.2. Chance-Constrained Programming

In the management of energy systems, trade-offs exist if the manager intends to pursue the
maximization profit. To meet the desired energy supply, it would require the reduction of industrial
development scale. But also, taking the restrictive conservation measures over production would
retard their participation in energy programs, which may lead to a decrease in economic benefits.
Therefore, in the economic, environmental or policy aspect, changes provided as tolerance levels
would be useful for analyzing risk-based information. The CCP method is effective for processing risk
analysis. For the objective function, it could provide trade-off analysis; for the constraint, it is helpful
to identify the tolerance values. The method is mostly applied to cases where the prescribed level of
probability could be formulated.

A general stochastic linear programming problem can be formulated as follow:

max f = C(t)X, (9)

subject to:
A(t)X ≤ B(t), (10)

x j ≥ 0, x j ∈ X, j = 1, 2, . . . , n, (11)

where X is a vector of decision variables, and A(t), B(t) and C(t) are sets with random elements defined
on a probability space T [36,37]. To solve this model, it should be converted to a deterministic vision by
providing satisfaction degree. By introducing probability pi ∈ [0, 1], for each constraint i, the relevant
satisfaction degree determined by decision makers should not less than 1− pi. It can be expressed as
follows:

Pr
[{

t
∣∣∣Ai(t)X ≤ bi(t)

}]
≥ 1− pi, Ai(t) ∈ A(t), i = 1, 2, . . . , m, (12)

which are generally nonlinear. For feasible constraints, the distributions should be convex only with
certain levels of pi. For example, (I) ai j are deterministic and bi are random (for all pi values), (II)
ai j and bi are discrete random coefficients, with pi ≥ maxr=1,2,...,R(1− qr), where qr is the probability
associated with realization r, or (III) ai j and bi have Gaussian distributions, with pi ≥ 0.5 [38]. When ai j
are deterministic and bi are random, constraint (12) becomes linear:

Ai(t)X ≤ bi(t)
(pi), ∀i, (13)

where bi(t)
(pi) = F−1

i (pi), given the cumulative distribution function of bi, and the probability of
violating constraint i. The problem can only reflect the case when A is deterministic [39–42]. Thus, a
typical CCP model can then be reformulated as follows:

max f = C(t)X, (14)

subject to:
Pr

[{
t
∣∣∣A(t)X ≤ b(t)

}]
≤ 1− α, (15)

Xt ≥ 0. (16)

2.3. Inexact Chance Constrained Two-Stage Stochastic Programming

In energy systems management model, the TSP and CCP methods are valid for tackling
right-hand-side uncertainties such as energy resources availabilities that are presented as probability
distributions. However, it is occasionally difficult to acquire professional information that meets the
demand. Interval parameter programming (IPP) is valid for processing complexities that cannot be
expressed with probability distributions. And they can be both in the objective functions and constraints.

Normally, an interval number x± can be expressed as [x−, x+], where x+ represents the maximum
value while x− is for the minimum value. When x− = x+, x± becomes a deterministic number. IPP can
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be proposed to the optimization framework to handle uncertainties which cannot be expressed by
distribution functions, but with given lower and upper bounds. A general IPP model can be defined as
follows:

max f± = c±x± (17)

subject to:
a±x± ≤ b± (18)

x± ≥ 0 (19)

where a± ∈
{
R±

}m×n, b± ∈
{
R±

}m×1, c± ∈
{
R±

}1×n, R± is a matrix composed by interval number.
Integrated with TSP, CCP and IPP methods into a general framework, an inexact chance-constrained

two-stage stochastic programming (ICCTSP) model could be formulated as follows:

Max f± =
T∑

t=1

(
X±t ·C

±

t

)
+

M∑
m=1

T∑
t=1

pm ·W±m,t ·D
±

m,t, (20)

subject to:

Pr

 T∑
t=1

(
X±t −W±m,t

)
≤ Q±m

 ≤ 1− αm, ∀m, (21)

W±m,t ≤ X±t ≤ X±max, ∀m, t, (22)

X±t ≥ 0, ∀t, (23)

W±m,t ≥ 0, ∀m, t. (24)

Over all, the ICCTSP method can deal with optimization management associated with multiple
uncertainties. It can also handle the complex tradeoff between the conflicting objects and variables
within a two-stage context.

To solve this model, according to Huang et al. [43], the uncertain ICCTSP model should be
partitioned into two deterministic sub-models f+ and f−, with each corresponding to the upper and
lower of system objective, respectively. Through solving the corresponding sub-models, the optimal

solution for the system can be expressed as: xtopt =
[
x−topt, x+topt

]
, fopt =

[
f−opt, f+opt

]
. Main haze for the

computational process is that it is hard to know whether sub-model f+ or f− corresponds to the
minimum object value [44]. An intermediate variable yt is thus designed by letting X±t = X−t + ∆Xtyt,
where ∆Xt = X+

t −X−t and 0 ≤ yt ≤ 1. Therefore, the lower bond of the objective function can firstly be
formulated as follows:

Max f− =
T∑

t=1

(
X−t + ∆Xtyt

)
·C−t +

M∑
m=1

T∑
t=1

pm · d−m,t ·W
−

m,t, (25)

Pr

 T∑
t=1

(
X−t + ∆Xtyt −W−m,t

)
≤ Q−m

 ≤ 1− αm, ∀m, (26)

W−m,t ≤ X−t + ∆Xtyt ≤ Xmax, ∀m, t, (27)

W−m,t ≥ 0, ∀m, t, (28)

0 ≤ yt ≤ 1, (29)
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where W−m,t and yi are decision variables, and their solutions of W−m,topt, ytopt and f−opt can be obtained.
Based on the providing method, the upper bound of the objective function value can be formulated as
follows:

Max f+ =
T∑

t=1

(
X−t + ∆Xtytopt

)
·CX+

t +
M∑

m=1

T∑
t=1

pm · d+m,t ·W
+
m,t, (30)

Pr

 T∑
t=1

(
X−t + ∆Xtyt −W+

m,t

)
≤ Q+

m

 ≤ 1− αm, ∀m, (31)

W+
m,t ≤ X−t + ∆Xtytopt, ∀m, t, (32)

W−m,topt ≤W+
m,t, ∀m, t, (33)

W+
m,t ≥ 0, ∀m, t, (34)

where W+
m,t are decision variables and carrying out corresponding solutions of W+

m,topt and f+opt. The
optimized contaminants generation target can be determined by calculating X±i = X−t + ∆Xtyt.

2.4. Factorial Analysis

The proposed optimization method is effective in addressing uncertainties that exist in system
parameters. However, in energy systems management, it is also important to reveal the contributions
of individual uncertain inputs that are related to various economic and environment conditions.
Therefore, to obtain more favorable decision support, it is important to address sensitivity analysis
for investigating the uncertain inputs in the in the optimization process. Compared to traditional
techniques, a sensitivity analysis using factorial methods are efficient for identifying the effects of two
or more parameters. Based on a factorial analysis, for each complete trial of the repetition process,
all possible combinations for two or multiple levels factors could be examined. A factor effect can be
estimated at different levels of other factors, and the valid conclusions over a series of experimental
conditions could be provided. In addition, to avoid misleading conclusions, a factorial analysis is
necessary when factor interactions may exist [30,31].

The most common factorial analysis is based on the 2k factorial design. A typical 2k factorial
design would contain k design factors, with each being expressed as interval numbers. Besides,
interaction effects exist between factors, since for each factor, the effect is depending on the level chosen
for other factors. In a full factorial design, all possible combinations of the factors with different levels
should be investigated [45]. The main effect on individual factor represents the difference between
the average response at the low and high levels. The interaction effect could be indistinctive in some
experiments. In some cases, there would be massive factors to be investigated, parameter selection
should be processed to identify the key factors. For less significant factors, they could be eliminated to
reduce unnecessary computation.

Therefore, combined the factorial analysis and the proposed uncertain method within the
optimization framework, a stochastic factorial method will be developed. It can track uncertainties
particularly described as probability distributions or interval values; it is valid for analysis where
policy scenarios are desired. Moreover, it could reveal the contributions of uncertain variables to the
system objective and their potential interactions.

3. Environmentally-Friendly Oriented Renewable Energy System Management

3.1. Overview of the Study System

The renewable energy management system is intricate, and it consists of multiple factors such
as economic, environmental and mechanical manners. The system is the combination of resource
supply, power generation, capacity expansion and energy utilization process. And more importantly,
those internal factors have definite connections with each other through transmission lines. Generally,
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primary energy supply resources include fossil fuels and renewable energy resources. Correspondingly,
a variety of power generation technologies should be adopted in the energy management systems.
Energy power generated should be allocated to meet the need of end users. Besides, according to the
requirements of social and economic development, it is also very important to ensure all the facilities
meet the environmental standard.

In this study, a hypothetical, but typical renewable energy management model is proposed for
demonstrating the capability of the proposed optimization approach. The general structure of the
proposed system is presented in Figure 1. The data are summarized through government reports and
related literature, typical cost, and representative technical data are provided. The system contains
multiple energy sources and technologies. Particularly, coal, diesel and natural gas are selected as
typical fossil energy, while wind power and solar power are chosen as representative renewable energy.
Decision makers should develop an effective plan to satisfy the industrial, agricultural and municipal
energy demands. Regarding the environmental aspect, the power generation process will cause an
inevitable pollution emission. SO2 is chosen as the representative emission. Based on historical data, a
predefined pollution control target is stipulated to each power generation facility. If the promised target
is achieved, the unit could obtain certain profits as the net benefit. However, if an excess emission
occurs, an economic penalty will be charged.
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This study aims to develop an optimization integrate sensitive analysis model for supporting the
scientific management of energy system by effectively dealing with the following problems: (1) Various
types of uncertainties existed in the provided system, it should be reflected accurately and resolved
effectively; (2) An optimal solution of energy activities should be obtained to balance the tradeoff

between economic and environmental benefit, as well as the system stability. The results should
include energy generation plan, technology selection result, and capacity expansion scheme; (3) The
environmental control process should be represented. The related environmental factors would restrict
the application of energy resources and technologies. For example, with a stricter policy, energy with
lower emission rate or higher generation efficiency will be recommended. Correspondingly, it will
provoke increased system cost; (4) The key impact factors and their potential interaction should be
revealed. It would provide more detailed information for future decision making.

3.2. Stochastic Factorial Energy Systems Management Model

Therefore, the objectives of the study system are: (1) Arrange the five power conversion
technologies effectively to meet the energy demands while maximizing the system benefits under
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uncertainty; (2) determine the minimum energy supply amount; (3) coordinate energy activities
and environmental standard. Through the proposed method, a stochastic factorial energy systmes
management model can be formulated. The objective function of the SFESM model can be expressed
as follows:

max f± = f±1 − f±2 − f±3 − f±4 . (35)

(1) System benefit related to environmental policy:

f±1 =
3∑

i=1

3∑
t=1

(
WS−i,t + ∆WSi,t · pi,t

)
·CPS±i,t −

3∑
i=1

2∑
m=1

3∑
t=1

(
qm ·QS±i,m,t ·DPS±i,t

)
. (36)

(2) Cost for power generation

f±2 =
5∑

i=1

3∑
t=1

(
Y±i,t ·CY±i,t

)
. (37)

(3) Purchasing cost for primary energy supply

f±3 =
3∑

i=1

3∑
t=1

(
X±i,t ·CX±i,t

)
. (38)

(4) Cost for capacity expansion

f±4 =
5∑

i=2

3∑
n=1

(
CEY±i,n · EY∓i,n ·ZY±i,n

)
. (39)

The net benefit is to be maximized by a series of constraints. The impact factors and their
interactions are also provided. The detailed constraints are expressed as follows:

(1) Mass balance
X±i,t ≥ VY±i,t ·Y

±

i,t, ∀i = 1, 2, 3; t, (40)

(energy supply should be more than resource consumption)
(2) Availability of energy resources

Y±i,t · FE±i,t ≤ X±i,t ·CVi, ∀i = 1, 2, 3; t, (41)

Y±i,t · FE±i,t ≤ AV±i,t, ∀i = 4, 5; t, (42)

(energy usage should be less than its availability)
(3) Electricity constraints

5∑
i=1

Y±i,t ≥
3∑

j=1

DMY±j,t, ∀t, (43)

(electricity generation should be more than energy demands)
(4) Capacity limit RYi +

3∑
n=1

(
EYi,n ·ZY±i,n

) ·UCAPY±i ≥
3∑

t=1

Y±i,t, ∀i, (44)

(installed capacity should be more than electricity generation)



Sustainability 2019, 11, 2429 9 of 19

(5) Constrains for controlling contamination

5∑
i=1

VY±i,t ·Y
±

i,t · PS±i ·
(
1− η±i

)
≤MP±t , ∀t, (45)

(SO2 emission should be less than environmental standard)

Pr

 3∑
i=1

(
WS−i,t + ∆WSi,t · pi,t −QS−i,m,t

)
≤ CPm,t,

∀m, t, (46)

(Actual SO2 emission should be less than emission control target)

QS±i,m,t ≤WS−i,t + ∆WSi,t · pi,t ≤WSimax, ∀i, m, t, (47)

(SO2 generation amounts should be more than the excess amount, and less than given maximum)

QS±i,m,t ≥ 0, ∀i, m, t, (48)

0 ≤ pi,t ≤ 1, ∀i, t. (49)

(6) Technical constrains
X±i,t ≥ 0, ∀i, t, (50)

Y±i,t ≥ 0, ∀i, t, (51)

ZY±i,n =

{
1, if expansion with option n for generating technology is undertakan

0, otherwise
, (52)

0 ≤
3∑

n=1

ZY±i,n ≤ 1, ∀i, (53)

0 ≤ pi,t ≤ 1. (54)

The detailed nomenclatures for the variables and parameters are provided in the Appendix A. The
research target is to maximize the system benefit under uncertainty. The developed energy model can be
solved through the above method by decomposed into two deterministic sub-models. Specifically, the
two-stage problem can be solved by letting WS±i,t = WS−i,t + ∆WSi,t · pi,t, where ∆WSi,t = WS+

i,t −WS−i,t.
According to the Formulas (14)–(16) in Section 2.2, probability bounds of constraint violation under
consideration are 1% and 10%. Transform the developed model into two sub-models, formulating the
first sub-model which corresponds to f−opt. Then Y−opt, X−opt, ZY−opt can be obtained through the solution.

Similarly, formulating the second sub-model corresponding to f+opt and substituted calculated value
above. Combine the two sub-models’ solutions to obtain the optimal solution of the proposed model.
The data of energy activities are provided in Table 1. Pollution treatment targets and the related
economic data are given in Table 2.

Furthermore, the factorial technique is introduced to a sensitive analysis of factor impact for
system objective. It is predetermined that if energy activities meet the environmental standards, the
specific regulation would affect net benefit directly. Therefore, factors related to pollution emission
would have a more obvious influence on the evaluation of the system. The factorial design would
then be simplified. It is not necessary to examine all system variables, only the factors relevant to
the contamination control process should be taken into account. It would reduce the complexity of
sensitive analysis and retrench the operation time. By factorial analysis technique, the key impact
factors could be revealed. Meanwhile, it could demonstrate their potential interaction effect, which
may have a greater impact on the system than individual variable. It would provide more detailed
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information for decision maker than traditional energy management methods. Future planning should
be paid more attention to the key factors such as formulating stricter environmental standard or
greater penalties.

Table 1. Partial economic data of energy activities a.

Energy
Resources

Period

t = 1 t = 2 t = 3

Energy purchasing price ($/tonne)

Coal [110, 120] [105, 115] [100, 110]
Diesel [787, 798] [782, 793] [777, 788]

Natural gas [720, 750] [715, 745] [710, 740]

Power generation ($/104 KW h)

Coal-fired [52, 61] [145, 53] [39, 47]
Diesel-fired [90, 112] [75, 97] [62, 82]

Gas-fired [153, 167] [136, 148] [118, 130]
Wind power [27, 36] [22, 31] [17, 26]
Solar power [40, 48] [35, 43] [28, 38]

a Adapted from References [21,26,34].

Table 2. Pollution treatment targets and related economic data.

Source

Coal-Fired Diesel-Fired Gas-Fired

Maximum pollution treatment amount (tonne) 7000 7000 7000
Commitment control target (tonne) [5000, 6000] [2800, 3800] [130, 180]

Net benefit when commitment is satisfied (103 $/tonne) [59, 79] [51, 66] [35, 45]
Penalty when commitment is not delivered (103 $/tonne) [100, 140] [110, 125] [70, 105]

3.3. Result Analysis

In this study, fifteen planning periods are considered, and each representative for one year. Through
solving the developed model, the optimal primary energy supply scheme, electricity generation plan
and conceivable capacity expansion options were generated. Solutions of contamination control and
excess emission amount were calculated under different risk levels. It can demonstrate a basic tendency
of energy activities and provide potential suggestions for policy development.

Figure 2 presents the purchasing plan for coal at each planning period. The result shows that the
allocation amount had a visible downtrend over time. The allocated amount would decrease from
[585.2, 631.4] × 103 tonnes to [559.3, 599.7] × 103 tonnes, fell about 4~5% during the fifteen years. It is
in conformity with the basic requirement of a popular total amount control policy for coal. On the
other hand, it also reveals that coal would still be the major energy source in the near future for its
splendid reserve, extensive distribution, and shallow embedding. It means the coal usage should
be on a declining trend yet would be less obvious. The non-renewable energy resources are a major
component of energy supply in most cases. In this study, diesel and natural gas would also be selected
to provide power to the end users. Figure 3 provides the energy supply pattern of diesel and natural
gas. The diesel supply would increase from 225.3 to 238.4 × 103 tonnes during the planning period,
while the deliverability of natural gas would increase from 194.8 to 225.4 × 103 tonnes. The growth
rate would be 5.8% and 15.7% respectively. The total purchasing amount of diesel and natural gas
would be nearly half of coal. The allocated amount for diesel would be relatively stable. However,
there’s a significant increase in natural gas. The difference between these two energy sources would be
diminished over the planning period. If the tendency persists, natural gas may take coal’s place as the
most favorite fuel in just a few decades. In a practical environment, according to BP statistical review
of world energy, the world’s energy structure begins to diversify. It trends to increase thermal power
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generation by natural gas and decrease oil usage. That indicated the proposed case study could reflect
the general trend thus provide useful information for policy making.
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Figure 3. Comparison result of energy purchasing plan for diesel and natural gas.

With the economy development, electrical power demand would increase every year. On the
one hand, coal-fired power is the key factor in electricity generation activities. The efficiency for
oil-based generators is close to coal, while the efficiency for natural gas-based generators would be
almost twice higher. On the other hand, when emission control is considered, gas may be at least 25%
cleaner than coal. From the environmental aspect, natural gas would be the optimal sources for energy
supply. However, the operating cost for gas generators is much higher. Thus, it’s important to find
a balance between them. Figure 4 presents the optimized solution of electricity generation plans of
fossil energy. In detail, the energy generation by coal would be [1350.0, 1637.2] GWh over the planning
horizon while the energy consumption would slightly decrease. Diesel and gas-fired power would be
markedly increased. The electricity generated by diesel would range from 780.4 to 842.5 GWh. Gas
based electricity would increase from 847.0 GWh to 979.9 GWh, and the median would be 900.7 GWh.
The growth rate for gas-fired power would be 15.7%, while the growth for diesel was modest. In
this study, renewable energy sources were also employed. In this study, renewable energy sources
were also considered. The installed capacities for wind/solar power were set under 50 MW, since the
large-scale applications of renewable energy are still not mature and the maintenance costs are much
higher (Table 1). The initially installed capacities for fossil energy were set to 300 MW. It turns out that
contribution rate for renewable energy would be 1%. Among them, wind power would occupy 58%,
while solar energy would be 42%. The results of power generation pattern are provided in Figure 5
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The result also shows that they could meet the demands of end-users; hence capacity expansion would
not be needed.
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Figure 5. Electricity generation pattern.

Normally, a predefined SO2 treatment target is promised to meet the environmental standards.
If the commitment amounts are not delivered, due to the insufficient pollution control availabilities,
excess emission will occur thus cause penalty for the system benefit. Under normal circumstances,
the pre-regulated amounts will meet the demand. The higher probability is formulated for this
case. However, some artificial subjective reasons like budgeting control or some uncontrollable
factors, pollution treatment facilities are not effectively operated. It could affect pollution treatment
availabilities. Therefore, a relatively lower probability is provided. In optimization studies, constraints
could be partially satisfied. In order to obtain a more acceptable result, constraint violation may
be allowed at certain risk levels. In this study, two risk levels were set to 0.01 and 0.1, respectively.
Correspondingly, each represents the satisfaction degree for the constraints should be at least 99% or
90%. The detailed information is provided in Table 3.
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Table 3. Pollution control availabilities under different risk levels (tonne).

Pollution Control
Availability (CPm,t)

Risk Level

α = 0.01 α = 0.10

Lower probability N (2850, 150) 2051 2658
Higher probability N (6250, 150) 5901 6058

Solutions were generated for pollution control recommendations. As shown in Table 4, optimized
target treatment amounts were firstly obtained for three sources. The solutions of WSiopt revealed that
the optimal treatment targets would be 5.0 × 103 tonnes for SO2 generated by the burning of coal,
2.8 × 103 tonnes for diesel-fired SO2, and 180 tonnes for gas-fired SO2, respectively. The existing SO2

processing capacity could not meet requirements, excess emission occurred at both risk levels. For
risk level at 0.01, when the availability is relatively low with a probability of 40%, excess emission for
the three sources would be 5.0, 0.3 and 0.2 × 103 tonnes, respectively; when the availability is higher
with a probability of 60%, excess SO2 emission for coal and natural gas would be 1.9 and 0.2 × 103

tonnes, while no excess emission would occur for diesel-based power plant. For risk level at 0.1, the
availability increases under this circumstance. Generally, with stricter environmental policies, excess
emission would decrease. When at the lower probability, excess emission for diesel-fired plants would
drop to 0.1 × 103 tonnes; while at the higher probability, excess emission for coal-based plants would
drop to 1.7 × 103 tonnes. Other data would be unchanged at two risk levels. The results also indicate
that when pollution treatment availability is insufficient, the SO2 produced by diesel plants would be
firstly treated, and secondly for coal-fired plants. This is because the penalty for diesel-fired pollution
is the highest and the relevant units could also bring substantial benefit. For gas-fired plants, SO2

discharge would not be controlled, since the total amount is quite small. The actual treated amount for
each type of power plant at different risk levels can be calculated from treatment targets and excess
emissions, all the results are also expressed in Table 4.

Table 4. Solutions obtained for the objective function and decision variables (tonnes).

Probability (qm) Source

Coal-Fired Diesel-Fired Gas-Fired

Target WSiopt 5000 2800 180

Risk level α = 0.01

Excess emission (QS) under the level of

Low (m = 1) 40% 5000 299 180
High (m = 2) 60% 1899 0 180

Treated amount under the level of

Low (m = 1) 40% 0 2501 0
High (m = 2) 60% 3101 2800 0

Risk level α = 0.10

Excess emission (QS) under the level of

Low (m = 1) 40% 5000 142 180
High (m = 2) 60% 1742 0 180

Treated amount under the level of

Low (m = 1) 40% 0 2658 0
High (m = 2) 60% 3258 2800 0

To address uncertainties in a thorough manner and provide a comprehensive outcome, a further
sensitive analysis is necessary. The object of the proposed system is to address the maximum net
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benefits while meeting the constraints. It is important to reveal the main factors related to the study
objectives. Factorial analysis is therefore introduced to examine these uncertain parameters and their
interactions. In this study, the system benefit is calculated based on emission production amount,
while the penalty will be taken when violated the environmental policy. Thus, seven factors related
to the pollution control process are selected. These factors are donated as A, B, C, D, E, F and G. All
the factors are presented at two levels. For factors A: F, they refer to the lower and upper bound of
the chosen variable, since they are all interval numbers. For factor G, they represent the two risk
levels. Table 5 shows all the selected uncertain parameters. The proposed two-level factorial design
with seven factors would require 128 experimental runs. The major purpose of this design would be
verifying and evaluating the factors influencing on total system benefits.

Table 5. Investigated factors with two levels.

Factor Name Units
Level

Low High

A CPS1: Regular operating cost for SO2 generated by coal $/tonne 59 79
B CPS2: Regular operating cost for SO2 generated by diesel $/tonne 51 66
C CPS3: Regular operating cost for SO2 generated by natural gas $/tonne 35 45
D DPS1: Penalty cost for excess emission generated by coal $/tonne 200 240
E DPS2: Penalty cost for excess emission generated by diesel $/tonne 270 320
F DPS3: Penalty cost for excess emission generated by natural gas $/tonne 240 300
G Risk level 0.01 0.1

Figure 6 presents the half-normal plot of the effects of all the factors. The plot is an effective
graphical technique to help identify the key factors. The larger the distance represents the more
significant impact of the factor. The yellow outcome represents positive effects, which means increasing
the net benefits. Correspondingly, the blue square representing penalty to the system. The results
indicate that factors A, D, B and G would be the key effect factors. Besides, for some interaction factors,
the effect is significant. For example, the effects for interaction DE, DF, DG, CF and CG are higher than
the main effect of factor E. It implies that an important interrelationship may exist between the factors
and their interaction plot should therefore be analyzed.

Figure 7 provides the interaction plot of factors D and E. It implies that the factor D would have
a negative effect on the net benefit. When the value for factor D approach to its upper bound, the
total revenue of the system will decrease gradually. This trend would become more prominent when
factor E is at its higher bound. Figure 8 presents the interactions plot matrix for factor C/D with F. It
indicates that factor C would have a positive effect on the system, but the impact is unapparent. The
impact of factor D would become more significant with F at the lower bound, while the impact of C
would be more obvious when F at the upper bound. Similarly, Figure 9 shows the interaction plot of
factors D and G. It states that the impact of factor D would become more significant when G is at the
lower level. The results show that system benefits would be improved with a higher violation risk.
When the profits surpass the punishment, it would contribute significantly to excess emission. That
indicates that policies regarding the environment will not be loosened in order to allow more profits to
pass environmental examinations. It reveals the tradeoffs between conflicting economic development
and environment protection. It is a very important responsibility for decision makers to protect the
environment during economics developing.

To demonstrate the superiority of the proposed method, a compared result is obtained with
a traditional deterministic method. The proposed energy management system contains multiple
planning affairs and multiple risk levels, due to the space limitation, only electricity generation plans
with risk level α = 0.1 is emphasized in Table 6. The programming approach was solved by replacing
the uncertain variables with their mid-point values. Differing from the proposed method, with various
uncertain inputs, the application of deterministic programming can only provide a single response. In
realistic energy system planning, an accurate value could hardly provide the guidance for decision
makers. Similarly, by solving the maximum and minimum values of the uncertain parameters, solutions
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under best/worst scenarios can be obtained. It can be used for judging the capability of the system, but
hardly establish a stable interval for policy or strategy. Besides, the further sensitive analysis could
be employed, but solutions of the deterministic method cannot reveal the interaction effects among
different factors. Thus, it hardly provides useful analysis for decision variables.Sustainability 2019, 11, x FOR PEER REVIEW 14 of 19 
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Table 6. Compared electricity generation result under risk level α = 0.1.

Coal Diesel Natural Gas Wind Power Solar Power

Proposed method [1350.0, 1637.2] [780.4, 842.5] [847.0, 979.9] [14.3, 20.5] [8.3, 14.9]
Deterministic method 1500 1500 121 17 12

Generally, the above analysis indicates that solutions of the SFESM model can provide an effective
relevance with pre-regulated energy policies and the related penalties. It facilitates the settlement
of multiple types of uncertainties. Optimal primary energy supply, electricity generation, capacity
expansion and pollution control plans are generated. The interval results under different risk levels are
operable and can help decision makers obtain diversified decision alternatives. Besides, techniques of
sensitive analysis can be applied for supporting the further adjustment of the optimization model and
promoting the commonality to the practical situation.

4. Conclusions

In this study, a stochastic factorial programming is proposed for reforming regional energy
structure management, and conducting uncertainties and risks, as well as handle their interaction
effects among different environmental policies in the energy systems. The proposed method is able
to tackle uncertainties expressed as interval values and probability distributions and can be further
used for examining all possible decision options which have relevance to various levels of economic
penalties if the proposed policy targets are violated. Optimal decisions of emission control schemes,
primary energy supply, electricity generation, and capacity expansion can be generated. Particularly, it
can help examine uncertain parameters and their interactions to analyze their impact on the system
performance through factorial analysis. Compared with the conventional energy and environmental
systems management, the proposed method could not only handle the uncertainties expressed as
interval and random variables, but also provide more specific results of parameter effects and their
potential interactions on the system performance.

The developed method has been applied to a case of environmentally-friendly oriented
planning of renewable energy system management system within a multi-facility, multi-period
and multi-demand-level context. This study identified significant factors (e.g., environmental control
factors) and reflected their interactions in the energy management model. It proves that reducing coal
usage through economic measures would be not effective, policies like total quantity control of coal are
necessary to reduce SO2 emissions. The results indicated that the proposed method would incorporate
significant uncertain information into the decision-making process and capture a technically feasible
solution at different levels of system reliability. The results can be used for supporting the adjustment for
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allocation of energy resources, analyzing the tradeoff between conflicting economic and environmental
objectives and formulating the local policies.

The proposed method still has limitations, since factors with multiple levels could exist in large
scale energy systems management. It, thus, suggests introducing mix-level factorial analysis into the
framework. Further optimization methods could also be added to address the uncertainties within the
system. This will then extend the approach and facilitate further application.
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Appendix A

Table A1. Nomenclatures.

Variables:

i Energy resources, represents coal, diesel, natural gas, wind power, solar power,
respectively

t Index for time period
m Excess emission level
n Capacity expansion options
j End user, represents industrial, agricultural and municipal/commercial, respectively
Parameters:
WSi,t Quantity of SO2 discharge of energy i in period t (tonnes)
pi,t Optimized set of target values
qm Probability of occurrence for scenario m
QSi,m,t Quantity by which the target for i is not met during period t with probability qm (tonne)
CPSi,t Regular operating cost for emission generated by energy i in period t ($/tonne)
DPSi,t Penalty costs for excess emission generated by energy i in period t ($/tonne)
Yi,t Electricity generation from energy type i in period t (KW h)
CYi,t Average maintenance costs for plant of energy type i in period t ($/KW h)
CXi,t Cost for purchasing energy i in period t ($/tonne)
Xi,t Allocated amount for energy i in period t (tonne)
CEYi,n Average capital costs of facilities expansion for energy i with option n (103$/MW)
EYi,n Expansion capacity of power plant for energy i with option n (MW)
ZYi,n Binary variables of power plant expansion for energy i with option n
VYi,t Generation efficiency for power plant of energy i in period t (tonne/KW h)
FEi,t Conversion ratios from energy i to electricity in period t (TJ/GWh)
CVi Calorific value of energy i
AVi,t Availabilities of energy resources i in period t (TJ)
DMY j,t Electricity demand for end user j in period t (KW h)
RYi Installed capacity for power plant of energy i before expansion (MW)
UCAPYi Conversion coefficient of power generation capacity to electricity
PSi Pollutants producing a coefficient for energy type i
ηi SO2 removal efficiency for energy i
MPt SO2 emission standard at level m in period t(tonnes)
CPm,t Emission control target in period with probability qm (tonne)

References

1. Yao, L.; Wang, X.; Qian, T.; Qi, S.; Zhu, C. Robust day-ahead scheduling of electricity and natural gas systems
via a risk-averse adjustable uncertainty set approach. Sustainability 2018, 10, 3848. [CrossRef]

2. Shen, Y.; Tan, Z.; Shen, X.; Bai, J.; Li, Q.; Wang, S. Study of energy saving and emission reduction based on
the OLAP multi-indicator relational model. J. Environ. Inform. 2012, 20, 115–122. [CrossRef]

http://dx.doi.org/10.3390/su10113848
http://dx.doi.org/10.3808/jei.201200225


Sustainability 2019, 11, 2429 18 of 19

3. Suo, M.; Li, Y.; Huang, G.; Deng, D.; Li, Y. Electric power system planning under uncertainty using inexact
inventory nonlinear programming method. J. Environ. Inform. 2013, 22, 49–67. [CrossRef]

4. Khare, A.R.; Kumar, B.R. Multiagent structures in hybrid renewable power system: A review. J. Renew.
Sustain. Energy 2015, 7, 063101. [CrossRef]

5. Pettersson, F. Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear
programming approach. Energy Policy 2007, 35, 2412–2425. [CrossRef]

6. Gilau, A.M.; Van Buskirk, R.; Small, M.J. Enabling optimal energy options under the Clean Development
Mechanism. Energy Policy 2007, 35, 5526–5534. [CrossRef]

7. Zhang, Q.; Wei, H.; Zhao, Z.; Liu, J.; Ran, Q.; Yu, J.; Gu, W. Optimization of the fuzzy matter element method
for predicting species suitability distribution based on environmental data. Sustainability 2018, 10, 3444.
[CrossRef]

8. Lee, M.; Lee, J.; Lee, J.; Kim, Y.; Park, Y.; Lee, K. Uncertainty analysis of a GHG emission model output using
the block bootstrap and monte carlo simulation. Sustainability 2017, 9, 1522. [CrossRef]

9. Mellit, A.; Benghanem, M.; Kalogirou, S.A. Modeling and simulation of a stand-alone photovoltaic system
using an adaptive artificial neural network: Proposition for a new sizing procedure. Renew. Energy 2007, 32,
285–313. [CrossRef]

10. Sheng, W.; Peng, S.; Tang, Y.; Meng, X.; Wang, D.; Wu, Z.; Gu, W. Stochastic multi-objective scheduling of a
combined cooling, heating and power microgrid containing a fuel cell. J. Renew. Sustain. Energy 2015, 7,
063123. [CrossRef]

11. Florides, G.A.; Kalogirou, S.A.; Tassou, S.A.; WrobelL, C. Modeling of the modern houses of Cyprus and
energy consumption analysis. Energy 2000, 25, 915–937. [CrossRef]

12. Li, Y.; Huang, G.; Veawab, A.; Nie, X.; Liu, L. Two-stage fuzzy-stochastic robust programming: A hybrid
model for regional air quality management. J. Air Waste Manag. Assoc. 2006, 56, 1070–1082. [CrossRef]
[PubMed]

13. Ajorlou, A.; Moezzi, K.; Aghdam, A.; Tafazoli, S.; Nersesov, S. Two-stage energy-optimal formation
reconfiguration strategy. Automatica 2012, 48, 2587–2591. [CrossRef]

14. Moradzadeh, B.; Tomsovic, K. Two-stage residential energy management considering network operational
constraints. IEEE Trans. Smart Grid 2013, 4, 2339–2346. [CrossRef]

15. Lin, Q.; Huang, G. An inexact two-stage stochastic energy systems planning model for managing greenhouse
gas emission at a municipal level. Energy 2010, 35, 2270–2280. [CrossRef]

16. Charnes, A.; Cooper, W. Chance-constrained programming. Manag. Sci. 1959, 6, 73–79. [CrossRef]
17. Udhayakumar, A.; Charles, V.; Kumar, M. Stochastic simulation based genetic algorithm for chance

constrained data envelopment analysis problems. Omega 2011, 39, 387–397. [CrossRef]
18. Fleten, S.E.; Kristoffersen, T.K. Short-term hydropower production planning by stochastic programming.

Comput. Oper. Res. 2008, 35, 2656–2671. [CrossRef]
19. Rong, A.; Lahdelma, R. CO2 emissions trading planning in combined heat and power production via

multi-period stochastic optimization. Eur. J. Oper. Res. 2007, 176, 1874–1895. [CrossRef]
20. Wang, Z.; Huang, G.; Cai, Y.; Dong, C.; Sun, H. The Identification of optimal CO2 emissions-trading strategies

based on an inexact two-stage chance-constrained programming approach. Int. J. Green Energy 2014, 11,
302–319. [CrossRef]

21. Cai, Y.; Huang, G.; Yang, Z.; Lin, Q.; Tan, Q. Community-scale renewable energy systems planning under
uncertainty—An interval chance-constrained programming approach. Renew. Sustain. Energy Rev. 2009, 13,
721–735. [CrossRef]

22. Cheng, X.; Fan, L.; Wang, J. Can energy structure optimization, industrial structure changes, technological
improvements, and central and local governance effectively reduce atmospheric pollution in the
Beijing–Tianjin–Hebei Area in China? Sustainability 2018, 10, 644. [CrossRef]

23. Lewis, S.M.; Dean, A.M. Detection of interactions in experiments on large numbers of factors. J. R. Stat. Soc.
Ser. B (Stat. Methodol.) 2001, 63, 633–672. [CrossRef]

24. Lin, Y.; Huang, G.; Lu, H.; He, L. A simulation-aided factorial analysis approach for characterizing interactive
effects of system factors on composting processes. Sci. Total Environ. 2008, 402, 268–277. [CrossRef] [PubMed]

25. Zhou, Y.; Huang, G. Factorial two-stage stochastic programming for water resources management. Stoch.
Environ. Res. Risk Assess. 2011, 25, 67–78. [CrossRef]

http://dx.doi.org/10.3808/jei.201300245
http://dx.doi.org/10.1063/1.4934668
http://dx.doi.org/10.1016/j.enpol.2006.08.013
http://dx.doi.org/10.1016/j.enpol.2007.05.031
http://dx.doi.org/10.3390/su10103444
http://dx.doi.org/10.3390/su9091522
http://dx.doi.org/10.1016/j.renene.2006.01.002
http://dx.doi.org/10.1063/1.4937471
http://dx.doi.org/10.1016/S0360-5442(00)00030-X
http://dx.doi.org/10.1080/10473289.2006.10464536
http://www.ncbi.nlm.nih.gov/pubmed/16933639
http://dx.doi.org/10.1016/j.automatica.2012.06.059
http://dx.doi.org/10.1109/TSG.2013.2265313
http://dx.doi.org/10.1016/j.energy.2010.01.042
http://dx.doi.org/10.1287/mnsc.6.1.73
http://dx.doi.org/10.1016/j.omega.2010.09.002
http://dx.doi.org/10.1016/j.cor.2006.12.022
http://dx.doi.org/10.1016/j.ejor.2005.11.003
http://dx.doi.org/10.1080/15435075.2013.773511
http://dx.doi.org/10.1016/j.rser.2008.01.008
http://dx.doi.org/10.3390/su10030644
http://dx.doi.org/10.1111/1467-9868.00304
http://dx.doi.org/10.1016/j.scitotenv.2008.04.056
http://www.ncbi.nlm.nih.gov/pubmed/18632140
http://dx.doi.org/10.1007/s00477-010-0409-9


Sustainability 2019, 11, 2429 19 of 19

26. Liu, Z.; Huang, G.; Li, W. An inexact stochastic–fuzzy jointed chance-constrained programming for regional
energy system management under uncertainty. Eng. Optim. 2015, 47, 788–804. [CrossRef]

27. Wang, S.; Huang, G. A multi-level Taguchi-factorial two-stage stochastic programming approach for
characterization of parameter uncertainties and their interactions: An application to water resources
management. Eur. J. Oper. Res. 2015, 240, 572–581. [CrossRef]

28. Xin, X.; Huang, G.; Sun, W.; Zhou, Y.; Fan, Y. Factorial two-stage irrigation system optimization model. J.
Irrig. Drain. Eng. 2015, 142, 04015056. [CrossRef]

29. Onsekizoglu, P.; Bahceci, K.S.; Acar, J. The use of factorial design for modeling membrane distillation. J.
Membr. Sci. 2010, 349, 225–230. [CrossRef]

30. Wang, S.; Huang, G.; Veawab, A. A sequential factorial analysis approach to characterize the effects of
uncertainties for supporting air quality management. Atmos. Environ. 2013, 67, 304–312. [CrossRef]

31. Zhou, Y.; Huang, G.; Yang, B. Water resources management under multi-parameter interactions: A factorial
multi-stage stochastic programming approach. Omega 2013, 41, 559–573. [CrossRef]

32. Yeomans, J.S.; Huang, G. An evolutionary grey, hop, skip, and jump approach: Generating alternative
policies for the expansion of waste management facilities. J. Environ. Inform. 2003, 1, 37–51. [CrossRef]

33. Yeomans, J.S.; Huang, G.; Yoogalingam, R. Combining simulation with evolutionary algorithms for optimal
planning under uncertainty: An application to municipal solid waste management planning in the regional
municipality of Hamilton-Wentworth. J. Environ. Inform. 2003, 2, 11–30. [CrossRef]

34. Zhu, Y.; Li, Y.; Huang, G. Planning carbon emission trading for Beijing’s electric power systems under dual
uncertainties. Renew. Sustain. Energy Rev. 2013, 23, 113–128. [CrossRef]

35. Li, Y.; Li, Y.; Huang, G.; Chen, X. Energy and environmental systems planning under uncertainty—an inexact
fuzzy-stochastic programming approach. Appl. Energy 2010, 87, 3189–3211. [CrossRef]

36. Charnes, A.; Cooper, W.; Kirby, M. Chance-Constrained Programming: An Extension of Statistical Method; No.
CS-59; Texas University Austin Center for Cybernetic Studies: Austin, TX, USA, 1971.

37. Infanger, G.; Morton, D.P. Cut sharing for multistage stochastic linear programs with interstage dependency.
Math. Program. 1996, 75, 241–256. [CrossRef]

38. Charnes, A.; Cooper, W.; Golany, B.; Seiford, L.; Stutz, J. Foundations of data envelopment analysis for
Pareto-Koopmans efficient empirical production functions. J. Econom. 1985, 30, 91–107. [CrossRef]

39. Ellis, J.H.; Zimmerman, J.J.; Corotis, R.B. Stochastic programs for identifying critical structural collapse
mechanisms. Appl. Math. Model. 1991, 15, 367–373. [CrossRef]

40. Infanger, G. Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic
linear programs. Ann. Oper. Res. 1992, 39, 69–95. [CrossRef]

41. Watanabe, T.; Ellis, H. A joint chance-constrained programming model with row dependence. Eur. J. Oper.
Res. 1994, 77, 325–343. [CrossRef]

42. Zare, Y.; Daneshmand, A. A linear approximation method for solving a special class of the chance constrained
programming problem. Eur. J. Oper. Res. 1995, 80, 213–225. [CrossRef]

43. Huang, G.; Baetz, B.W.; Patry, G.G. A grey linear programming approach for municipal solid waste
management planning under uncertainty. Civ. Eng. Syst. 1992, 9, 319–335. [CrossRef]

44. Huang, G.; Loucks, D.P. An inexact two-stage stochastic programming model for water resources management
under uncertainty. Civ. Eng. Syst. 2000, 17, 95–118. [CrossRef]

45. Box, G.E.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and
Model Building; Wiley: New York, NY, USA, 1978.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/0305215X.2014.927451
http://dx.doi.org/10.1016/j.ejor.2014.07.011
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000951
http://dx.doi.org/10.1016/j.memsci.2009.11.049
http://dx.doi.org/10.1016/j.atmosenv.2012.10.066
http://dx.doi.org/10.1016/j.omega.2012.07.005
http://dx.doi.org/10.3808/jei.200300005
http://dx.doi.org/10.3808/jei.200300014
http://dx.doi.org/10.1016/j.rser.2013.02.033
http://dx.doi.org/10.1016/j.apenergy.2010.02.030
http://dx.doi.org/10.1007/BF02592154
http://dx.doi.org/10.1016/0304-4076(85)90133-2
http://dx.doi.org/10.1016/0307-904X(91)90062-T
http://dx.doi.org/10.1007/BF02060936
http://dx.doi.org/10.1016/0377-2217(94)90376-X
http://dx.doi.org/10.1016/0377-2217(92)00437-P
http://dx.doi.org/10.1080/02630259208970657
http://dx.doi.org/10.1080/02630250008970277
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Two-Stage Programming 
	Chance-Constrained Programming 
	Inexact Chance Constrained Two-Stage Stochastic Programming 
	Factorial Analysis 

	Environmentally-Friendly Oriented Renewable Energy System Management 
	Overview of the Study System 
	Stochastic Factorial Energy Systems Management Model 
	Result Analysis 

	Conclusions 
	
	References

