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Abstract: An effective simulation of the urban sprawl in an urban agglomeration is conducive to
making regional policies. Previous studies verified the effectiveness of the cellular-automata (CA)
model in simulating urban sprawl, and emphasized that the definition of transition rules is the
key to the construction of the CA model. However, existing simulation models based on CA are
limited in defining complex transition rules. The aim of this study was to investigate the capability
of two unsupervised deep-learning algorithms (deep-belief networks, DBN) and stacked denoising
autoencoders (SDA) to define transition rules in order to obtain more accurate simulated results.
Choosing the Beijing–Tianjin–Tangshan urban agglomeration as the study area, two proposed models
(DBN–CA and SDA–CA) were implemented in this area for simulating its urban sprawl during
2000–2010. Additionally, two traditional machine-learning-based CA models were built for comparative
experiments. The implementation results demonstrated that integrating CA with unsupervised
deep-learning algorithms is more suitable and accurate than traditional machine-learning algorithms
on both the cell level and pattern level. Meanwhile, compared with the DBN–CA, the SDA–CA model
had better accuracy in both aspects. Therefore, the unsupervised deep-learning-based CA model,
especially SDA–CA, is a novel approach for simulating urban sprawl and also potentially for other
complex geographical phenomena.

Keywords: urban-sprawl simulation; cellular automata; transition rules; unsupervised deep-learning
algorithms; deep-belief networks; stacked denoising autoencoders

1. Introduction

Urban areas have been dominant players in the world’s socioeconomic, political, cultural,
and environmental spheres, and the global shift from rural to urban living has been a defining trend. In the
mean time, as the most significant land-use change processes, the urban sprawl has had an important
impact on Earth’s surface, ecosystem, and environmental sustainability, and is closely related with the
life of almost half of the world’s population [1]. In this context, urban-sprawl simulations have played
a key role in understanding its spatial-evolution process and has became a powerful tool for supporting
urban planning and sustainable development in urban agglomeration. In recent decades, several models
were proposed to better understand and forecast urban-sprawl processes. Models evolved from early
empirical statistical models or aspatially oriented models that are based on equations to reach static
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status in the current spatial dynamic, to spatially oriented or integrated models that are based on the
principle of spatial interaction. Comparing the two main models, the major difference is that the former
models just predict population and land demand in the future from the perspective of economics or
statistics, while the latter models further consider the spatial interaction in the process of urban sprawl.
Among them, cellular automata (CA) are examples of mathematical systems constructed from many
identical components, each simple, but together capable of complex behavior [2]. Because of the simplicity,
flexibility, and intuitiveness of CA [3], it has been widely adopted as a typical spatial dynamic model to
simulate urban sprawl.

When we use CA as a “bottom–up” model to simulate a complex geographical phenomenon
like urban sprawl, the key step is how to define the transition rules of CA that determine the state
conversion of geographical processes [4]. With many driving factors involved, there exists a nonlinear
relationship between driving factors and geographical structure, and it is difficult to obtain appropriate
transition rules. A variety of mathematical methods were used to obtain the appropriate transition rules
of CA. Although a traditional method like multicriteria evaluation [5–7] is simple and its mechanism
is clear, it is still not efficient and reliable because the determination of parameters has a certain
subjectivity and randomness. It is also difficult to tackle a series of complex behaviors associated
with natural systems. To overcome this problem, a series of machine-learning algorithms have been
proposed, assuming that the historic geographical processes remain stable for a certain period in
the future through local interaction between cells, such as logistic regression [8–10], artificial neural
networks [11–14], support vector machines [15–17], decision trees [18,19], random forests [20,21],
genetic algorithms [22,23], and swarm-intelligence algorithms [24–28]. Although the algorithms above
show significant improvement in defining nonlinear transition rules for CA, there still remain many
problems like overfitting, easily resulting in local optima and weak in global searching. Moreover,
the geographical simulation of large-scale regions with fine-resolution units has become an inevitable
trend [29], which further makes the implementation of big-sample-oriented CA simulations difficult
with these methods.

In recent years, as a feature-learning method that can yield more nonlinear, more abstract
representations [30], deep learning has become the dominant technique to learning more information
from multivariable nonlinear systems in the era of Big Data. Compared to traditional machine-learning
algorithms, deep-learning-based methods attempt to model high-level abstractions in data by using
multiple processing layers with complex structures, resulting in better representations from the point
of view of simplifying a learning task from input examples [31]. A deep architecture consists of
feature-detector units arranged in multiple layers: lower layers detect simple features and feed
into higher layers, which in turn detect more complex features [32]. In particular, two typical
unsupervised deep-learning algorithms for training, deep-belief networks (DBN) [33] and stacked
denoising autoencoders (SDA) [34], are regarded as a breakthrough in feature learning due to their
effective training strategies. They are all based on a similar central idea: greedy layerwise unsupervised
pretraining, followed by supervised fine-tuning [35]. Specifically, this idea provides a better approach
to (pre)train each layer in turn, initially using a local unsupervised criterion [36] with the aim of
learning to produce useful higher-level representations from lower-level-representation output of the
previous layer, which leads to much better solutions in terms of generalization performance. Due to
such characteristics, DBNs and SDAs were successfully implemented in many nonlinear systems like
dimensionality reduction [37–39], time-series forecasting [40–42], acoustic modeling [43–45], and digit
recognition [46–48]. Therefore, we think the above-mentioned algorithms also have the potential to be
applied in urban-sprawl simulations.

In summary, urban-sprawl simulation is crucial to understand and assess the sustainable
development of urban land use changes. In defining the transition rules of CA, current studies tend to
introduce many varied machine-learning algorithms to tackle the difficulty in automatically extracting
nonlinear relationship between driving factors and spatial dynamic processes. However, most traditional
machine-learning-based CA models are small-sample-problem-oriented approaches by using feature
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mapping, which is not suitable for representation learning in the era of Big Data. Therefore, we applied
two typical unsupervised deep-learning algorithms (DBN and SDA) for representation learning from
a complex geographical phenomenon like urban sprawl in this study. In addition, we noticed that there
were a few studies [49–51] that applied deep learning to modeling geographical phenomena, but only
when comparing the proposed deep-learning algorithm with traditional machine-learning algorithms,
without a comparison of a series of similar deep-learning algorithms in the same case. No relevant models
have been applied to large-scale cases such as urban agglomerations. Therefore, the purpose of this study
is to incorporate unsupervised deep-learning algorithms into CA, making it possible to more accurately
simulate urban sprawl. First, we integrated DBN and SDA, two typical unsupervised deep-learning
algorithms, into the CA. Then, we selected the Beijing–Tianjin–Tangshan (JJT) urban agglomeration to
test the proposed models because of its dramatic land-use changes and rapid urbanization in the past two
decades. Finally, we compared the performance of the unsupervised deep-learning algorithms between
themselves, and with the obtained results under traditional machine-learning algorithms like an artificial
neural network (ANN) and logistic regression (LR) by using the figure of merit (FoM), the hit-miss-false
alarm approach, and a series of landscape indices.

2. Methodology

2.1. DBN

A DBN is a typical multilayer generative neural network, and it exhibits particular strength for
learning representations of large amounts of data with multiple levels of abstraction [52]. As shown in
Figure 1a, a typical DBN architecture contains an unsupervised learning subpart by using Restricted
Boltzmann Machines (RBMs), which is trained in a greedy manner, followed by a supervised
fine-tuning subpart in the top level for prediction. The basic idea of DBN is to use an unsupervised
learning method to train each RBM layer by layer, and finally fine-tune the whole network with
supervised learning.

Figure 1. Architecture of (a) Deep Belief Networks (DBNs) and (b) Restricted Boltzmann Machines (RBMs).

As the basic DBN component, the RBM is in essence a stochastic neural network and an energy-based
model. It is generally regarded as a kind of unsupervised learning algorithm to extract features from
high-dimensional data by estimating their probability distribution. The structure of a typical RBM is
shown in Figure 1b. It is a feed-forward graph network with two layers, the so-called visible layer
(or input layer) of the i dimension, representing observable data, and the hidden (or output) layer of the
j dimension, representing extracted features from observable data. Moreover, it allows full connection
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within the different layers, but no connections within the same layer. The purpose of unsupervised
learning by RBM is to continuously adjust the connection weight and bias parameters through Gibbs
sampling, so as to minimize the error between v′ and v after the restoration and reconstruction of implicit
characteristic signal h. Given the difficulty of determining the step size for calculating the slope of
a probability change, an algorithm called contrastive divergence (CD) [53] is proposed to speed up the
RBM training process and maintain accuracy.

From Figure 1b, we can see that each unit of the visible layer has a symmetric connection
weight with the corresponding units of the hidden layer. Weight matrix W(size: m × n) encodes
a statistical relationship by the joint distribution between the visible and the hidden layer, which can be
mathematically described as the following equations:

p(v, h) =
e−E(v,h)

∑v,h e−E(v,h)
(1)

where v is the visible vector, and h is the hidden vector. If the visible units are binary-valued,
energy function E(v,h) of certain configuration can be defined as equation

E(v, h) = −
m

∑
i=1

aivi −
n

∑
j=1

bihi −
m

∑
i=1

n

∑
j=1

hiWijvj (2)

where ai, bj are the biases of the visible and hidden layer, respectively, and Wij is the combined weights.
In summary, an RBM contains five parameters: v, h, W, a, and b. Except for v being the visible

(input) vector and h the hidden (output) vector, W, a, and b can be learned and updated by computing
the extract gradient of the log probability of the training data. According to the CD algorithm,
the updating rule for W, a, and b is as follows:

∆Wij = ε(< vihj >data − < vihj >reconstruction) (3)

∆ai = ε(< vi >data − < vi >reconstruction) (4)

∆bj = ε(< hj >data − < hj >reconstruction) (5)

where ε is the learning rate, <>data is the expectation of the observed data, and <>reconstruction is the
expectation under the reconstructed visible and hidden units, respectively, at every iteration.

To overcome the limited learning ability of the single-layer network, the DBN is proposed as
a multilayer learning structure that is built in the form of stacks using individual restricted Boltzmann
machines. The DBN training process can be divided into two main stages as follows [54]:

• Unsupervised pretraining stage: (1) Train the bottom RBM with CD on training data v being the
visible units; (2) freeze weights matrix W and bias a, b of the first RBM, and the state of the hidden
units is inferred and used as the input of the next higher RBM; (3) next higher RBM is stacked on
top of the previous lower RBM after training; (4) iterate Steps 2 and 3 for the desired number of
layers, each time upward propagating either samples or mean values.

• Supervised fine-tuning stage: After an unsupervised pretraining stage, all parameters need to be
slightly adjusted in supervised manner until DBN loss function reaches its minimum. In this
paper, a logistic regression layer periodically works in the top-level RBM during the supervised
fine-tuning stage.

2.2. SDA

Similar to DBN, which consists of a series of RBMs, an SDA is established based on a series
of denoising autoencoders (DAEs; see Figure 2a) and learns to use a deep network architecture in
a layer-by-layer fashion. The key function of SDA is unsupervised pretraining; once each layer is
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pretrained for feature selection and the extraction of input from the previous layer, the second phase of
supervised fine-tuning can occur.

Figure 2. Architecture of (a) Stacked Denoising Autoencoder (SDA) and (b) Denoising Autoencoder (DAE).

The autoencoder (AE) learns from a distributed representation (encoding) for a set of training data,
and then reconstructs the data back to themselves from the encoder (decoding). However, it simply
retains the information of the original input during the learning process, thereby failing to ensure
that useful feature representation is extracted for the input data. To avoid this, the DAE adds some
statistical noise to the original input and “corrupts” the original input, so that the autoencoder not only
learns the characteristics of the original data, but also learns degraded features after being “corrupted”,
which greatly improved the overfitting problem and the generalization ability of the AE.

From Figure 2b, we can see that a DAE consists of an encoder, a decoder, and a hidden layer. It is
trained to reconstruct a clean “repaired” input from a “corrupted” version. First, add statistical noise
to original input x to obtain partially “corrupted” data x̃ by a stochastic mapping:

x̃ ∼ qD(x′|x) (6)

where D represents the dataset. After being corrupted, the input to the encoder is x′ after the original
data are corrupted, and hidden layer y is computed by

y = fθ(x̃) = s(Wx̃ + b) (7)

where s represents a nonlinear mapping function; W is the weight matrix; b is the bias vector; and θ is
the collection parameter for the mapping. Next, the reconstruction layer is generated by

z = gθ′(y) = s(W′y + b) (8)

where W′ is the inverse weight matrix; b is the inverse bias vector; and θ′ is the collection parameter
for the inverse mapping. Finally, reconstruction loss L measured by the squared in:

L(x, x̃) = ‖x− x̃‖2 (9)
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The training process of a DAE aims at minimizing the summation of squared errors over all
training data. After minimizing the overall squared loss function, DAEs are trained.

In summary, an SDA is formed by stacking several DAEs through a layer-by-layer overlay
mechanism similar to DBN. Its training mechanism is essentially a layer-by-layer greedy training
mechanism that is also divided into two stages: unsupervised pretraining and supervised fine-tuning.
The details are as follows:

• Unsupervised pretrain stage: (1): Train the bottom DAE through the above steps, and an encoder
fθ is obtained when the first layer is trained; (2) the feature representation vector is obtained by
this encoder fθ on the original input data and regarded as the hidden layer vector, which is used
to obtain and train the encoder of the second SDA layer; (3) iterate Steps 1 and 2 for the desired
number of SDA layers.

• Supervised fine-tuning stage: When the entire pretraining stage is over, the top layer is the final
output layer. With this output as the base layer for logistic regression errors throughout the SDA
structure, fine-tuning global parameters are adjusted.

2.3. Proposed Geographical CA Model

A standard CA consists of a cell space and a transition function that defines the space [55].
The basic CA components are the state of the cell, cell space, neighborhood, transition rules,
and discrete time. So, a cellular automaton can be described by the following five-tuple model:

CA = {S, L, N, R, T} (10)

Where S is the state of the cell, all cells are mutually discrete, and a cell can only have one state at
a certain time, which is taken from a finite set; L represents the lattice, the cell that is distributed in the
set of spatial sites, and the commonly used two-dimensional cellular automaton includes a triangular
mesh, a square mesh, and a hexagon mesh; N describes the spatial neighborhood of the cell, which is
a collection of cells delimited by a certain shape around the cell, and it can affect the state of the cell
at the next moment; R represents the transition rules, which are the core of the cellular automaton,
and it expresses the logical relationship of the simulated process and determines the result of a spatial
change; Time interval T is an integer value and may be equally spaced, and assuming that the initial
moment is T0, then the state of a cell at time T0 + T depends on the state of the cell and its neighbor
cells at time.

Geographical CA includes geospatial-change information acquisition, global spatial-variable
acquisition, transition-rule definition, model construction, and process simulation [11]. Change-information
acquisition and global spatial-variable acquisition are usually done by GIS/RS tools. Model construction
and process simulation are usually done by GIS tools or an open-source programming framework.
Transition rules are a key part of building a model and directly determining the quality and effectiveness
of a geographical CA. For an urban sprawl, the cell’s state is guided by transition rules, which reflect the
complexity of the environment. These rules act as a link between spatial patterns and the underlying
spatial process [56]. This is deeply affected by a series of driving factors like the initial state of a cell,
neighborhood conditions, global spatial variables, and some constraints on urban development. Therefore,
an urban-sprawl simulation model can be formulated as follows:

ST0+T
ij = R(ST0

ij , NT0
ij , GT0

ij , CT0
ij ) =

{
urban, pT0

ij > pthreshold

nonurban, pT0
ij ≤ pthreshold

(11)

where ST0
ij and ST0+T

ij represent the state (urban/nonurban) of cell ij at time T0 and T0 + T, respectively.

pT0
ij is the probability of urban sprawl of cell ij at T0, pthreshold is the threshold value generally predefined

in the range of [0,1]. NT0
ij represents the state of neighboring cells. GT0

ij represents global spatial
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variables, such as socio-economic factors and natural environmental conditions. CT0
ij are the constraint

conditions for urban sprawl. R are the urban-sprawl transition rules.
In addition, the various global spatial variables in the transition rules correspond to many weights

that reflect the degree of contribution of different variables to the model. The setting of these weights
has a great influence on the model simulation results. In practical implementations, it is difficult to
effectively define the transition rules of these different categories of variables. Therefore, we used DBN
and SDA to simplify this complex process with a training network to directly obtain the transition
probability of every cell.

The proposed model consists of two parts (see Figure 3): The first part of the DBN (or SDA)-based
CA model is to train the DBN (or SDA) to obtain the transition probability from a training dataset that
is the sample of historic data and obtain a well-trained model. The simulation is cell-based, and each
cell is composed of a set of attributes as inputs to the DBN (or SDA) after converting them in the range
of [0, 1]. The attributes during the training phase can be expressed by:

X = [x1, x2, x3, ..., xn]
T (12)

where xi is the ith attribute and T is transposition. As described above for DBN and SDA, the attribute
inputs of these series of cellular automaton are directly used as the observed data for the unsupervised
pretraining stage by using the DBN energy function (see Equation (2)) or the SDA loss function
(see Equation (9)). Accordingly, each cell has its own state at the next time that can be expressed by:

Y = [y1, y2, y3, ..., yn]
T (13)

where yi is the ith state and T is transposition, which are regarded as the outputs to slightly adjust all
parameters of DBN (or SDA) for the supervised fine-tuning stage.

Figure 3. Flowchart of the proposed model.
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The second part is to simulate (or predict) an urban sprawl by applying a prediction dataset to
the well-trained model. Just like the training phase of the networks, the network input is the state of
each cell itself, the state of the neighborhood, and other global spatial variables, and the output is the
state of each cell at the next moment.

2.4. Accuracy Assessment

Ten indices were used as the criteria to evaluate the predictive performance of the proposed CA
models in this study, which can be grouped into two types: criteria for assessing position accuracy at
the cell level, and measures of pattern accuracy at the pattern level. At the cell level, we used FoM and
the hit-miss-false alarm approach. Specifically, FoM is the ratio of the intersection of simulated and
observed changes to the union of the simulated and observed changes [57], which can be calculated
as follows:

FoM =
∆simulated ∩ ∆observed
∆simulated ∪ ∆observed

=
B

A + B + C + D
(14)

where ∆simulated is the numbers of changed cells by the simulated map compared to the initial map;
∆observed is the numbers of changed cells by the observed map compared to the initial map; A is the
numbers of incorrect cells due to observed changes simulated as persistence; B is the numbers of
correct cells due to observed changes simulated as change; C is the numbers of incorrect cells due
to observed changes simulated as a wrong category; and D is the numbers of incorrect cells due to
observed persistence simulated as change.

The hit-miss-false alarm approach is a method used to quantify the goodness of fit of a land-change
projection along a gradient of an explanatory variable [58], and it classified the pixels of a simulated
map in this study as one of four types: correct due to observed urban sprawl predicted as urban sprawl
(hits), error due to observed urban sprawl predicted as nonurban persistence (miss), error due to
observed nonurban persistence predicted as urban sprawl (false alarms), and correct due to observed
nonurban persistence predicted as nonurban persistence (correct rejection).

At the pattern level, a series of landscape indices, including the number of urban patches (NP),
area-weighted mean patch fractal dimension (AWMPFD), edge density (ED), landscape shape index
(LSI) and aggregation index (AI) were used in this study. Among them, NP, AWMPFD, and ED can
be used to evaluate the fragmentation of the urban landscape, AWMPFD and LSI can be used to
measure the complexity of the urban landscape, and AI can be used to assess the compactness of
the urban landscape. The spatial urban form was measured based on a concise formula using the
above-mentioned indices, which can be expressed as follows:

Si = 1− 1
n

n

∑
i=1

∆Ii (15)

∆Ii =
|Ii,s − Ii,o|

Ii,o
× 100%, I = NP, AWMPFD, ED, LS, AI (16)

where Ii,s and Ii,o are the ith landscape indices of the simulated and observed map, respectively, and ∆Ii
is the normalized result of all landscape indices. Si is calculated by means of ∆Ii, and can effectively
reflect the similarity between the simulated and the observed map at the pattern level. n is the number
of landscape indices, set as 5 in this study since five types of landscape indices were used.

3. Proposed-Model Implementation

3.1. Study Area

The study area that we selected for implementing the proposed model is the JJT urban
agglomeration, also known as Beijing–Tianjin–Tangshan, which is the national capital region of
China and the largest urbanized region in northern China. The area is approximately 48,100 km2
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and contains a population of approximately 50 million. It contains two municipalities (Beijing and
Tianjin) and two prefecture-level cities (Tangshan and Langfang; see Figure 4). Beijing is the capital
of China, the world’s third most populous city, and most populous capital city. Tianjin is the largest
coastal metropolis and the third largest city in northern China. Beijing and Tianjin are regarded as
the “dual core” of the JJT urban agglomeration and have accepted most migrants from other regions
of northern China. The JJT urban agglomeration has been experiencing rapid urbanization since the
implementation of reform and opening-up policy in 1978. During 2000–2010, the urban population
and the GDP of the JJT urban agglomeration increased by about 5.34 million and RMB2383.01 billion
(Yuan; approximately USD354.83 billion).

To construct a multiperiod CA model, this study adopted urban dynamics in 2000, 2005, and 2010.
Specifically, the urban area in the study area occupies 4.13% of the total area in 2000, 5.53% in 2005
and 5.92% in 2010, generating an average sprawl area of 428.32 km2 over this decade. With this
rapid urban development, the land use of the JJT urban agglomeration has become very complex,
leading to a series of environmental, economic, and urban-development issues. Although China has
formulated the strictest land-use control and farmland-protection policies around the world, the influx
of large populations inevitably leads to the continued sprawl of this area, and its land-use structure
has experienced and will continue to experience dramatic changes. Therefore, an effective simulation
of the urban sprawl in such an area can assist future urban planning and infrastructure construction,
and guide the development of cities in a reasonable trajectory.

Figure 4. Location of Jingjintang urban agglomeration.

3.2. Data Preprocessing

3.2.1. Land-Use Data

A series of land-use maps (2000, 2005, and 2010) for the JJT were used in this study. All of these
maps were produced from the classification of Landsat TM/ETM+ images (https://earthexplorer.
usgs.gov/) with a resolution of 30 m, and have six land-use classes (urban land, cropland, grassland,
forest, water, and others). They were used to derive past and current actual urban land, and detect
urban sprawl (see Figure 5), which serve as the initial and final state of each cell during simulations
in CA models. In the simulation phase, the target variable represents if the state of a nonurban cell
remained (0), if a nonurban cell developed into an urban state (1), and if an urban cell remained (2)
(here, we do not consider the case of an urban cell converting to a nonurban cell because this study
only simulates the progress of the urban sprawl.)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 5. Urban sprawl in the study area from 2000 to 2010.

3.2.2. Neighborhood Conditions

The neighborhood conditions include both nonurban and urban neighborhoods, which is also
important for the determination of an urban sprawl during the simulation. Although 3× 3, 5× 5,
and 7 × 7 windows have been widely used in previous study, we performed a test in which we
found that the 7× 7 window performed best, and it may be because it contains more neighborhood
interactions. Therefore, we chose the number of surrounding urban cells in 7× 7 with the extended
Moore neighborhood in the implementation. The states of the surrounding cells were derived from
land-use maps using the FocalStatistics function of ArcPy.

3.2.3. Global Spatial Variables

Global spatial variables, as we mentioned above, have great influence on an urban sprawl.
In this implementation, we chose a series of global spatial variables, including physical property
and distance-based variables. The physical property mainly considered the influence of topography
on urban sprawl, which included the digital elevation model (DEM) and slope. The DEM was
derived from SRTM data (https://earthexplorer.usgs.gov/), and the slope was calculated from the
DEM using the Slope function of ArcPy. Distance-based variables include distance to the nearest
airport, distance to the nearest city center, distance to the nearest county center, distance to the nearest
town center, distance to the nearest railway station, distance to the nearest reservoir, distance to the
nearest motorway, distance to the nearest railway, distance to the nearest river, and distance to the
nearest trunkway. This study accounts for distance-based variables from the aspects of accessibility,
government/consumer decisions, and living environment. Among them, the vector data for airport,
city center, county center, and town center were derived from the National Geomatics Center of China
(http://www.ngcc.cn/), and the vector data for reservoir, river, railway station, motorway, trunkway,

https://earthexplorer.usgs.gov/
http://www.ngcc.cn/
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and railway were derived from OpenStreetMap (http://www.openstreetmap.org). All distance-based
variables were calculated from the vector data using the EucDistance function of ArcPy (see Figure 6).

Figure 6. Spatial variables in metropolitan Jingjintang: (a) digital elevation model (DEM); (b) slope;
(c) distance to airport; (d) distance to city center; (e) distance to county center; (f) distance to town
center; (g) distance to railway station; (h) distance to reservoir; (i) distance to motorway; (j) distance to
railway; (k) distance to river; (l) distance to trunkway.

As listed in Table 1, all data mentioned above were resampled to a spatial resolution of 100× 100 m,
with 3325 columns and 2910 rows, and restored them as the full dataset in CSV format to facilitate the
proposed models. Then, using a systematic sampling approach, we selected 1,000,000 samples from
the full dataset to serve as inputs to the proposed models for defining the CA transition rules. Because
a large amount of data are available and efficient computing power in the era of Big Data, we did not
have to compromise as much and could use a greater portion to train the model. Thus, samples were
divided into three parts: 980,000 samples as training data used to fit DBN or SDA, 10,000 as valid data
used to provide an unbiased evaluation of the DBN or SDA fit on the training data while tuning model
hyperparameters, and 10,000 as test data used to provide an unbiased evaluation of a final model fit
on the training data.

http://www.openstreetmap.org
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Table 1. List of spatial variables used in urban-sprawl simulation.

Spatial Variable Value Range

1.Target variable
Urban sprawl in 2000–2010 Remained nonurban area: 0; converted to urban area: 1;

remained urban area: 2
2.Locational variables
Distance to airport 0–175,594 m
Distance to city administrative center 0–129,142 m
Distance to town administrative center 0–47,261 m
Distance to county administrative center 0–63,279 m
Distance to reservoir 0–44,457 m
Distance to river 0–88,911 m
3.Accessibility
Distance to railway station 0–109,976 m
Distance to motorway 0–70,052 m
Distance to trunkway 0–21,979 m
Distance to railway 0–33,278 m
4.Neighborhood condition
Urban cells in 7× 7 neighborhood 0–48
5.Cell characteristic
Land use type urban area: 1; nonurban area: 0
Elevation −52–2,224 m
Slope 0-69◦

3.3. Model Design and Computational Environment

The entire implemented process, including data preprocessing, training of the proposed models,
and simulation, is based on Python. Some basic scientific-computation libraries like Numpy, Pandas,
and Rasterio were used for spatial-data organization, such as raster-data reading and their conversion
to CSV. Arcpy was used for spatial-data analysis, such as neighborhood or distance analysis.
Scikit-learn (https://scikit-learn.org/stable/) was used to develop the artificial-neural-network (ANN)
and random-forest (RF) methods as method comparison.

In addition to the above scientific computation libraries, it is particularly important to emphasize that
the computational framework for DBN and SDA in our study was based on Theano (http://deeplearning.
net/software/theano/), which is an open-source project that has the following characteristics: (1) symbolic
computation for tensors, (2) highly expressive, transparent GPU acceleration, (3) easily switches between
CPU and GPU, and (4) easily integrates with Python ecosystems. When running DBN and SDA based on
Theano, there are some parameters that need to be preset (see Table 2).

Table 2. Set parameters for DBN and SDA.

Description Symbol DBN SDA

Input dimension n_ins 11 11
Output dimension n_out 3 3
Intermediate layer size hidden_layer_sizes [30, 30, 30] [30, 30, 30]
Number of epochs for pretraining pre-training_epochs 300 300
Maximal number of iterations of running optimizer training_epochs 3000 3000
Learning rate used in pretraining pretrain_lr 0.01 0.001
Learning rate used in fine-tuning stage finetune_lr 0.1 0.01

3.4. Simulation Results and Comparisons

The DBN–CA and SDA–CA models proposed in this study were established through known data
from 2000, 2005, and 2010. The initial year was 2000, and the 2000–2005 samples were used to calibrate
the proposed models for discovering the transition rules; the simulation result of urban sprawl during
2000–2005 was conducted simultaneously. Next, the simulated urban-land status of 2005 was acquired
to conduct the simulation result of the urban sprawl during 2005–2010 based on the calibrated models.

https://scikit-learn.org/stable/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
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Land-use data in 2010 were regarded as the observed urban-land status to confirm the validation of
the calibrated DBN–CA (or SDA–CA) model. Figures 7 and 8 show the consistency between the initial,
observed, and simulated urban-land status and enlarged area of Beijing in 2005 and 2010 based on the
four models mentioned above.

Figure 7. Comparison of simulated results by four models for 2005. (a) Enlarged area of SDA–cellular
automata (CA), (b) enlarged area of DBN–CA, (c) enlarged area of ANN-CA, (d) enlarged area of LR-CA.

Additionally, FoM were used for more quantitative assessments of the proposed models at the cell
level. As shown in Figure 9, SDA–CA obtain the best simulated results in both periods. Compared with
DBN–CA, the FoM of SDA-CA increased by 9.8% in 2005 and 14.2% in 2010, which demonstrated that
SDA is more suitable for discovering the transition rules for CA than DBN at cell level. Meanwhile,
compared with the other two traditional machine-learning algorithms, the FoM of the SDA–CA
increased by 16.6–31.6 in 2005, and 17.9–19.7% in 2010, which corroborated that SDA can learn more
information from multivariable nonlinear systems than traditional machine-learning algorithms at cell
level, thus obtaining better recognition of urban sprawl.
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Figure 8. Comparison of simulated results by four models for 2010. (a) Enlarged area of SDA-CA,
(b) enlarged area of DBN-CA, (c) enlarged area of ANN-CA, (d) enlarged area of LR-CA.

Figure 9. Figures of Merit (FoM) of simulated results by four models for 2005 and 2010.

In Table 3, we outline the FoM of the major city’s simulation results in JJT by the four models
for 2005 and 2010. In general, the minimum FoM of DBN–CA and SDA–CA in all cities for
2005 and 2010 reached 0.332, which is a reasonable result of the relevant research. The FoM of
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unsupervised deep-learning algorithms are generally better than traditional machine-learning algorithms
in every city. Comparing the FoM of four models, SDA–CA achieved the best result, and more
specifically, the SDA–CA FoM of Beijing increased by 16.8–34.0% in 2005 and 12.5–19.1% in 2010,
the SDA–CA FoM of Tianjin increased by 7.6–30.1% in 2005 and 8.3–21.0% in 2010, and the SDA-CA FoM
of Tangshan increased by 21.2–26.4% in 2005 and 10.0–23.3% in 2010. These results demonstrate that the
implementation effect of the model varied in different years or in different cities. From the perspective of
development trends of various cities, taking the SDA-CA FoM as an example, Beijing and Tianjin, which
are the municipality of China and a metropolis in northern China that developed at a high speed due to
the effects of population aggregation, generally have a higher FoM of around 0.4–9.1% than Tangshan.
These results illustrate that areas with a fierce urban sprawl are often able to achieve better simulation
results because they provide more samples of the urban sprawl for training the models.

Table 3. FoM of major city’s simulation results in JJT by four models for 2005 and 2010.

SDA-CA DBN-CA ANN-CA LR-CA

2005
Beijing 0.583 0.385 0.243 0.415
Tianjin 0.581 0.403 0.280 0.505
Tangshan 0.579 0.367 0.320 0.315
2010
Beijing 0.468 0.343 0.277 0.294
Tianjin 0.523 0.364 0.313 0.440
Tangshan 0.432 0.332 0.299 0.199

In addition to using FoM to compare the simulation results of the four models, we also introduced
the hit-miss-false alarm approach to measure the similarity between the simulated map and the
observed map at the cell level. Four different types of results by four models for 2005 and 2010
are summarized in Table 4. Generally speaking, unsupervised deep-learning-based models have
better performance than shallow machine-learning-based models in all four different types of results,
and SDA–CA obtained the best results from the four models. Specifically, compared with DBN–CA,
the numbers of SDA–CA hits increased by 6.11% in 2005 and 7.80% in 2010, the numbers of SDA-CA’s
miss decreased by 41.02% in 2005 and 39.21% in 2010, the numbers of SDA–CA’s false alarm decreased
by 22.48% in 2005 and 9.30% in 2010, and the numbers of SDA–CA’s correct rejection increased by
0.08% in 2005 and 0.08% in 2010. Compared with the two other shallow machine-learning models,
the numbers of SDA–CA’s hits increased by 5.94–11.66% in 2005 and 8.41–10.34% in 2010, the numbers
of SDA–CA’s misses decreased by 43.04–55.77% in 2005 and 40.88–45.50% in 2010, the numbers of
SDA–CA’s false alarm decreased by 10.48% (but increased by 63.03% compared with ANN–CA) in
2005 and 22.50–49.56% in 2010, and the numbers of SDA–CA’s correct rejection increased by 0.51%
(but decreased by 0.03% compared with ANN–CA) in 2005 and 0.21–0.73% in 2010. These analysis
results confirm the validity of the proposed models at cell level from another aspect.

Table 4. Hit-miss-false alarm of simulated results by four models for 2005 and 2010.

SDA–CA DBN–CA ANN–CA LR–CA

2005
Hit 244528 230445 219001 230811
Miss 20247 34330 45774 35547
False alarm 12555 16195 11364 33964
Correcct rejection 4514091 4510451 4515282 4491099
2010
Hit 255148 236676 231238 235346
Miss 28638 47110 52548 48440
False alarm 32785 36148 42303 64997
Correcct rejection 4474850 4471487 4465332 4442638
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To further demonstrate the results of our proposed models, here we enlarge the simulation results
of SDA–CA to three major cities (Beijing, Tianjin, and Tangshan) in Figure 10. Visual inspection suggests
that the hit area mainly concentrated on the vicinity of the initial urban area, the miss area mainly
focused on where there is a sudden change in urban sprawl, and false alarm exists in urban fringe and
nonurban areas. So, we can infer that the proposed model is more suitable for urban sprawling than
a leap-forward development of urban areas.

Figure 10. Comparison of enlarged areas in various cities based on detection theory. (A1–2) Enlarged
area of Beijing in 2005 and 2010, (B1–2) enlarged area of Tianjin in 2005 and 2010, (B1–2) enlarged area
of Tangshan in 2005 and 2010.

At pattern level, Table 5 lists a series of landscape indices for four different models in 2005 and
2010 that can distinguish the differences between the simulated and observed maps. In general,
SDA–CA had the best performance in pattern similarity. As seen from the table, In the simulation
results for 2005, the Si between the simulated map of SDA–CA and the observed map is 88.37%,
with an NP value difference of merely 37, an ED value difference of merely 0.164, an LSI value
difference of merely 3.504, an AWMPFD value difference of merely 0.016, and an AI value difference
of merely 0.627. Compared with DBN–CA, the Si of SDA–CA increased by 3.29% in 2005 and 2.05%
in 2010, which demonstrated that SDA is more suitable for urban sprawl than DBN at the pattern
level. Moreover, compared with the two other traditional machine-learning models, the Si of SDA–CA
increased by 7.64–38.08% in 2005 and 9.5–11.75% in 2010, which demonstrated that SDA is more
suitable for urban sprawl than DBN at pattern level. On the whole, these results indicate the capability
of SDA–CA for simulating the urban sprawl, and the SDA–CA model behaves well during the
simulation at pattern level.
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Table 5. Comparison of observed and simulated values of landscape indices.

NP ED LSI AWMPFD AI S_i

2005
observed 142 1.019 23.889 1.175 95.539 -
SDA-CA 179 0.855 20.385 1.159 96.166 88.37%
DBN-CA 193 0.815 19.842 1.154 96.196 85.08%
ANN-CA 229 0.818 20.614 1.155 95.905 80.73%
LR-CA 365 0.591 13.801 1.089 97.513 50.29%
2010
observed 179 1.174 26.579 1.186 95.187 -
SDA-CA 191 0.831 18.725 1.145 96.688 86.21%
DBN-CA 229 0.884 20.384 1.148 96.281 84.16%
ANN-CA 215 0.635 14.613 1.122 97.390 76.71%
LR-CA 361 1.080 23.705 1.101 95.846 74.46%

4. Discussion and Conclusions

The urban sprawl has many negative consequences for residents and the environment, and how to
accurately simulate this process for future planning has been a hot research topic of geographical
simulations. Prior works documented the effectiveness of the CA model in simulating urban
sprawls [3,9,11] and introduced a series of algorithms into the CA model to more efficiently discover
its transition rules. However, these CA-based models either have remaining problems like overfitting,
or have resulted in a local optimum. In addition, from the perspective of the development of
machine learning, traditional shallow machine-learning algorithms can no longer adapt to current
big-sample-oriented learning ideas in the era of Big Data. Therefore, we introduced two unsupervised
deep-learning algorithms that achieved great power and flexibility in representation learning, for defining
CA transition rules, and testing the effectiveness of the proposed models in an urban-sprawl simulation.

To test the effectiveness of the proposed models in different cities, we selected the JJT urban
agglomeration as the study area and simulated its urban sprawl in 2000–2010. First, land-use data,
neighborhood conditions, and global spatial variables in 2000, 2005, and 2010 were used as the full dataset
for model calibration and validation. Then, based on the sample data from 2000 to 2005, two calibrated
CA models were constructed by using DBN and SDA. Last, by using the two calibrated CA models,
two simulated results of JJT in 2010 were conducted. Model validation was implemented by assessing
consistency between the simulated and observed maps and comparing with two traditional CA models
(ANN–CA and LR–CA models). As shown by a series of model accuracy assessments, the SDA–CA
model obtained the best simulation results at both cell level and pattern level. Meanwhile, compared with
other traditional machine-learning-based CA models, the DBN–CA model also had better performance
in most aspects. These findings demonstrated that unsupervised deep-learning algorithms are well
suitable for discovering CA transition rules, and the performance of the SDA–CA model may be better
than the DBN–CA model for simulating complex geographical systems.

Most notably, this is the first study to our knowledge to investigate the capability of two typical
unsupervised deep-learning algorithms for defining the transition rules of CA models in the same case.
Our study provided a systematic comparison between unsupervised deep-learning-based CA models and
traditional machine-learning-based CA models in a real urban-sprawl case. However, some limitations
are worth noting. Although simulated results of the proposed models showed stronger capability in
feature learning from urban-land-change data than traditional models, the relationship between an
urban-sprawl state and driver factors (such as the neighborhood condition and global spatial variables)
is still ambiguous. Future work should therefore not only introduce more deep-learning algorithms,
such as RNN or GAN, to enhance the feature-learning ability of the CA model, but also needs to consider
integrating the CA model with reinforcement learning [59] to improve simulation interpretability.
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