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Abstract: The New Zealand housing sector is experiencing rapid growth that has a significant
impact on society, the economy, and the environment. In line with the growth, the housing market
for both residential and business purposes has been booming, as have house prices. To sustain
the housing development, it is critical to accurately monitor and predict housing prices so as to
support the decision-making process in the housing sector. This study is devoted to applying a
mathematical method to predict housing prices. The forecasting performance of two types of models:
autoregressive integrated moving average (ARIMA) and multiple linear regression (MLR) analysis are
compared. The ARIMA and regression models are developed based on a training-validation sample
method. The results show that the ARIMA model generally performs better than the regression
model. However, the regression model explores, to some extent, the significant correlations between
house prices in New Zealand and the macro-economic conditions.
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1. Introduction

As climate change has become a hot issue, many countries have begun to pay greater attention to
sustainable development. Sustainable urban development includes sustainability in social, economic,
and environmental facets [1–3]. As one of the most critical sectors in urban development, housing
construction is one of the largest consumers of resources (e.g., water, mineral, and fossil fuel) and one
of the largest producers of pollution. Therefore, it potentially plays an important role in sustainability.
In New Zealand, the housing sector is experiencing rapid growth that has a significant impact on society,
the economy, and the environment. Following the growth, the housing market for both residential and
business purposes has been booming, as have house prices, especially in Auckland [4]. The stretched
housing valuations can lead to an overbuild of housing that wastes resources and increases household
indebtedness, which decreases wealth. According to [5], the further expansion of the building sector
beyond the adaptive capacity of the economy may waste resources. In fact, the uncontrollable housing
prices may have a negative effect on the long-term macro-economic development. The boom-and-bust
cycles in housing prices may significantly harm economic stability, which became evident during the
Subprime Mortgage Crisis of 2007/2008 [6]. During times of economic growth, an increasing demand
for housing pushes up investment in residential properties and employment, and thus reinforces
aggregate demand. In the reverse phase, falling employment and income decreases demand for
housing, weakens residential investment and reduces prices.

Furthermore, housing prices in New Zealand, especially in Auckland, are amongst the highest in
the world. As the largest city in New Zealand, Auckland currently has significant housing affordability
challenges [7]. The affordability issue for first-time buyers strongly impacts the quality of life in urban
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populations. In addition, the housing market plays an important role in New Zealand’s economy
and its financial system, and the ratio of the value of housing to total household assets is higher
than in other advanced economies [8]. Housing debt is nearly 30 percent of the value of housing
stock, and mortgages account for more than half of total bank lending in New Zealand; this poses a
significant risk to the housing market and the New Zealand banking system [4]. This will bring both
financial imbalances in New Zealand’s economy and macro-economic effects from the correction of
these imbalances.

Under such circumstances, it is meaningful to further explore the trend of housing prices in New
Zealand. This study aims to provide an effective method to model the house prices in Auckland.
The method will allow for properly monitoring housing prices to help assess the sustainability of
the housing market and properly controlling the sector so as to improve the performance of the
housing sector in sustainable urban development. Additionally, the method and analysis may assist
government administration in better understanding the trend of housing prices in New Zealand so
they can, accordingly, formulate policies on sustainable urban planning.

Both autoregressive integrated moving average (ARIMA) and multiple linear regression (MLR)
are applied to model the house prices of Auckland and compare their forecasting performance to
identify which model better fit the price trend. Owing to the merits of the ARIMA technique, it is
preferred over structural models of residential property markets, particularly for short-term forecasts.
The ARIMA model comprises three important components: the degree of integration (the number
of differences requested to obtain a stationary series), lagged values of the variable of interest (the
auto-regressive component), and lagged values of the error term (the moving average component) [9].
Furthermore, the multiple linear regression analysis can also help to explore the relationship between
the house price in Auckland and the macro-economic indicators such as mortgage rate, employment,
and population.

The study is structured as follows. Section 2 presents the literature review. Section 3 introduces
ARIMA forecasting methods and multiple linear regression (MLR) analysis. The application of the
ARIMA approach on Auckland housing prices is presented in Section 4. Section 5 illustrates the
implementation of multiple regression analysis on Auckland house prices. The comparison of the two
methods is presented in Section 6. The discussion and conclusion are shown in the final section.

2. Literature Review

2.1. Sustainability in Housing Construction

Sustainable development satisfies the requirements of the current generation but does not
satisfy the needs of future generations [10,11]. In this study, sustainable development is defined
as development that supports social, economic, and environmental requirements. The purpose is
that development should make efforts to generate integral quality associated with social, economic,
and environmental performance [12]. According to [13], sustainability is an intersection of three
different pillars: economic, environmental, and social. During building development, economic
sustainability is usually adequately addressed [14,15]. Environmental sustainability is more likely
to increase the developmental costs of a building project because of the use of green materials to
reduce CO2 emissions [16]. Social sustainability is usually evaluated based on cost, such as housing
affordability. Incorporating sustainability considerations into usually drive building costs slightly
higher [17]. However, many life cycle benefits can be expected, including facilitated communication,
better amenities, and reduced energy bills.

Housing sector plays a key role in the process of the nation’s economy and society. The housing
construction is particularly significant within this context since it consumes a large amount of
natural resources and produces waste [18]. Sustainable development is a growing subject among
decision-makers, policy-makers, and researchers. There has therefore been an increasing need for
sustainable development in this sector. Although sustainability has been regarded as a strategy for
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project development, there is still a lack of current sustainability indicators. To improve sustainability,
certain measures should be introduced. Therefore, it is necessary to provide a common concept
of sustainable construction at least provide a clue to correctly monitor the construction to support
sustainable development.

2.2. Housing Security in Sustainable Urban Development

According to [19,20], housing insecurity is one of the main challenges to achieve sustainable urban
development. If the housing prices are unaffordable by most citizens, it is excruciating and significantly
impacts living quality [21–23]. A large proportion of household income is taken by housing properties,
and the high housing prices limit the access of city population to the good living environment [24].
The unequal resources distribution, inadequate regional development, and political issues significantly
affect socio satisfaction [25,26]. The economic limitation on access to housing should be properly
dealing with so that policy to improve equity and equality in access to housing should be adopted [27].

2.3. Housing Prices in the Economy

Rapid urban development and growth has become a global issue [28] so that the increase in
urban population is anticipated. Meanwhile, the economic growth is stimulated and employment
opportunities and a variety of services are provided [29]. New Zealand is experiencing a housing
market boom [30]. The rapid growth in housing prices has driven household debt to a very high
level. The booming also attracts a large amount of investment in this sector, and it also generates
a large number of job opportunities. This sector contributes significantly to urban development.
Moreover, the rapid development in this sector can also significantly affect other sectors such as
material suppliers and financial services. For example, the rapid growth sector requires a lot of
construction materials and frequent money transactions. Following the booming in this sector,
the housing prices also have a great increase.

Although the booming contributes greatly to economic development and living standards, it is
also likely to harm the economy in the long term and pose risks on the bank and financial sector.
The booming housing sector pushes up the house prices that cause many problems including a property
bubble, unaffordable housing, and waste of resources. The rapid development in the housing sector
can attract more investment and resources into it, in the long run, this may hinder the development
of other sectors. Moreover, the increasing housing prices, the easing of fiscal regulations, and bank
competition encourage mortgage growth. The far beyond fundamentals housing prices may cause
distortions in the economy and financial risks, as the 2008 Financial Crisis. Evidence from the boom
and bust cycles of the housing market in some advanced economies indicates that the boom market is
always followed by a severe correction [31,32]. A severe housing market correction could impose a
raft of challenges for the financial system and broader economy as the banks are heavily exposed to
housing with mortgages accounting for 55 percent of total assets [33].

2.4. The Influencing Factors of Housing Prices

Due to the complex relationships between socio-economic factors and housing prices, some
variables are considered in this study to better estimate house prices. In fact, house prices are
influenced by many factors. The aim of this study is not to comprehensively investigate all these
indicators. In fact, there is no single agreement in the literature on a set of macro-economic indicators
for predicting models of house prices [34]. It is beyond the scope of this study to discuss the impacts
of all the fundamental factors on housing prices in New Zealand. Thus, this paper incorporates four
indicators for use in a multiple linear regression model: employment, mortgage rate, population,
and CO2 emissions.

The authors of [15] revealed that housing prices are associated with population, employment
rate, financial deepening, interest rate, and real income. Housing prices respond to the availability of
mortgage loans and a change in mortgage rate, based on different empirical studies and research [35–38].
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In [39], the study developed a model in which the mortgage rate, developers, and lenders interacted
to produce the volatility in house prices. According to [40], the importance of understanding the
fluctuations in house prices has been emphasized. As well, the close relationship between employment
and housing prices has been revealed. The studies that supposedly identify the key determinants of
house price volatility found that economic indicators such as employment, net migration, and income
growth can significantly impact house prices [41,42]. Reference [43] explored that a linkage between
rises in population density and increasing levels of house prices. The findings are also supported
by [44,45]. Thus, the determinants of housing prices are sensitive to a country’s economic conditions
and policy and should be examined within a specific macro-economic context. This means that it is
necessary to investigate the determinants of housing prices in the New Zealand macroeconomic context.

2.4.1. Housing Prices

Because of the high proportion of home ownership in New Zealand, a large proportion of
household wealth is associated with housing prices [33]. The rise in housing prices also increases
the balance sheet and borrowing and lending power of firms and individuals. This facilitates a
general expansion in spending as well as an expansion in spending on the construction of appreciating
buildings. However, a housing downturn also can affect the commercial property market by decreasing
the value of land and buildings that commercial property developers might use as collateral when
borrowing [46]. The cheap and easy credit conditions have no effects on housing supply but will
increase the demand for housing, thereby pushing up house prices. The rising housing prices will
increase inflation and then impose upward pressure on interest rates and the exchange rate thus having
a negative effect on exporters. This will introduce risks both to the economy and the financial system
in New Zealand.

2.4.2. Mortgage Rate

The bank sector in New Zealand was heavily regulated and access to mortgage money was
relatively limited before 1984 [47]. As the report tells, the mortgage terms and conditions were fairly
stringently controlled by conservative restrictions on loan-to-value ratio (the ratio of the mortgage
to the property value) and mortgage repayment to income (the ration of mortgage repayment to
gross income). Following the world-wide deregulation in bank sectors in the 1980s, credit constraints
have been largely relaxed. Following this trend, residential mortgages account for a large proportion
of lending portfolios. It is possible to consider that the mortgage rate can influence housing prices.
However, the reality is that it usually influences only the younger buyers who require the loan to cover
the purchase but not the investors. The investment property market is more determined by the real
interest rate. For example, the rise in mortgage rates makes first-time buyers delay their purchasing
plan, but the rent growth encourages the investors to input more in residential properties.

2.4.3. Employment and Population

The employed people are those who during the reference week worked for one hour or more for
pay or profit in the context of an employee/employer relationship or self-employment, worked without
pay for one hour or more in work which contributed directly to the operation of a farm, business,
or professional practice owned or operated by a relative, had a job but were not at work due to their
own illness or injury, personal or family responsibilities, bad weather or mechanical breakdown, direct
involvement in an industrial dispute, or on leave or on holiday [48].

Rising employment increases the demand for housing since those householders who are employed
earn an increased income, which makes the purchase of property more affordable. Moreover, according
to [49], employment is an indicator of the level of economic activity. Thanks to the presence of the
increased employment, some households decide to purchase a house. At the same time, banks are also
more than pleased to issue a new mortgage in this kind of context. All these factors induce a rise in
demand for housing.
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Population trends are usually considered as an important driver of housing price fluctuations as
population change results in a changing demand for housing [50]. Rapid population growth increases
the demand for housing, whilst the spending of an increased population might decrease the funds
available for housing supply. Moreover, housing prices also influence the selection of residential
location. In the long run, housing prices tend to follow the demand for, and the number of, dwellings
in a particular area.

2.4.4. Environmental Indicator

Environmental sustainability in the building sector usually corresponds to issues such
as climate change and CO2 emissions [51]. Various methods can be adopted to support
environmental sustainability, such as green materials, sustainable technologies, and renewable energy.
Environmental sustainability is important for building development in New Zealand, as policies and
regulations are required [52,53]. Hence, the project should be properly planned to avoid any violations.

Auckland, the largest city in New Zealand with a population of 1.5 million, is facing a housing
affordability challenge [54]. A shortage of 20,000–30,000 houses and an annual need of 13,000 new
houses is expected in the next 30 years [55]. To mitigate this problem, the central and local government
have attempted to build more houses for meeting the demand. Moreover, demand has increased because
of demographic change and international migration, which impose great pressure on environmental
sustainability, such as climate change.

Anthropogenic climate change is mainly caused by CO2 emissions and increased population,
which are major challenges for urban sustainable development [56]. The building sector is one of the
largest contributors to energy consumption and CO2 emissions [57,58]. The existing literature explored
the significant relationship between energy consumption and CO2 emissions [59,60]. Hence, CO2

emissions is selected as the environmental indicator of environmental sustainability. This study links
CO2 emissions (the environmental indicator) to housing prices by assuming a relationship exists
between housing prices and environmental sustainability.

3. Research Methodology

3.1. Data

A time series is a set of observations obtained by measuring a single variable regularly over a
period of time and the variable was observed at regular, known intervals over a certain length of
time. Thus, the form of the data for a typical time series is a single sequence or list of observations
representing measurements taken at regular intervals. A total of four time series were employed in
this study. The applied data series are the indices of house prices in New Zealand, the mortgage rate
indices, the employment, the population and the CO2 emissions indices. Quarterly data from 1989:
Q4 to 2018: Q4 were obtained from Statistics New Zealand and the Reserve Bank of New Zealand.
The sources are reasonable and reliable as they are statutory boards under the auspices of the New
Zealand government. The home price index is seen as an efficient and accurate means of tracking
changes in residential property values over time. The analysis only focuses on New Zealand, as it
displays a variety of volatility patterns and trend growth.

3.2. Forecasting Methods

There are two basic forecasting methods: qualitative methods and quantitative methods [61].
Qualitative methods are those that usually adopt subjectively experts’ opinions to predict future events.
Since the assumption of forecasting is that the data pattern will persist in future, the changes in the
data pattern will not be identified, thereby such changes are often predicted by qualitative methods.
The commonly used qualitative forecasting techniques, judgmental forecasting methods, include
subjective curve fitting, Delphi method, and technological comparisons [61,62].
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There are two main group quantitative forecasting methods—univariate models and causal
models [63]. A univariate model usually utilizes the past values of a time series to predict their future
values. A causal forecasting model is usually an endeavor to build a statistical model that describes
the relationship between the predicted time series and the related variables. The causal model can
identify the variables related to the predicted time series and evaluate the impacts on the series, but it
is more difficult to develop than a univariate model, and the accuracy of prediction for the time series
is highly dependent on the related variables.

Forecasting methods include Autoregressive Integrated Moving Average (ARIMA) models [64,65],
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models [66–69], and Vector
Auto-Regression (VAR) models [70,71]. Also, artificial intelligence methods such as Support Vector
Machine (SVM) [72] and Artificial Neural Networks (ANNs) [73] are used. Recently, researchers
attempted to adopt several forecasting methods to take advantage of every method for more
accurate forecasts.

In this study, the ARIMA model, the multiple liner regression model, and the ANNs model are all
adopted to produce more accurate forecasts. The ARIMA method is used by considering the potentially
time-varying determinants of house prices. The study also uses the multiple linear regression method
to incorporate the factors that influence housing prices in the forecasting model. Taking into account
the possibility of non-linear model fitting, the ANN model is adopted.

3.3. ARIMA

The autoregressive integrated moving average (ARIMA) method, developed by [74], is one
of the most noted models for time series data prediction and is often used in various fields [75].
ARIMA models can be considered to be a time series forecasting method since they are reliable,
and easy to use and interpret [76,77]. The ARIMA method has been developed from the auto-regressive
model (AR), the moving average model (MA) and the combination of the AR and MA, and the ARMA
model, introduced in 1926, 1937, and 1938, respectively [78]. Compared with the early AR, MA,
and ARMA models, the ARIMA model is more flexible in application and more accurate in the quality
of the simulative or predictive results. According to existing literature, ARIMA is a high precision
model for time series data.

The ARIMA model can approximately characterize the stochastic nature of the data with the aid
of auto-correlation function and partial auto-correlation function, and discover the information, such
as trend, random variation, periodic component, cyclic patterns, and serial correlation. If a time series
is generated from an ARIMA process, it should have some theoretical auto-correlation properties.
Firstly, we should ensure that the analysis data is stationary. A stationary time series has the property
that its statistical characters such as the mean and the auto-correlation structure are constant over time.
After the series has been identified as stationary, it is appropriate to estimate its best fit AR and MA
parameters according to its partial auto-correlation (PAC) function and auto-correlation (AC) function,
respectively. The last step of model building is the diagnostic checking.

The research divides the time series into an estimation period and a validation period. The analysis
develops a model on the basis of the observations in the estimation period and then tests it to see
how well it works in the validation period. By undertaking the model to make predictions for points
we already know (the points in the validation period), we get an idea of how well the model does at
forecasting. Once we are satisfied that the model does an adequate job of forecasting, we can redefine
the estimation period to include the validation cases, and then build the final model. In the ARIMA
(p, d, q) model, p is the number of auto-regressive terms in AR processes, q is the number of lagged
forecast errors in MA processes, d is the number of differences of the component [79]. It is convenient
to express it in Equation (1); where ϕ indicating the p-th degree polynomials, θ indicating the q-th
degree polynomials, B representing backward shift operator, d representing a non-negative integer.

ϕ(B)(1− B)dXt = θ(B)Zt, (1)



Sustainability 2019, 11, 2482 7 of 18

3.4. Multiple Linear Regression Analysis

Regression analysis is a statistical methodology that relates a variable of interest (dependent
variable) to one or more predictors (independent variables) [61]. The developed model can be used
to describe, predict, and control the dependent variable on the basis of the independent variables.
Multiple linear regression is a widely used analysis method to build the relationship between depend
variables and several independent variables. The general model is expressed as in Equation (2), where
θi (i = 1,2, . . . , n) indicating regression coefficients and ε representing regression analysis error.

Y =θ0 + θ1X1 + · · ·+ θnXn + ε, (2)

Approaches to cost estimation based on statistics and linear regression analysis have been
developed since the 1970s [63]. Regression analysis is a very powerful statistical tool that can be used
as both an analytical and predictive technique in examining the contribution of potential new items to
the overall estimate reliability, although it is not appropriate when describing non-linear relationships,
which are multidimensional, consisting of a multiple input and output problem.

3.5. ANNs Modelling

The artificial neutral networks (ANNs) modelling employs the architecture of a neutral network,
which have a powerful leaning mechanism for modelling complex relationships [80,81]. Several types
of ANN models are available, one of the main is multilayer perceptron [82]. An ANN model is
composed of the input layer, the hidden layer or layers, and the output layer. The basic elements in
the layers are called neurons or nodes and they are connected by links. Each link in the ANN model
carries a weight that can be used to calculate the weighted sum of all the input variables from the input
layer. The weighted sum of the input variable is expressed as shown in Equation (3):

y[l]i = b[l] +
n∑

j=1

w[l]
j,ix j, (3)

where y[l]i is the summation at neutron i, n is the number of hidden neutrons, l is layer, x j is the value of

the input variable i at the neutron j, and w[l]
j,i is the weight of the link between the input variable i and

the neutron j.
The activation function is used to create the output, which is defined in Equation (4). The output

for layer l will become input for the subsequent layer l + 1.

z[l]i = ϕ

(
y[l]i

)
, (4)

where z[l]i is the output at layer l and ϕ() is the activation function.
After feeding the input variables into the network, a set of hidden nodes in the hidden layer

is used to calculate a weighed sum according to the inputs from the previous layer. The weighted
sum at every node is calculated based on the linking weights and the values of the input variables
mapped on the node. Then, the result passes through to the activation function to produce the output.
For nodes in the subsequent layer, the input variables are a mixture of the nodes with different weights.
The input variables are aggregated and recombined layer-by-layer to fit the outputs, which is helpful in
modelling complex patterns. The network is developed based on hidden layers, hidden nodes, and the
weighted linking of the nodes. The activation function typically includes linear function, sigmoid
function, and tangent function. The selection of the type of activation function is based on model
performance. The ANNs method use several hidden layers with a non-linear modelling node to form
a neutral network that can be used to model the underlying relationship between input and output
variables. The structure of the ANN model is shown in Figure 1.
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Figure 1. The structure of the Artificial Neural Networks (ANNs).

It is difficult to choose a suitable number of hidden layers and hidden nodes for an ANN model.
In general, the number of nodes is regarded to be one- to three-times the number of input nodes.
During model training or the learning process, the weights of the links and the types of activation
function can be modified based on a training rule [81]. The purpose of ANN training is to enable
ANNs to learn the relationship between the inputs and output so that an ANN can successfully map
the links between inputs and output. During the training process, the optimal weight matrix W and the
bias matrix b are obtained and are used to calculate an accurate estimate of output. The optimization
algorithms include scaled conjugate gradient and gradient descent. When training the ANN model,
the training data of the input variables are standardized. The input variables are standardized using
Equation (5):

xs
i = xi − µ, (5)

where xs
i is the standardized input variable series i, xi is the input variable series i, and µ is the mean of

the input variable series xi.

4. ARIMA Model

4.1. Examination of Time Series Stationarity

At the outset it was suggested that all analyses be performed with the housing prices data from
1989: Q4 to 2014: Q4 so that the data from 2015: Q1 to 2018: Q4 could be used as a check on the
validity of the model. Classical ARIMA models describe stationary time series. Thus, the first in
ARIMA models is to determine whether the data series is stationary. A plot of the observed values of
housing prices series can help to determine whether the data series is stationary. If the values seem to
fluctuate with constant variation around a constant mean, it is reasonable to believe that the series is
stationary. The 101 house prices indices are plotted in Figure 2. It should be noticed from Figure 1 that
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the original values of the series is obviously with an upward trend, and thus it would seem that these
values are non-stationary.
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As the time series is non-stationary, a first difference of the non-stationary time series values can
be used. Moreover, sample auto-correlation is used to determine whether the first differences series is
stationary by observing the behavior of sample auto-correlation (SAC). The SAC of the first difference
house prices series is shown in Figure 3. It can be seen from Figure 3 that the SAC of the series values
dies down fairly quickly, and then the series values should be considered stationary.
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4.2. Model Identification

Sample auto-correlation (SAC) and sample partial auto-correlation (SPAC) are usually adopted to
identify the type of model from many Box–Jenkins models [61]. The SPAC of the time series values are
shown in Figure 2. It should be noticed that after the first lag, the SPAC of the series values drop down
very quickly, while the SAC of the series values decrease in a relatively steady fashion as shown in
Figure 2. Therefore, it can be tentatively concluded that the time series values are described by the
auto-regressive model of order 1.

4.3. Estimation

After having tentatively identified a model to describe the house prices series, it is time now to
estimate the value of the model parameters. The least square estimate technique was used in ARIMA
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parameter estimation. The parameters of the ARIMA models are listed in Table 1. For the first order
auto-regressive model there is no invertibility requirement, but it must satisfy the stationary condition
that the absolute value of the auto-regressive parameter is less than 1. According to the t-value and
sig-value, the parameter of ARIMA (1, 1, 0) is the optimal model for housing prices in Auckland.

Table 1. Autoregressive integrated moving average (ARIMA) models parameter estimates.

Model R2 Estimate t-Value Sig

ARIMA (1,1,0) 0.541 0.738 10.65 0.00 **
ARIMA (1,1,1) 0.545 ϕ1 = 0.675 6.580 0.00 **

θ1 = −0.142 −1.016 0.31
ARIMA (0,1,1) 0.433 −0.663 −8.227 0.00 **

** parameter significant at 0.05 level.

4.4. Diagnostic Checking

Analyzing the residuals obtained from the model in some manner is a good way to check the
adequacy of an overall ARIMA model [61]. In this study, RSAC denotes the sample auto-correlation
function of the residuals and RSPAC denotes the sample partial auto-correlation function of the
residuals. The Box–Ljung statistic for the residuals is used to check the adequacy of the overall model.
It is supposed that the modeling process can account for the relationship between the observations of
the time series. If these relationships are all described by the model, the residuals should be unrelated,
and thus the auto-correlations of the residuals should be small. The Q value of the ARIMA (1, 1, 0) is
less than Chi-Square Q value (27.767 < 28.869), identifying that the model is adequate.

4.5. Forecasting

After various diagnostics have been done to check the adequacy of the tentative model, it can
be assumed that the ARIMA (1, 1, 0) for the house prices in Auckland is a qualified model. This also
implies that the model can be used to forecast future time series values. In the previous section,
the model is estimated on a sample of data from 1989: Q4 to 2014: Q4. In this section, the out-of-sample
period is used (forecast: 2015: Q1-2018: Q4). The ARIMA model is a dynamic forecasting model so
that lags are automatically obtained from previous forecasts.

5. Multiple Regression Analysis

5.1. The General Multiple Linear Model

The multiple linear regression analysis employs more than one independent variable to build the
relationship between dependent variable and independent variables. The particular variable that the
study is interested in and modelled is called a dependent variable. A set of other variables that might
be useful in predicting or modelling the dependent variable are the predictors or the independent
variables. In this study, the house price is a dependent variable and the employment, mortgage,
population, and CO2 emissions are independent variables.

5.2. Multicollinearity Checking

Multicollinearity among independent variables tends to reduce the accuracy of the regression
analysis results. Multicollinearity can be defined as being when the independent variables are related to
each other and thus to some extent contribute redundant information for the description and prediction
of the dependent variable can cause the t statistics to make individual independent variables look
unimportant when they really are important [61]. The correlation analysis between the predictors
can be used to test the seriousness of multicollinearity. The more significant correlation between the
predictors is, the more severe the multicollinearity that exists. The correlation analysis is conducted
by Statistical Package for the Social Sciences (SPSS). The SPSS output of the correlation analysis is
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presented in Table 2. It also can be seen from Table 2, there is no strong correlation between the
independent variables.

Table 2. Predictor correlations.

Variables Mortgage Employment Population CO2 Emissions

Mortgage 1 0.455 −0.432 0.003
Employment 1 0.142 0.052
Population 1 0.478

CO2 emissions 1

5.3. Model Adequacy Testing

An F-test is usually used to determine the independent variables or predictors which significantly
influence the dependent variable. If the F parameter obtained from the model is greater than the
corresponding point scale of F distribution, it is safe to conclude that at least one of the independent
variables significantly influences the dependent variable. The F test result of the regression model is
far greater than the corresponding point scale of F distribution (181.5 > 2.76).

Therefore, the study can check the t-test further to decide which predictors are significant. If the
t-value of the parameter is greater than the corresponding point scale of t distribution, it is suggested
that the parameter is significant. As the result shows in Table 3, all the parameters in the model are
greater than the corresponding point scale of t distribution (1.96). Therefore, the study suggested that
all the predictors are significant to the dependent variable.

Table 3. Multiple linear regression analysis results.

Predictors Coefficient t-Value sig

(Constant) 380.5 40.40 0.00 **
Mortgage −0.678 −4.52 0.00 **

Employment 0.311 4.223 0.00 **
Population 0.63 5.217 0.00 **

CO2 emissions 0.40 20.92 0.00 **
R2 0.982

F-test 181.5 sig 0.00 **

** parameter significant at 0.05 level.

5.4. Diagnostic Checking

The residuals of the regression model are the difference between the observed values of the
dependent variable and the estimated values of the dependent variable obtained by regression model.
The residuals are assumed to be independently normally distributed with zero mean and constant
variance. Examination of the residuals plots is a simple and effective way to check the assumptions.
Residuals plots will present when violations in assumptions exist. If the histogram fits the normal
distributed curve and the points scatter around the 45◦ tangent line in normal distributed probability
plots, it can be concluded that the residual series are normally distributed. As is shown in Figure 4,
the normal curve looks reasonably bell-shaped and symmetrical about zero and the points scatter
around the 45◦ tangent line. It can be concluded that the normal distribution assumption approximately
satisfies the house prices regression model.
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5.5. MLR Forecasting

Forecasting property prices is an important task in much economic decision making. Multiple linear
regressions technique can also be used for time series forecasting. This study will investigate the
accuracy of performance multiple linear regressions (MLR) model for forecasting future house prices
(from 2015: Q1 to 2018: Q4). Consider the regression model for house prices in New Zealand, if the
values of the four predictors during the forecasting period are known, the regression model can be used
to predict New Zealand’s house prices. The observed values of the house prices and the predictions of
these values are shown in Table 4.

Table 4. The final ANN model summary.

Predictors

Parameter Estimates

Hidden Layer 1 Hidden Layer 2 Output Layer

H (1:1) H (1:2) H (1:3) H (2:1) H (2:2) HP

Input layer Employment −0.573 −2.112 −2.633
Mortgage rate 0.501 −1.652 −2.813

Population −0.325 −1.303 −3.023
CO2 emissions −0.692 −1.507 −3.004

Bias 0.470 0.216 0.199

Hidden layer 1 H (1:1) 3.465 4.482
H (1:2) −0.999 −0.575
H (1:3) 0.667 0.568

Bias 1.782 −1.899

Hidden layer 2 H (2:1) 1.819
H (2:2) −4.734

Bias 1.331

Model training SSE = 0.529
Model testing SSE = 0.121

6. ANNs

The optimal numbers of hidden layers and nodes are based on a variety of factors such as the
number of input and output variables, size of the training dataset, the complexity of the problem,
and the activation function. The ANN model, with few hidden layers and nodes, is unable to capture
the relationship between input and output variables. In contrast, if too many hidden layers and nodes
are included in the ANN model, the model tends to over-fit and fails to produce adequate outputs.
Thus, the model training process is required to obtain a suitable ANNs model.
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ANNs models were trained using MAPE to select a suitable number of hidden layers or hidden
nodes and the activation functions. In this study, as shown in Figure 5, the neutral network with four
layers was used because the application of two hidden layers are suitable for this case. This neutral
network consists of four layers. The first layer is input variables. For this study, the four input variables
are employment, mortgage rate, population, and CO2 emissions. The second and third layers are
known as hidden layers. There are three nodes in the first hidden layer, two nodes in the second
hidden layer. The last layer is output layer, while house price (HP) was used as the output variable.
Sigmoid function was used as the activation function to model the non-linearity in the hidden layer.
Scaled conjugate gradient was used as the optimization algorithm.
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The final ANNs results are shown in Table 4. The value of sum of squares error (SSE) is 0.529,
which is lower than other ANNs models and is acceptable. The sum of squares error (SSE) of the testing
section is much less than that of the training part (0.121 < 0.529), indicating that the model obtained from
training is qualified. The results suggest that the final ANNs model is able to model the underlying
relationships between the input variables and output variable. Therefore, the final ANN model is
satisfactory and can be used to estimate house prices, given the input variables. The results of predicted
values and residuals are shown in Figure 6, indicating the final ANN model is acceptable. Because the
predicted values scatter around the 45◦ tangent line and residuals are around the horizontal line.
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7. Models Comparison

The error measures such as RMSE, MAE, and MAPE obtained with ARIMA, multiple linear
regression, and ANN models are shown in Table 5. It can be seen from Table 5 that the ARIMA model
performs better than the multiple linear regression model for the forecasting of house prices in Auckland.
However, the advantage of the regression model is that it able to express the secular trend in a mathematical
equation which allows objective extrapolation into past, present, and future. ARIMA models were
compared to select the most appropriate one. ARIMA (1, 1, 0) was found to be performing best than others.

Table 5. Forecasting and comparison results of the two models.

Error Measures ARIMA (1,1,0) MLR ANNs

RMSE 196.8 226.6 321.5
MAE 168.5 220.6 336.8

MAPE 7.540 10.16 12.89

Although the forecasting performance of the regression model is not as accurate as the ARIMA
model, the regression model still provides more useful information about the relationship between
house prices and some important economic indicators. As for the four important indicators in this study,
the regression model explored that all four can significantly influence house prices in New Zealand.
That can be supported by the results of an F test and t test. The regression model provides a framework
to analyze the effects of exogenous influences and key policy decisions on house prices. According to the
regression model, house prices in New Zealand are determined positively by employment, population,
and CO2 emissions, but they are negatively influenced by mortgages.

8. Discussion and Conclusions

The housing sector has an essential role in sustainable urban development. The dynamics in housing
prices can help in adjusting related policies to improve sustainable urban development. The prediction of
housing prices provides clues to monitor the rapidly expanding sector and its impacts on the sustainability.
In terms of social impact, the housing sector boom improves the living conditions and social standards of
the public such as sufficient social housing, healthcare, sports, and leisure facilities. However, the stretched
housing valuation also increases household indebtedness, and thus decreases homeowners’ wealth
and consumption capability. On the economic aspect, the rapid increase in housing prices during
2001–2012 in New Zealand led to the housing sector boom and the increased investment in property [33].
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The rapid increased investment in this sector may mislead the market, and thus misallocate resources.
The mismanagement of resources causes significant losses every year. In fact, while the housing sector
has made a great contribution to economic development, the building construction consumes numerous
resources and produces waste and pollution. Although laws and regulations impose many constraints
on the construction industry to minimize its environmental impact, a tool that provides a comprehensive
assessment of the environmental impact is lacking. This may be an area for further studies.

The study evaluated three different statistical techniques for the forecasting of house prices in New
Zealand. They all show satisfactory results for in-sample estimation, but the ARIMA model performed
better in out-of-sample forecasting than regression analysis. Performance measures, namely root mean
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), have been
adopted for comparison. The assessment of the ARIMA models indicated that the ARIMA (1, 1, 0) model
produced better results in- and out-of-sample. This suggests that house prices might be characterized as
the combination of a non-stationary stochastic growth component and a stationary cyclical component over
the past two decades. Given the merits of the ARIMA method, property researchers and investors should
incorporate this modeling technique to evaluate the national housing market. Central bank can apply the
ARIMA technique on forecasting national house price inflation to evaluate the speculative bubbles.

Furthermore, a regression model is found to be useful in explaining the relationships between the
housing prices in New Zealand and the macro-economic climate. This offers additional evidence of the
close linkage between the economic conditions and housing prices. The regression model describes
the relationship between the house prices in New Zealand and four economic indicators including
employment, mortgage rate, population, and CO2 emissions. The house prices interact with the four
predictors, and thus a change of house prices can be traced through employment, mortgage population,
and CO2 emissions. It is found that these four indicators have significant impacts on housing prices in
New Zealand. The model also revealed the positive relationship between population and house prices.

The final ANNs model was developed and successfully trained to estimate housing prices using
72 datasets. The final ANNs model consists of an input layer with four input variables, two hidden layers
with five hidden nodes, and an output layer with an output variable. The application of Sigmoid as an
activation function in the hidden layers of the ANNs model minimize the estimated error, indicated by
MAPE. The developed ANNs model cannot generate estimated house prices as accurate as the other two
forecasting methods. The results indicate that ARIMA method is still the best fit model for New Zealand’s
housing price. The results also indicate that the non-linear relationship between the housing prices with the
four input variables such as employment, mortgage rate, population, and CO2 emissions are not evident.

Although sustainability is gaining considerable attention and has been formulating policies or
regulations, there is a shortage of sustainability indicators to guide decision makers. This study, therefore,
introduces housing prices as a performance indicator of sustainability to support sustainable development.
This study contributes to urban administration by improving understanding of the movement of housing
prices in New Zealand so that housing affordability policies can be adjusted to enhance sustainable
development. The proposed forecasting method can help in monitoring housing prices to guide the
housing market to orderly and reasonably allocate resources. This study can be used as a useful reference for
taking sustainability into consideration by policy makers, which helps to achieve sustainable development.
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