The Risk Reduction and Sustainable Development of Shared Transportation: The Chinese Online Car-hailing Policy Evaluation in the Digitalization Era
Abstract
:1. Introduction
- Do relevant public policies help online car-hailing services overcome the risks for sharing economy?
- Which policy factor is effective in overcoming these risks and supporting sustainable development of shared transportation in the digitalization era?
- Review and categorize risks in connection with online car-hailing services in China from three dimensions: institution, economy, and safety;
- Evaluate whether Chinese government policies effectively control these risks to underpin the new pattern shared transportation to achieve sustainable development through empirical evidence.
- Implemental insights are provided for the further development of regulations and policies on shared transportation based on ICT in China.
2. Literature Review
2.1. The Classifications of Risks of Online Car-Hailing in the Sharing Economy
2.1.1. Institutional Risk
2.1.2. Economic Risk
2.1.3. Safety Risk
2.2. The Risk Governances for Shared Transportation
3. Chinese Online Car-Hailing Policy
4. Research Design
4.1. Data and Variables
4.2. Evaluation Model
5. Empirical Results
5.1. Evaluation of the Effects of Implementing the Online Car-Hailing Policy
5.2. Analysis of the Effects of Policy on Different Online Car-Hailing Risks
5.3. The Analysis of the Effects of the Policy Factors on Different Risks
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||||||||||||||
1 | Total_Risk | 1 | ||||||||||||||||||||||||
2 | Ins_Risk | 0.4043 * | 1 | |||||||||||||||||||||||
3 | Econo_Risk | 0.9854 * | 0.2640 * | 1 | ||||||||||||||||||||||
4 | Safe_Risk | 0.5044 * | 0.2921 * | 0.4090 * | 1 | |||||||||||||||||||||
5 | Policy | 0.0069 | −0.0288 | 0.0112 | 0.0064 | 1 | ||||||||||||||||||||
6 | Insurance | 0.0638 | 0.0127 | 0.0602 | 0.0784 | 0.0076 | 1 | |||||||||||||||||||
7 | Wheelbase | 0.0827 | 0.1261 * | 0.0548 | 0.1700 * | −0.0114 | −0.0634 | 1 | ||||||||||||||||||
8 | Car_Price | −0.0372 | −0.0621 | −0.0186 | −0.1276 * | −0.0218 | −0.0134 | 0.0259 | 1 | |||||||||||||||||
9 | Car_Age | −0.1258 * | −0.0933 | −0.1095 | −0.1440 * | −0.0119 | −0.0393 | −0.1848 * | 0.2048 * | 1 | ||||||||||||||||
10 | Emission | 0.0937 | 0.086 | 0.0687 | 0.2111 * | −0.0403 | 0.0505 | 0.4089 * | −0.3415 * | −0.1489 * | 1 | |||||||||||||||
11 | Revo_Record | 0.1081 | −0.0197 | 0.1115 | 0.0998 | 0.016 | 0.0936 | 0.0758 | 0.108 | 0.0995 | 0.1639 * | 1 | ||||||||||||||
12 | Resi_Register | 0.0971 | 0.0548 | 0.0719 | 0.2623 * | 0.0276 | −0.0724 | 0.1124 | −0.0983 | −0.073 | 0.0234 | 0.2245 * | 1 | |||||||||||||
13 | Edu_level | −0.0185 | 0.0072 | −0.0271 | 0.0576 | 0.0207 | −0.1153 | 0.0514 | −0.1232 * | −0.1358 * | 0.0499 | 0.1135 | 0.0253 | |||||||||||||
14 | Experience | 0.0017 | 0.0394 | 0.015 | −0.1888 * | −0.009 | 0.1218 * | −0.0119 | −0.0436 | 0.1249 * | 0.0839 | 0.012 | −0.2145 * | |||||||||||||
15 | Driver_Age | −0.0011 | −0.0145 | 0.0216 | −0.2058 * | −0.0222 | 0.1187 * | 0.047 | 0.0146 | 0.1352 * | 0.038 | 0.0284 | −0.0768 | |||||||||||||
16 | Health | −0.0724 | 0.0135 | −0.0725 | −0.0885 | −0.034 | 0.2720 * | 0.0859 | −0.0969 | 0.0187 | 0.1545 * | −0.0095 | −0.1249 * | |||||||||||||
17 | Crimi_Risk | −0.0014 | 0.093 | −0.0206 | 0.0507 | −0.0211 | 0.0889 | 0.0908 | −0.0037 | −0.0587 | 0.1176 | −0.0606 | 0.0595 | |||||||||||||
18 | Public_Trans | 0.1511 * | 0.0491 | 0.1234 * | 0.3473 * | 0.0345 | −0.0536 | 0.0995 | −0.1326 * | −0.1266 * | 0.0317 | 0.1472 * | 0.3494 * | |||||||||||||
19 | Taxi | 0.3157 * | 0.2195 * | 0.2723 * | 0.4085 * | 0.0364 | 0.0783 | 0.3041 * | −0.1739 * | −0.0145 | 0.2506 * | 0.0736 | 0.1055 | |||||||||||||
20 | Unemploy | 0.4928 * | 0.3354 * | 0.4349 * | 0.5500 * | 0.0597 | 0.095 | 0.2309 * | −0.1378 * | −0.1815 * | 0.2096 * | 0.1507 * | 0.1936 * | |||||||||||||
21 | Fuel_95 | 0.0248 | −0.0193 | 0.0297 | 0.0035 | 0.0169 | −0.052 | 0.0689 | −0.1278 * | −0.0364 | −0.056 | −0.0929 | 0.0073 | |||||||||||||
22 | Fuel_92 | 0.0092 | −0.029 | 0.0103 | 0.0408 | 0.0197 | −0.0907 | 0.0165 | −0.0918 | 0.0373 | −0.1507 * | −0.1073 | 0.0355 | |||||||||||||
23 | Self_Ratio | 0.2212 * | 0.1411 * | 0.1899 * | 0.3147 * | 0.0218 | −0.0456 | 0.0648 | 0.1349 * | 0.0966 | −0.1143 | 0.0639 | 0.1710 * | |||||||||||||
24 | Land_Area | 0.4764 * | 0.3629 * | 0.4207 * | 0.4709 * | 0.0316 | 0.1663 * | 0.1373 * | −0.1409 * | −0.0191 | 0.1600 * | 0.1808 * | 0.2133 * | |||||||||||||
25 | Population | 0.4743 * | 0.2852 * | 0.4225 * | 0.5462 * | 0.0502 | 0.0552 | 0.1493 * | −0.1729 * | −0.1181 | 0.2765 * | 0.2279 * | 0.3600 * | |||||||||||||
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | ||||||||||||||
13 | Edu_level | 1 | ||||||||||||||||||||||||
14 | Experience | −0.083 | 1 | |||||||||||||||||||||||
15 | Driver_Age | 0.0385 | 0.2162 * | 1 | ||||||||||||||||||||||
16 | Health | 0.0537 | 0.1544 * | 0.3217 * | 1 | |||||||||||||||||||||
17 | Crimi_Risk | −0.0695 | 0.1301 * | −0.0425 | 0.0112 | 1 | ||||||||||||||||||||
18 | Public_Trans | −0.0139 | −0.3721 * | −0.2542 * | −0.0766 | −0.1493 * | 1 | |||||||||||||||||||
19 | Taxi | 0.0675 | −0.0989 | −0.1432 * | 0.1178 | −0.0095 | 0.5680 * | 1 | ||||||||||||||||||
20 | Unemploy | 0.1600 * | −0.1162 | −0.2973 * | −0.1494 * | 0.099 | 0.1662 * | 0.4162 * | 1 | |||||||||||||||||
21 | Fuel_95 | 0.1893 * | −0.02 | −0.0447 | −0.0116 | −0.1253 * | 0.2289 * | 0.2611 * | −0.0378 | 1 | ||||||||||||||||
22 | Fuel_92 | 0.2670 * | −0.0523 | −0.0294 | 0.0283 | −0.1464 * | 0.1908 * | 0.2496 * | −0.0442 | 0.9254 * | 1 | |||||||||||||||
23 | Self_Ratio | 0.0257 | −0.1780 * | −0.2641 * | −0.1649 * | −0.0104 | 0.3874 * | 0.4324 * | 0.3246 * | 0.1589 * | 0.2251 * | 1 | ||||||||||||||
24 | Land_Area | 0.1074 | −0.0058 | −0.0296 | 0.0958 | −0.0393 | 0.2463 * | 0.5745 * | 0.4423 * | 0.033 | 0.0582 | 0.2990 * | 1 | |||||||||||||
25 | Population | 0.3006 * | −0.0728 | −0.1812 * | −0.0078 | 0.0586 | 0.1977 * | 0.4222 * | 0.6985 * | 0.007 | 0.0442 | 0.3205 * | 0.7490 * | 1 |
References
- Joewono, T.; Tarigan, A.; Rizki, M. Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country. Sustainability 2019, 11, 1591. [Google Scholar] [CrossRef]
- Acquier, A.; Daudigeos, T.; Pinkse, J. Promises and paradoxes of the sharing economy: An organizing framework. Technol. Forecast. Soc. 2017, 125, 1–10. [Google Scholar] [CrossRef]
- Rong, K.; Hu, J.; Ma, Y.; Lim, M.K.; Liu, Y.; Lu, C. The sharing economy and its implications for sustainable value chains. Resour. Conserv. Recycl. 2018, 130, 188–189. [Google Scholar] [CrossRef]
- Parente, R.C.; Geleilate, J.G.; Rong, K. The Sharing Economy Globalization Phenomenon: A Research Agenda. J. Int. Manag. 2018, 24, 52–64. [Google Scholar] [CrossRef]
- Muñoz, P.; Cohen, B. Mapping out the sharing economy: A configurational approach to sharing business modeling. Technol. Forecast. Soc. 2017, 125, 21–37. [Google Scholar] [CrossRef]
- Nikitas, A.; Kougias, I.; Alyavina, E.; Njoya Tchouamou, E. How Can Autonomous and Connected Vehicles, Electromobility, BRT, Hyperloop, Shared Use Mobility and Mobility-As-A-Service Shape Transport Futures for the Context of Smart Cities? Urban Sci. 2017, 1, 36. [Google Scholar] [CrossRef]
- Cheng, X.; Fu, S.; de Vreede, G. A mixed method investigation of sharing economy driven car-hailing services: Online and offline perspectives. Int. J. Inf. Manag. 2018, 41, 57–64. [Google Scholar] [CrossRef]
- Jin, S.T.; Kong, H.; Wu, R.; Sui, D.Z. Ridesourcing, the sharing economy, and the future of cities. Cities 2018, 76, 96–104. [Google Scholar] [CrossRef]
- Rundmo, T.; Nordfjærn, T. Judgement of Transport Security, Risk Sensitivity and Travel Mode Use in Urban Areas. Sustainability 2019, 11, 1908. [Google Scholar] [CrossRef]
- Kim, K.; Baek, C.; Lee, J. Creative destruction of the sharing economy in action: The case of Uber. Transp. Res. A-Pol. 2018, 110, 118–127. [Google Scholar] [CrossRef]
- Li, Y.; Taeihagh, A.; Jong, M.D. The Governance of Risks in Ridesharing: A Revelatory Case from Singapore. Energies 2018, 11, 1277. [Google Scholar] [CrossRef]
- Hawlitschek, F.; Teubner, T.; Gimpel, H. Understanding the Sharing Economy—Drivers and Impediments for Participation in Peer-to-Peer Rental. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016. [Google Scholar]
- Malhotra, A.; Van Alstyne, M. The dark side of the sharing economy… and how to lighten it. Commun. Acm. 2014, 57, 24–27. [Google Scholar] [CrossRef]
- Schor, J.; Fitzmaurice, C.; Carfagna, L.B.; Attwood-Charles, W.; Poteat, E.D. Paradoxes of openness and distinction in the sharing economy. Poetics 2016, 54, 66–81. [Google Scholar] [CrossRef]
- Frenken, K.; Schor, J. Putting the sharing economy into perspective. Environ. Innov. Soc. Trans. 2017, 23, 3–10. [Google Scholar] [CrossRef]
- Schor, J. Debating the Sharing Economy. J. Self-Gov. Manag. Econ. 2016, 4, 7–22. [Google Scholar]
- Cannon, S.; Summers, L.H. How Uber and the sharing economy can win over regulators. Harv. Bus. Rev. 2014, 13, 24–28. [Google Scholar]
- Martin, C.J. The sharing economy: A pathway to sustainability or a nightmarish form of neoliberal capitalism? Ecol. Econ. 2016, 121, 149–159. [Google Scholar] [CrossRef]
- Posen, H.A. Ridesharing in the sharing economy: Should regulators impose Uber regulations on Uber. Iowa Law Rev. 2015, 101, 405. [Google Scholar]
- CNNIC. The 42nd China Statistical Report on Internet Development; CNNIC: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Ko, S. Didi Chuxing: Expansion and Risk Management. SAGE Publications, SAGE Business Cases Originals: London, UK, 2019. [Google Scholar]
- Huurne, T.M.; Ronteltap, A.; Corten, R.; Buskens, V. Antecedents of trust in the sharing economy: A systematic review. J. Consum. Behav. 2017, 16, 485–498. [Google Scholar] [CrossRef]
- Rauch, D.E.; Schleicher, D. Like Uber, but for local government law: The future of local regulation of the sharing economy. Ohio St. Law J. 2015, 76, 901. [Google Scholar]
- Watanabe, C.; Naveed, K.; Neittaanmäki, P.; Fox, B. Consolidated challenge to social demand for resilient platforms—Lessons from Uber’s global expansion. Technol. Soc. 2017, 48, 33–53. [Google Scholar] [CrossRef]
- Cheng, M. Sharing economy: A review and agenda for future research. Int. J. Hosp. Manag. 2016, 57, 60–70. [Google Scholar] [CrossRef]
- Fang, B.; Ye, Q.; Law, R. Effect of sharing economy on tourism industry employment. Ann. Tour. Res. 2016, 57, 264–267. [Google Scholar] [CrossRef]
- Ranchordás, S. Does sharing mean caring: Regulating innovation in the sharing economy. Minn. J. Law Sci. Technol. 2015, 16, 413. [Google Scholar]
- Laamanen, T.; Pfeffer, J.; Rong, K.; Van de Ven, A. Business models, ecosystems, and society in the sharing economy. Acad. Manag. Discov. 2016, 2, 218–221. [Google Scholar] [CrossRef]
- Ganapati, S.; Reddick, C.G. Prospects and challenges of sharing economy for the public sector. Gov. Inform. Q. 2018, 35, 77–87. [Google Scholar] [CrossRef]
- Chang, W.; Wang, J. Mine is yours? Using sentiment analysis to explore the degree of risk in the sharing economy. Electron. Commer. Res. Appl. 2018, 28, 141–158. [Google Scholar] [CrossRef]
- Hartl, B.; Hofmann, E.; Kirchler, E. Do we need rules for “what’s mine is yours”? Governance in collaborative consumption communities. J. Bus. Res. 2016, 69, 2756–2763. [Google Scholar] [CrossRef]
- Sigala, M. Collaborative commerce in tourism: Implications for research and industry. Curr. Issues Tour. 2017, 20, 346–355. [Google Scholar] [CrossRef]
- Lampinen, A.; Huotari, K.J.E.; Cheshire, C. Challenges to participation in the sharing economy: The case of local online peer-to-peer exchange in a single parents’ network. Interact. Des. Archit. 2015, 16–32. [Google Scholar]
- Cheshire, C.; Gerbasi, A.; Cook, K.S. Trust and transitions in modes of exchange. Soc. Psychol. Q. 2010, 73, 176–195. [Google Scholar] [CrossRef]
- Santana, J.; Parigi, P. Risk aversion and engagement in the sharing economy. Games 2015, 6, 560–573. [Google Scholar] [CrossRef]
- Zhu, G.; So, K.K.F.; Hudson, S. Inside the sharing economy: Understanding consumer motivations behind the adoption of mobile applications. Int. J. Contemp. Hosp. Manag. 2017, 29, 2218–2239. [Google Scholar] [CrossRef]
- Tussyadiah, I.P. An exploratory study on drivers and deterrents of collaborative consumption in travel. In Information and Communication Technologies in Tourism 2015; Tussyadiah, I., Inversini, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 817–830. [Google Scholar]
- Wu, J.; Ma, P.; Xie, K.L. In sharing economy we trust: The effects of host attributes on short-term rental purchases. Int. J. Contemp. Hosp. Manag. 2017, 29, 2962–2976. [Google Scholar] [CrossRef]
- Rogers, B. The social costs of Uber. Univ. Chic. Law Rev. Dialogue 2015, 82, 85. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, Y.; Zo, H. Why People Participate in the Sharing Economy: A Social Exchange Perspective. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS 2015), Singapore, 6–9 July 2015; p. 76. [Google Scholar]
- Cheng, X.; Fu, S.; Sun, J.; Bilgihan, A.; Okumus, F. An investigation on online reviews in sharing economy driven hospitality platforms: A viewpoint of trust. Tour. Manag. 2019, 71, 366–377. [Google Scholar] [CrossRef]
- Smith, N.C.; McCormick, E. Uber and the Ethics of Sharing: Exploring the Societal Promises and Responsibilities of the Sharing Economy. In Managing Sustainable Business; Lenssen, G., Smith, N., Eds.; Springer: Dordrecht, The Netherlands, 2019; pp. 579–611. [Google Scholar]
- Cohen, M.; Sundararajan, A. Self-regulation and innovation in the peer-to-peer sharing economy. Univ. Chic. Law Rev. Dialogue 2015, 82, 116. [Google Scholar]
- Kathan, W.; Matzler, K.; Veider, V. The sharing economy: Your business model’s friend or foe? Bus. Horiz. 2016, 59, 663–672. [Google Scholar] [CrossRef]
- Deenihan, G.; Caulfield, B. Do tourists value different levels of cycling infrastructure? Tour. Manag. 2015, 46, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Dambrine, B.; Jerome, J.; Ambrose, B. User Reputation: Building Trust and Addressing Privacy Issues in the Sharing Economy. In Future of Privacy Forums. 2015. Available online: http://www.futureofprivacy.org/wp-content/uploads/FPF_SharingEconomySurvey_06_08_15.pdf (accessed on 20 January 2019).
- Stemler, A. Feedback loop failure: Implications for the self-regulation of the sharing economy. Minn. J. Law Sci. Technol. 2017, 18, 673. [Google Scholar] [CrossRef]
- Witt, A.; Suzor, N.; Wikström, P. Regulating ride-sharing in the peer economy. Commun. Res. Pract. 2015, 1, 174–190. [Google Scholar] [CrossRef]
- Koopman, C.; Mitchell, M.; Thierer, A. The sharing economy and consumer protection regulation: The case for policy change. Bus. Entrep. Law 2014, 8, 529. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Notice of the General Office of the Ministry of Transport on Promoting Orderly Development of Taxi-calling Services Such as Mobile Phone Car-Hailing. 2014. Available online: http://zizhan.mot.gov.cn/zfxxgk/bnssj/dlyss/201407/t20140717_1650627.html (accessed on 30 January 2019). (In Chinese)
- Ministry of Industry and Information Technology of the People’s Republic of China. The Interim Measures for the Management of Network Reservation Taxi Operating Services. 2016. Available online: http://www.miit.gov.cn/n1146295/n1146557/n1146624/c5218603/content.html (accessed on 18 April 2019). (In Chinese)
- China Judgements Online. Available online: http://wenshu.court.gov.cn (accessed on 15 January 2019). (In Chinese).
- Openlaw. Available online: http://openlaw.cn (accessed on 15 January 2019). (In Chinese).
- Andreotti, A.; Anselmi, G.; Eichhorn, T.; Hoffmann, C.P.; Micheli, M. Participation in the Sharing Economy. 2017. Available online: http://dx.doi.org/10.2139/ssrn (accessed on 9 April 2019).[Green Version]
- Schor, J.B. Does the sharing economy increase inequality within the eighty percent?: Findings from a qualitative study of platform providers. Camb. J. Reg. Econ. Soc. 2017, 10, 263–279. [Google Scholar] [CrossRef]
- Schor, J.B.; Attwood-Charles, W. The “sharing” economy: Labor, inequality, and social connection on for-profit platforms. Sociol. Compass 2017, 11, e12493. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C.; Panuccio, P. European plans for the smart city: From theories and rules to logistics test case. Eur. Plan. Stud. 2016, 24, 1709–1726. [Google Scholar] [CrossRef]
- Musolino, G.; Rindone, C.; Polimeni, A.; Vitetta, A. Planning urban distribution center location with variable restocking demand scenarios: General methodology and testing in a medium-size town. Transp. Policy 2018, in press. [Google Scholar] [CrossRef]
First Level Index | Second Level Index | Unit | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|---|---|
Platform | If There Is a Fixed Business Place for the Platform | Yes (1) No (0) | 249 | 0.94 | 0.22 | 0 | 1 |
A Sound Management System | Yes (1) No (0) | 249 | 1 | 0 | 1 | 1 | |
Require Data Disclosure | Yes (1) No (0) | 249 | 0.99 | 0.06 | 0 | 1 | |
Platform for Vehicle Insurance Quota | Million Yuan | 249 | 26.99 | 32.91 | 10 | 100 | |
for Whether Platforms Insure for Passengers | Yes (1) No (0) | 249 | 0.83 | 0.36 | 0 | 1 | |
Vehicle | Wheelbase | mm | 249 | 2549.98 | 173.81 | 2350 | 3000 |
Engine Requirements | Yes (1) No (0) | 249 | 0.33 | 0.47 | 0 | 1 | |
Electric Vehicle Wheelbase | mm | 249 | 2310.4 | 305.63 | 2000 | 2700 | |
Recharge mileage of Pure Electric Vehicle | Kilometer | 249 | 147.19 | 76.19 | 80 | 260 | |
Vehicle Price | Million Yuan | 249 | 8.06 | 2.58 | 6 | 16 | |
Years of Transport Certificate | Year | 249 | 6.36 | 2.29 | 3 | 8 | |
Age | Year | 249 | 2.67 | 1.09 | 1 | 6 | |
Vehicle Displacement | Litre | 249 | 2.94 | 3.73 | 1.3 | 2 | |
Vehicle Registration | Yes (1) No (0) | 249 | 0.94 | 0.23 | 0 | 1 | |
Body Length Requirement | Yes (1) No (0) | 249 | 0.11 | 0.31 | 0 | 1 | |
Numbers of Vehicle Seats | Level | 249 | 1.07 | 0.33 | 0 | 3 | |
Driver | Record of Revocation of Non-Practitioner’s Qualification Certificate | Year | 249 | 0.69 | 1.12 | 0 | 3 |
Driver’s Residential Registration | Level | 249 | 0.16 | 0.5 | 0 | 9 | |
Driver’s Criminal Record | Yes (1) No (0) | 249 | 1 | 0 | 1 | 1 | |
Dangerous Driving Record | Yes (1) No (0) | 249 | 0.98 | 0.15 | 0 | 1 | |
Drug Record | Yes (1) No (0) | 249 | 0.98 | 0.15 | 0 | 1 | |
Drink-Driving | Yes (1) No (0) | 249 | 0.98 | 0.15 | 0 | 1 | |
Violent Criminal Record | Yes (1) No (0) | 249 | 0.97 | 0.17 | 0 | 1 | |
Educational Level | Yes (1) No (0) | 249 | 0.07 | 0.26 | 0 | 1 | |
Whether Having Reduction Record | Yes (1) No (0) | 249 | 0.97 | 0.17 | 0 | 1 | |
Driving Experience | Yes (1) No (0) | 249 | 0.94 | 0.25 | 0 | 1 | |
Whether to Pass the Honesty and Credit Examination | Yes (1) No (0) | 249 | 0.93 | 0.25 | 0 | 1 | |
Driver’s Age | Yes (1) No (0) | 249 | 0.69 | 0.46 | 0 | 1 | |
Driver Health Requirement | Yes (1) No (0) | 249 | 0.53 | 0.5 | 0 | 1 | |
Whether Having Illegal Driving Record | Yes (1) No (0) | 249 | 0.33 | 0.47 | 0 | 1 | |
Driver’s License Duration | Year | 249 | 0.81 | 1.61 | 0 | 8 | |
Not for Profit | Yes (1) No (0) | 249 | 0.69 | 0.46 | 0 | 1 |
Risk Variable | Variable Name | Unit | N | Mean | S.D. | Min | Max | |
Total number of lawsuits | Total_Risk | Case | 104 | 2.60 | 5.37 | 0 | 33 | |
Number of Institutional Risk-related Litigation | Ins_Risk | Case | 104 | 0.33 | 0.81 | 0 | 5 | |
Number of economic risk-related litigation | Econo_Risk | Case | 104 | 1.92 | 4.23 | 0 | 25 | |
Number of Safety Risk-related Litigations | Safe_Risk | Case | 104 | 0.35 | 0.86 | 0 | 5 | |
Effectiveness of Policy Implementation | ||||||||
The policy implementation | Policy | Dummy Variable | 104 | 0.98 | 0.14 | 0 | 1 | |
Policy Factor Variable | ||||||||
Platform | Vehicle Insurance Quota A1 | Insurance | Ten Thousand Yuan | 104 | 2.00 | 2.42 | 0 | 7 |
Vehicle | Wheelbase B1 | Wheelbase | mm | 104 | 3.63 | 3.16 | 0 | 12 |
Vehicle Price B2 | Car_Price | Ten Thousand Yuan | 104 | 4.54 | 4.30 | 0 | 13 | |
Vehicle’s Age B3 | Car_Age | Year | 104 | 2.38 | 1.32 | 0 | 8 | |
Vehicle Emission B4 | Emission | Litre | 104 | 3.27 | 4.03 | 0 | 11 | |
Policy Factor Variable | Variable Name | Unit | N | Mean | S.D. | Min | Max | |
Driver | Record of Revocation of Non-Practitioner’s Qualification Certificate C1 | Revo_Record | Year | 104 | 1.01 | 1.23 | 0 | 3 |
Driver’s Residential Registration C2 | Resi_Register | Level | 104 | 1.62 | 2.04 | 0 | 9 | |
Educational Level C3 | Edu_level | Yes (1) No (0) | 104 | 0.07 | 0.26 | 0 | 1 | |
Driving Experience C4 | Experience | Yes (1) No (0) | 104 | 0.94 | 0.23 | 0 | 1 | |
Driver’s Age C5 | Driver_Age | Yes (1) No (0) | 104 | 0.71 | 0.45 | 0 | 1 | |
Driver Health Requirement C6 | Health | Yes (1) No (0) | 104 | 0.43 | 0.50 | 0 | 1 | |
Driver’s Criminal Risk C7 | Crimi_Risk | c1+c2+c3+c4 | 104 | 3.92 | 0.55 | 0 | 4 | |
Dangerous Driving Record c1 | Yes (1) No (0) | 104 | 0.98 | 0.14 | 0 | 1 | ||
Drug Record c2 | Yes (1) No (0) | 104 | 0.98 | 0.14 | 0 | 1 | ||
Drink-Driving c3 | Yes (1) No (0) | 104 | 0.98 | 0.14 | 0 | 1 | ||
Violent Criminal Record c4 | Yes (1) No (0) | 104 | 0.97 | 0.10 | 0 | 1 | ||
Control Variable | ||||||||
The number of buses per capita in cities | Public_Trans | Vehicle/Ten Thousand People | 104 | 11.10 | 9.26 | 2.01 | 86.56 | |
The number of taxis per capita in cities | Taxi | Vehicle/Ten Thousand People | 104 | 18.72 | 11.62 | 1.61 | 50.25 | |
The number of registered unemployed people in urban areas | Unemploy | People | 104 | 42992 | 51732 | 3413 | 275100 | |
The price of No. 95 oil | Fuel_95 | Yuan/Litre | 104 | 6.33 | 0.20 | 5.80 | 7.59 | |
The price of No. 92 oil | Fuel_92 | Yuan/Litre | 104 | 5.92 | 0.18 | 5.70 | 7.09 | |
Financial self-sufficiency ratio | Self_Ratio | Rate | 104 | 0.59 | 0.21 | 0.17 | 1.07 | |
Total land area of administrative region | Land_Area | Square Kilometer | 104 | 1002.65 | 1890.03 | 62.20 | 16410 | |
Population at districts under city | Population | Ten Thousand People | 104 | 273.67 | 325.81 | 38.00 | 2449.00 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Add Municipality | Add Municipality | |||||
Taxi | −0.000 | 0.003 | −0.021 | −0.024 | −0.004 | −0.000 |
(0.010) | (0.010) | (0.017) | (0.021) | (0.010) | (0.010) | |
Public_Trans | 0.069 | 0.070 | 0.012 | 0.016 | 0.076 * | 0.071 * |
(0.056) | (0.054) | (0.013) | (0.018) | (0.042) | (0.041) | |
Unemploy | 0.069 | 0.053 | 0.092 ** | 0.101 ** | 0.029 | 0.017 |
(0.050) | (0.052) | (0.044) | (0.045) | (0.043) | (0.046) | |
Fuel_95 | 1.019 | −0.136 | 3.788 ** | 3.769 ** | −2.074 | −1.883 |
(5.813) | (5.604) | (1.677) | (1.712) | (4.151) | (4.243) | |
Fuel_92 | −2.542 | −1.194 | −3.971 ** | −3.828 ** | 1.187 | 1.029 |
(6.543) | (6.047) | (1.817) | (1.851) | (4.610) | (4.630) | |
Self_Ratio | 3.019 * | 2.409 | 0.064 | 0.078 | 1.802 ** | 1.826 ** |
(1.695) | (1.570) | (0.203) | (0.209) | (0.836) | (0.844) | |
Land_Area | 0.001 ** | 0.001 *** | 0.000 * | 0.000 * | 0.000 | 0.000 |
(0.001) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Population | −0.005 ** | −0.004 ** | 0.002 ** | 0.002 ** | 0.000 | 0.001 |
(0.002) | (0.002) | (0.001) | (0.001) | (0.001) | (0.001) | |
Policy | −0.270 * | −0.465 ** | −0.210 * | |||
(0.138) | (0.208) | (0.128) | ||||
_cons | 5.566 | 5.337 | −0.955 | −1.458 | 3.553 | 3.430 |
(17.189) | (15.380) | (2.493) | (2.427) | (13.072) | (12.829) | |
N | 263 | 263 | 263 | 263 | 275 | 275 |
City | 100 | 100 | 100 | 100 | 104 | 104 |
Log pseudolikelihood | −211.3906 | −209.4623 | −499.0305 | −495.9370 | −244.2143 | −242.7994 |
Prob > chi2 | 0.0033 | 0.0002 | 0.0000 | 0.0000 | 0.0014 | 0.0001 |
Model 7 | Model 8 | Model 9 | |
---|---|---|---|
Ins_Risk | Econo_Risk | Safe_Risk | |
Taxi | −0.012 | −0.031 | 0.009 |
(0.028) | (0.029) | (0.020) | |
Public_Trans | −0.025 | 0.019 | 0.029 *** |
(0.022) | (0.030) | (0.004) | |
Unemploy | 0.065 ** | 0.128 | 0.033 |
(0.031) | (0.084) | (0.023) | |
Fuel_95 | 4.846 | 5.491 ** | −4.643 *** |
(3.155) | (2.398) | (1.323) | |
Fuel_92 | −6.693 | −4.918 * | 4.543 *** |
(4.185) | (2.536) | (1.561) | |
Self_Ratio | 1.271 | 0.094 | 0.378 *** |
(1.618) | (0.245) | (0.122) | |
Land_Area | 0.000 | 0.001 ** | −0.000 |
(0.000) | (0.000) | (0.000) | |
Population | 0.002 | 0.003 | 0.003 *** |
(0.001) | (0.002) | (0.001) | |
Policy | −0.723 ** | −0.328 | −0.443 |
(0.322) | (0.266) | (0.282) | |
_cons | 7.139 | −6.676 ** | −0.154 |
(8.606) | (3.320) | (3.854) | |
N | 263 | 263 | 263 |
City | 100 | 100 | 100 |
Log pseudolikelihood | −203.2224 | −401.9190 | −157.507 |
Prob > chi2 | 0.0037 | 0.0000 | 0.0000 |
Model 10 | Model 11 | Model 12 | Model 13 | |
---|---|---|---|---|
Total_Risk | Ins_Risk | Econo_Risk | Safe_Risk | |
Taxi | −0.011 | −0.005 | −0.008 | −0.000 |
(0.012) | (0.031) | (0.016) | (0.025) | |
Public_Trans | 0.018 * | −0.009 | 0.013 | 0.027 ** |
(0.010) | (0.028) | (0.015) | (0.011) | |
Unemploy | 0.105 *** | 0.103 *** | 0.108 *** | 0.018 |
(0.029) | (0.038) | (0.041) | (0.030) | |
Fuel_95 | 0.963 | 6.047 ** | 1.562 | −5.633 *** |
(1.049) | (2.584) | (1.708) | (1.684) | |
Fuel_92 | −0.364 | −7.919 ** | 0.277 | 6.099 *** |
(1.228) | (3.415) | (1.809) | (2.122) | |
Self_Ratio | 0.115 | 0.854 | 0.137 | 0.665 ** |
(0.203) | (1.210) | (0.267) | (0.300) | |
Land_Area | 0.000 *** | 0.000 | 0.001 ** | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | |
Population | 0.003 *** | 0.001 | 0.003 *** | 0.003 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Car_Age | −0.225 *** | −0.135 | −0.228 *** | −0.020 |
(0.068) | (0.148) | (0.075) | (0.125) | |
Car_Price | 0.046 * | 0.022 | 0.057 * | 0.015 |
(0.025) | (0.045) | (0.032) | (0.041) | |
Wheelbase | −0.067 * | −0.034 | −0.099 ** | 0.057 |
(0.037) | (0.077) | (0.039) | (0.053) | |
Emission | 0.085 ** | −0.015 | 0.111 *** | 0.043 |
(0.034) | (0.063) | (0.036) | (0.051) | |
Insurance | −0.008 | −0.285 *** | 0.088 * | 0.047 |
(0.041) | (0.092) | (0.049) | (0.062) | |
Resi_Register | 0.010 | −0.018 | −0.002 | 0.061 |
(0.049) | (0.113) | (0.055) | (0.063) | |
Driver_Age | 0.780 *** | 0.775 ** | 0.849 *** | −0.079 |
(0.187) | (0.368) | (0.220) | (0.307) | |
Edu_level | −0.524 | 0.454 | −1.364 ** | −1.324 |
(0.581) | (0.890) | (0.620) | (0.905) | |
Experience | 0.190 | 1.020 | 0.047 | 0.146 |
(0.394) | (0.977) | (0.523) | (0.574) | |
Health | −0.425 ** | 0.713 | −0.843 *** | −0.237 |
(0.210) | (0.445) | (0.264) | (0.365) | |
Revo_Record | −0.234 *** | −0.087 | −0.254 ** | −0.117 |
(0.083) | (0.146) | (0.101) | (0.121) | |
Crimi_Risk | 0.072 | 0.498 | 0.022 | −0.044 |
(0.114) | (0.295) | (0.192) | (0.222) | |
_cons | −5.062 * | 3.590 | −13.183 *** | −3.681 |
(2.716) | (7.591) | (4.189) | (5.291) | |
N | 263 | 263 | 263 | 263 |
City | 100 | 100 | 100 | 100 |
Log pseudolikelihood | 476.6327 | −194.0146 | −380.1651 | −155.1724 |
Prob > chi2 | 0.0000 | 0.0046 | 0.0000 | 0.0000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Chen, J. The Risk Reduction and Sustainable Development of Shared Transportation: The Chinese Online Car-hailing Policy Evaluation in the Digitalization Era. Sustainability 2019, 11, 2596. https://doi.org/10.3390/su11092596
Gao Y, Chen J. The Risk Reduction and Sustainable Development of Shared Transportation: The Chinese Online Car-hailing Policy Evaluation in the Digitalization Era. Sustainability. 2019; 11(9):2596. https://doi.org/10.3390/su11092596
Chicago/Turabian StyleGao, Yuchen, and Jingrui Chen. 2019. "The Risk Reduction and Sustainable Development of Shared Transportation: The Chinese Online Car-hailing Policy Evaluation in the Digitalization Era" Sustainability 11, no. 9: 2596. https://doi.org/10.3390/su11092596
APA StyleGao, Y., & Chen, J. (2019). The Risk Reduction and Sustainable Development of Shared Transportation: The Chinese Online Car-hailing Policy Evaluation in the Digitalization Era. Sustainability, 11(9), 2596. https://doi.org/10.3390/su11092596