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Abstract: We use the the heterogeneous autoregressive realized volatility (HAR-RV) model to analyze
both in sample and out-of-sample whether a measure of investor happiness predicts the daily
realized volatility of oil-price returns, where we use high-frequency intraday data to measure realized
volatility. Full-sample estimates reveal that realized volatility is significantly negatively linked to
investor happiness at a short forecast horizon. Similarly, out-of-sample results indicate that investor
happiness significantly improves the accuracy of forecasts of realized volatility at a short forecast
horizon. Results for a medium and a long forecast horizon are insignificant. We argue that our results
shed light on the role played by speculation in o0il products and the potential function of oil-related
products as a hedge against risks in traditional financial assets.
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1. Introduction

The oil market’s recent financialization has led to increased participation of hedge funds, pension
funds and insurance companies, in the market, thus, rendering oil a profitable alternative investment
in the portfolio decisions of financial institutions [1-5] (Bahloul et al., 2018, Bonato 2019). Hence,
accurate estimates of oil-price volatility are of vital importance to oil traders. At the same time, this
is a concern from the policy perspective, as oil-price volatility has been shown to negatively impact
economic activity as well since it captures macroeconomic uncertainty [6,7] (Elder and Serletis 2010,
van Eyden et al., 2019). Oil-price fluctuations have also many consequences for most non-energy
producing companies by increasing the cost of doing business. Companies always seek new ways of
managing oil-price volatility, and governments are concerned about the impact of oil-price volatility
on economic growth and prosperity. A better econometric understanding of oil-price volatility is vital
for its effective management and could lead to a competitive advantage by reducing operating costs
and business risk. According to [8] Henriques and Sadorsky (2010), the key is an increase in a firm’s
environmental sustainability because it goes in line with a lower energy-price exposure. However,
in the short term, it is economically important to proceed with a systematic characterization of the
types of events that cause oil-price volatility to fluctuate over time. In light of this, high-frequency
forecasts of oil-market volatility can be used in mixed-frequency models to predict the future path
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of low-frequency measures of economic activity, besides, of course, some existing high-frequency
measures of the latter. Indeed, the impact of oil-price shocks and oil-price volatility has received
great attention in the earlier literature ([9-11](see Jiang et al., 2018, Zao et al., 2019, Gkillas et al., 2020,
among others).

Naturally, a great body of literature exists (see [12] Lux et al., 2016 for a detailed review) on
the forecastability of daily oil-price volatility using different kinds of univariate and multivariate
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, as well as the
Markov-switching multifractal (MSM) model. In general, studies in this literature find that while
the univariate GARCH-type models are able to produce more accurate forecasts than its competitors
within the GARCH category, the MSM model in general is the preferable framework the majority of
the times across forecasting horizons and sub-samples relative to the other models considered.

A shared characteristic of the above studies is that all of them use oil-price returns at a daily
frequency, and forecast the daily conditional oil-price volatility. Nevertheless, as pointed out by [13]
McAleer and Medeiros (2008), intraday data containing rich information can lead to more accurate
estimates and forecasts of daily volatility. In this respect, Haugom et al. (2014), Sévi (2014),
Prokopczuk et al. (2015), Degiannakis and Filis (2017), Liu et al. (2017), Chen et al. (2019),
and Gkillas et al. (forthcoming) [14-20] make use of variations of the Heterogeneous Autoregressive
(HAR) model employed by [21] Corsi (2009) to forecast the realized volatility (RV) of oil-price returns
(i.e., the sum of non-overlapping squared high-frequency oil returns observed within a day; see [22]
Andersen and Bollerslev 1998). Note that [23,24] Phan et al. (2016) and Chatrath et al. (2015) also
forecast realized oil-price volatility derived using intraday data, but instead of using the HAR model,
they use regression and GARCH-based models. The HAR model has become increasingly popular
because it is able to decode significant features of financial-market volatility, including long memory
and multi-scaling behavior. In sum, except for the recent studies of [17-20] Degiannakis and Filis
(2017), Liu et al. (2018), Chen et al. (2019) and Gkillas et al. (forthcoming), previous studies based on
intraday data are led to the conclusion that all models models fail to beat the accuracy of forecasting
that a simple HAR-RV model has using only the information embedded in the realized volatility in the
production of forecasts. On the other hand, Degiannakis and Filis (2017) [17] argued in favor of the
likelihood to outperform the HAR-RV model via the incorporation of information on the exogenous
volatilities of four different asset classes (stocks, currencies, commodities and macroeconomic policy),
whereas [20] Gkillas et al. (forthcoming) claim that forecast accuracy is improved when extending
the baseline linear HAR-RV model to incorporate an index of financial stress, since it explains the
possible asymmetry of the loss function of a forecaster. At the same time, Liu et al. (2018) and
Chen et al. (2019) [18,19] argued that the benchmark HAR-RV model can be outperformed when
considering time-variation and asymmetric jumps and co-jumps with the equity (5&P 500) market.

In light of this, our study aims to extend the existing (restricted) literature on forecasting realized
oil-price volatility (using 5 min-interval intraday data) based on the HAR-RV model by integrating
the role of a daily happiness index extracted from Twitter, as a proxy for (an otherwise unobservable)
investor sentiment into the modeling framework, where the sample period covers the daily period of
9 September 2008 to 26 May 2017. The happiness index has been successfully used in analyzing the
predictability of returns and volatility of international equity markets (see, for example, Zhang et al.,
2016, 2018, You et al., 2017, Reboredo and Ugolini 2018 [25-28]. The appeal of this index emanates
from the fact that it is available at high-frequency and global in nature, given the dominance of Twitter
users in countries serving as major players in the world financial system, and is likely to influence
a global market like oil. Intuitively, the impact of investor sentiment on RV of the oil market can either
be positive or negative, both a likely result owing to the financialization of the oil market. The fact
that investor sentiment can increase RV is contingent on the clinical and psychological evidence that
sentiment influences risk tolerance and, therefore, the tendency to speculate. Similarly, as soon as
investor sentiment improves, risk aversion reduces, leading to investors tolerating more risk, which
brings about more speculation in oil products and, hence, higher volatility due to higher trading [29,30]
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(Hong and Yogo 2012, Singleton 2014). At the same time, if investor sentiment weakens, with oil-related
products now serving as a possible hedge against risks in traditional financial assets [31,32] (Olson et al.,
2017, 2019), trading in the oil market may increase, resulting in higher volatility, and hence a negative
relationship between RV and the happiness index.

To the best of our knowledge, this is the first paper to analyze the role of the happiness index
in out-of-sample forecasting of the realized volatility of oil-prive movements. Two papers related to
our work are the studies by [33,34] Qadan and Nama (2018) and Zhang and Li (2019), who provide
in-sample evidence of predictability from measures of investor sentiment for oil-market volatility at
daily, weekly, and monthly frequencies, but not based on intraday data, using various linear, nonlinear,
and frequency-domain (wavelet) econometric methods. Somewhat related are the analyses of [35,36]
Guo and Ji (2013) and Ji and Guo (2015). They look at the role of internet-searches on oil-related
events for in-sample predictability of oil-market volatility. [37] Campbell (2008) highlighted that the
best test of any predictive model (with regard to the econometric methods used and in terms of the
predictors employed) is in its out-of-sample performance, and, hence, our analysis can be considered
to be a robust extension of the works of [33,34] Qadan and Nama (2018) and Zhang and Li (2019),
given that in-sample predictability cannot obligatorily induce out-of-sample predictability.

The remainder of the paper is organized as follows: Section 2 describes the methods used in
our empirical analysis. Section 3 presents our data. Section 4 summarizes our empirical results and
Section 5 concludes the paper .

2. Methods

Building on the results documented by [38] Andersen et al. (2012), we use intraday data to
compute the median realized variance (MRV) as our jump-robust estimator of the integrated daily
realized variance of oil-price returns. Since there is chance of confusion, in this study we make use of
the terms realized volatility and realized variance in an interchangeable way. The median realized
variance MRV has the advantage that it minimizes the potential effects of market-microstructure noise
and jumps in our study. More specifically, we use MRV because, first, it has has better theoretical
properties than other tripower variation estimators. Second, MRV is a jump-robust measure of
integrated variance. MRV is less biased than other estimators in the presence of jumps. Thereby,
MRV helps us to keep our forecasting models parsimonious. Third, MRV mitigates the effect of
microstructure noise and has better sample properties as compared to other estimators of realized
volatility. Fourth, MRV has better finite-sample robustness in the presence of “zero” intraday returns
during a trading day. We define MRV as follows:

_ T T
6—4/3+m1T—2

MRV, N Xeial)?, )

T-1
Z median (| X;;_1], | X},
i=2

where X, ; stands for intraday oil-price return i within day ¢, and i = 1, .., T is the number of oil-price
intraday observations (or T — 1 oil price returns within a day. The scaling factors make certain that
every summand on the right-hand side gives an unbiased estimate of the underlying spot variance if
the corresponding block of returns is i.i.d. Gaussian (see [38] Andersen et al., 2012 for more information
regarding this issue).

Variants of the HAR-RV model [21] (Corsi 2009) are employed for modeling and therefore
forecasting daily realized volatility of oil-price returns. The key feature of the HAR-RV model is
that it uses volatilities from different time resolutions to forecast the realized volatility of oil-price
returns. The model, thereby, captures the main idea motivating the heterogeneous market hypothesis
([39] Miiller et al., 1997). This hypothesis stipulates that different classes of market participants
populate the oil market, where traders in the different classes differ in their sensitivity to information
flows at different time horizons (that is, short-term traders versus long-term traders). Despite its
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simple structure, the HAR-RV model can capture various volatility properties (i.e., long memory and
multi-scaling behavior). The benchmark HAR-RV model is given as follows:

RVt+h:ﬁ0 + ,Bd RV; + ,Bw RVw,t + ,Bm Rvm,t + €t1n, (2)

where the index & stands the forecast horizon, the B’s represent the coefficients to be estimated, and €;, j,
represents the error term. We study a short and two longer forecast horizons: h = 1,5,22. As for the
two longer forecast horizons, we follow earlier literature and use the average daily realized volatility
over the forecast horizon being studied. Furthermore, RV,,; is the average RV from day t — 5 to day
t — 1, while RV}, ; stands for the average RV from day f — 22 to day t — 1. When we include investor
happiness (HA) in the benchmark HAR-RV model, we get the following extended model:

RVtJrh:,BO + ,Bd RVt + ,Bw RVw,t + ﬁm RVm,t + 0 HAt + €tip- (3)

We also extend the benchmark HAR-RV model in several other dimensions. These other
extensions render it possible to assess the role played by HA for forecasting realized volatility when we
take into account other predictors commonly studied in the literature on realized volatility. Specifically,
we extend the benchmark HAR-RV model to feature a measures of realized kurtosis (RKU) and realized

skewness (RSK). In line with [40] Amaya et al. (2015), RSK; = (Z\C E;(;)Sj;, and RKU; = (ZZl ;(ZX ;;,
i=1“*,i i=1“*,i

where scaling by /T and T, respectively, implies that the magnitudes correspond to daily skewness
and kurtosis. We consider RSK as a measure of the asymmetry of the daily oil-return distribution and
RKU as a measure that allows us to capture extreme deviations far away from the center of the daily
oil-return distribution. We also take into account jumps.

In line with [41] Andersen et al. (2011), when lim_,, RV} = f 1 02(s)ds + ZN‘l Ktz/j, where N;
is the number of jumps within day t, and «t,j is the jump size. Therefore RV} is as a consistent
estimator of the integrated variance ftt—l 0?(s)ds including the jump component. In this analysis,
in order to detect jumps we construct RV; by the following Y, X2 Then, following [42]
Barndorff-Nielsen and Shephard (2004), when limr_,, BV} ft 1 o2 s)ds, where BV; is the

Yl 1 XX,

realized bipower variation given by BV; = p "’ (%) Yr, \Xt/i,1||X‘,

where i, = E(|Z|*), Z RN (0,1), a > 0. Thus, BV; is considered as a consistent estimator of
integrated variance whiteout the jump component. We apply a formal test for detecting jumps. In line

with [43] Barndorff-Nielsen and Shephard (2006), the jump test is given by: JT; = —~%=B%__,
(Voo —gq) w TPt

where vy, = (E)z +7m—3, vy = 2, and TP stands for the Tri-Power Quarticity given by:
TP = Ty4/3 ( T ) Zl-T:3 X1 0]*3| X i-1|*3|X;,4|*/® which converges to TP, — ftil o*(s)ds even

in the presence of jumps. Take into account that for each t the JT; BN (0,1) as T — oo. Finally, based
on the study implement by [44] Zhou and Zhu (2012), the jump detection scheme is re-defined by the
following: J; = max(RV; — BV};0).

When we study the out-of-sample predictability of RV, we use a fixed-length daily rolling-estimation
window. We use as our benchmark a rolling-estimation window that comprises 1200 daily data
(which corresponds to approximately half the sample size), but we also study a somewhat shorter
(1000 daily data) and a somewhat longer (1400 daily data) rolling-estimation window. In order to
compare the out-of-sample accuracy of the different HAR-RV models (that is, the models without and
with HA included in the vector of regressors), we use the modified [45] Diebold and Mariano (1995) test
proposed by [46] Harvey, Leybourne and Newbold (1997). In doing so, we use the relative forecast errors
to take into account the impact of heteroskedasticity on our results (e.g., [47] Bollerslev and Ghysels
1996). All computations are carried out using the R programming environment ([48] R Core Team 2019).
Results for the Diebold-Mariano test are computed using the R package “forecast” ([49,50] Hyndman
2017, Hyndman and Khandakar 2008).
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3. Data

We employ intraday data obtained from West Texas Intermediate (WTI) oil futures traded in
NYMEX over a 24 h trading day (pit and electronic) to calculate daily measures of realized oil-price
volatility as well as realized skewness and kurtosis. The data (in continuous format) came from from
www.disktrading.com and www.kibot.com. When the expiration of a contract approaches, we roll over
the position of the contract to the next available one, given that there is an increase in activity. We define
daily oil-returns in terms of end of day (New York time) price difference (close to close). As for intraday
returns, we construct 5-min prices via last-tick interpolation, and we construct 5-min returns by taking
the log-differences of these prices, which we then use to calculate the realized skewness and kurtosis.
Following [51] Liu et al. (2015), a 5-min sampling frequency is adequate for liquid assets, such as WTI
futures. In other words, on the one hand, such sampling frequency used in this study is not too low
to give poor data analysis, while on the other hand it is not too high to give rise to spurious jumps
because of market frictions.

It is clear that investor sentiment cannot be directly considered as a measurable or observable.
Traditionally, two paths have been taken to measure investor sentiment ([52,53] Bathia and Bredin 2013,
Bathia et al. 2016). Taking the first path means that investor sentiment, as proposed by [54,55] Baker
and Wurgler (2006, 2007), is identified by several market-based measures that are used as proxies for
investor sentiment, while survey-based indices comprise the second path. More recently, building on
the research by [56] Da et al. (2015), who constructed an investor-sentiment index employing daily
Internet search data coming from millions of households in the U.S. by emphasizing specific ‘economic’
keywords that mirror investors’ sentiment towards economic developments, a third approach has
originated. The idea motivating this third approach is to extract metrics of investor sentiment from
news and contents of social media (for example, see [57] Garcia 2013). Da et al. (2015) [56] argued that
their method, and in general the third approach associated with internet-based measure of investor
sentiment, is more transparent compared to the two other competing market and survey-based
approaches. This is because the former has the disadvantage of being the equilibrium outcome of
many economic forces other than investor sentiment, while the latter is more likely to be beleaguered
by measurement errors as it inquires about attitudes. Furthermore, both traditional approaches tend to
produce metrics of investor sentiments at lower (monthly or quarterly) frequencies.

Keeping these points in mind, our proxy for investor sentiment corresponds to the daily happiness
index derived from the website https:/ /hedonometer.org/api.html. The raw daily happiness scores
are extracted by means of a natural language processing technique based on a random sampling of
about 10% (50 million) of all messages posted in Twitter’s Gardenhose feed. In order to quantify
the happiness of the atoms of language, Hedonometer.org merged the 5000 most frequent words
from a collection of four corpora: Google Books, New York Times articles, Music Lyrics, and Twitter
messages. The result is a composite collection of approximately 10,000 unique words. Then, using
Amazon’s Mechanical Turk service, Hedonometer.org had each of these words scored on a nine point
scale of happiness, with 1 corresponding to “sad” and 9 to “happy”. Words in messages written in
English (containing about 100 million words per day) are assigned a happiness score based on the
average happiness score of the words contained in the messages.

Our analysis spans the period from 9 September 2008 to 26 May 2017 on a daily basis, while the
start and end dates of the sample used are solely restricted by the availability of the happiness index
and the intraday data on oil prices, respectively. Basic statistics of the data used are given in Table 1.
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Table 1. Summary Statistics.

Statistic MRV  HA

Min 0.001 5.840
Mean 0424 6.026
Median 0222 6.033
Max 4997 6.357

Note: MRV was multiplied by the factor 10%. Number of observations = 2466.

4. Empirical Results

Table 2 summarizes our in-sample results for the full sample of data. The estimated coefficients
of MRV, MRV,, and MRV), are always significant at conventional levels of significance for all three
forecast horizons under consideration. The estimated coefficients are positive. The estimated coefficients
of RKU and RSK are not significant. [58] Mei et al. (2017) have observed significantly negative
coefficients of realized skewness and realized kurtosis in the case of realized stock-market volatility.

Table 2. In-Sample Results.

Results.Table Intercept MRV MRV, MRV, HA RKU RSK Adj. R2
h=1
HAR-RV 2.8153  4.0303 8.8586  1.7208 - - - 0.6354
p-value 0.0049  0.0001 0.0000  0.0853 - - - -
HAR-RV-HA 42709 37583 89359 19765  -4.2584 - - 0.6390
p-value 0.0000  0.0002 0.0000 0.0481  0.0000 - - -
HAR-RV-HA-RKU 45456 39123 85785  1.8141 —45257 —1.3242 - 0.6390
p-value 0.0000  0.0001  0.0000  0.0697  0.0000 0.1854 B -
HAR-RV-HA-RSK 42172 3.7246  8.9613 1.9992  —4.2049 - —1.4846  0.6391
p-value 0.0000  0.0002 0.0000 0.0456  0.0000 - 0.1377 -
HAR-RV-HA-RKU-RSK 4.4645 3.8698 8.6267  1.8390 —4.4448 -1.0451 —1.2514  0.6391
p-value 0.0000  0.0001 0.0000 0.0659  0.0000 0.2960 0.2108 -
h=5
HAR-RV 1.4702 39532 54185  2.8944 - - - 0.8431
p-value 0.1415  0.0001 0.0000  0.0038 - - - -
HAR-RV-HA —02349 3.8698 54262 27933  0.2532 - - 0.8431
p-value 0.8143  0.0001 0.0000  0.0052  0.8001 - - -
HAR-RV-HA-RKU —0.2244 4.0214 4.8399 26085  0.2416  —0.1102 - 0.8430
p-value 0.8225  0.0001  0.0000  0.0091  0.8091 0.9122 B -
HAR-RV-HA-RSK —0.2348 3.8914 54489  2.8141 0.253 - —0.0847  0.8430
p-value 0.8144  0.0001 0.0000  0.0049  0.8003 - 0.9325 -
HAR-RV-HA-RKU-RSK  —0.2235 4.0578 4.8533  2.6302  0.2406 —0.0956 —0.0679  0.8429
p-value 0.8231 0.0000  0.0000  0.0085  0.8099 0.9239 0.9459 -
h=22
HAR-RV 12423 49368 2.7946  1.9409 - - - 0.8410
p-value 0.2141 0.0000 0.0052  0.0523 - - - -
HAR-RV-HA —1.0653 49981 3.0358  2.0031 1.0739 - - 0.8416
p-value 0.2868  0.0000 0.0024  0.0452  0.2829 - - -
HAR-RV-HA-RKU —1.1839 4.8468 2.6076 1.8103  1.1898 0.9923 - 0.8415
p-value 0.2365  0.0000 0.0091  0.0702  0.2341 0.3210 - -
HAR-RV-HA-RSK —1.0820 49983 3.0343 2.0029  1.0908 - —1.0739  0.8416
p-value 0.2793  0.0000 0.0024 0.0452  0.2753 - 0.2829 -
HAR-RV-HA-RKU-RSK ~ —1.1341  4.8989  2.6945 1.8347 1.1397 1.2809 —1.2352  0.8416
p-value 0.2567  0.0000 0.0071  0.0666  0.2544 0.2002 0.2167 -

Note: p-values were computed based on Newey—West robust standard errors. Estimated coefficients were
scaled by their estimated standard error. Adj. R2 = adjusted coefficient of determination.

As already mentioned in Section 1, the link between investor happiness and realized volatility of
oil-price returns can be either positive or negative. Our in-sample results for the full sample of data
demonstrate that, when we use the HAR-RV model to capture the implications of the heterogeneous
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market hypothesis for the dynamics of realized volatility, the estimated coefficient of investor happiness,
HA, has a negative sign and is highly significant for /1 = 1, while the coefficient becomes insignificant
and turns positive for # = 5 and h = 22. The results for the HAR-RV model for i = 1, hence, can be
interpreted as indicating that, with oil acting as a hedge against risks in traditional financial assets,
trading in the oil market and, as a result, volatility increase in times of lower investor happiness
and, thereby, weaker investor sentiment. The results for the two longer forecast horizons, in contrast,
suggest that investor happiness has no clear effect on the dynamics of the oil price, perhaps reflecting
that the price pressure on oil is driven by a mixture of (i) the economic cycle (when investor happiness
is high; the price of oil goes up in good market condition due to increase in industrial production), and,
(ii) oil-market related shocks (when investor happiness is low). Any interpretation, however, should
not be stretched too far given that the estimated coefficient of investor happiness for h = 5 and h = 22
is not significantly different from zero.

Table 3 reports our main out-of-sample results. We report results for three different lengths of
the rolling-estimation window, three different forecast horizons, and two loss functions (linear and
quadratic). The results compare the accuracy of forecast computed by means of the HAR-RV model
with the accuracy of forecast as extracted from the HAR-RV-HA model. The results are consistent
across the linear and quadratic loss functions and strongly suggest that investor happiness improves
out-of-sample forecast accuracy for the short forecast horizon (that is, for 1 = 1). Results for the
two longer forecast horizons (h = 5 and h = 22 ) are not significant, which is consistent with the
in-sample results.

Table 3. Out-of-Sample Results.

Rolling Window h=1 h=5 h=22

L1 loss
1000 0.0269 05714 0.2693
1200 0.0007 0.4707 0.3105
1400 0.0000 0.9985 0.9274
L2 loss
1000 0.0327 0.7654  0.6027
1200 0.0049 0.8196 0.6977
1400 0.0015 09641 0.9762

Note: p-values of the modified Diebold—Mariano test under the assumption of a linear (L1 loss) and a quadratic
(L2 loss) function. Null hypothesis: the series of forecasts from the HAR-RV vs. HAR-RV-HA models are
equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-HA model are more accurate.

We next assess the robustness of our results. To this end, we document in Table 4 results for three
alternative HAR-RV models. On one model, we add realized kurtosis (RKU) to the vector of standard
HAR-RV regressors. In another model, we add realized skewness (RSK) to the benchmark HAR-RV
model. In yet another model, we consider a measure of jumps as an additional regressor. Results are
consistent across the three models: investor happiness improves forecast accuracy at the short but
not at the two longer forecast horizons. As another robustness check, we used the fluctuation test
developed by [59] Giacomini and Rossi (2010) to compare the HAR-RV with the HAR-RV-HA model.
Corroborating the results we report in Table 3, the fluctuations test indicates a superior performance of
the HAR-RV-HA model at the short forecast horizon. Results of the fluctuations test are available from
the authors upon request.
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Table 4. Robustness checks.

Specification Window h=1 h=5 h=22

HAR-RV-RKU vs. HAR-RV-RKU-HA 0.0055 0.8292  0.7168
HAR-RV-RSK vs. HAR-RV-RSK-HA 0.0045 0.8188  0.6888
HAR-RV-JUMP vs. HAR-RV-JUMP-HA 0.0055 0.8171  0.6962

Note: p-values of the modified Diebold-Mariano test under the assumption of a quadratic (L2 loss) function.
Null hypothesis: the series of forecasts from the variants of the HAR-RV vs. HAR-RV-HA models are equally
accurate. Alternative hypothesis: the forecasts from the HAR-RV model extended to include HA are more
accurate. Length of the rolling-estimation window: 1200 observations.

As a final extension, we estimate the HAR-RV model separately for a measure of downside and
upside realized semivariances. Barndorff-Nielsen et al. (2010) [60], among others, proposed and
further studied study the concept of downside and upside realized semi-variances (RV~ and RV ™)
as measures based entirely on downward or upward movements of intraday returns. RV, and RV,"

are computed by the following: RV, = ZlT:l X7, Ij(x,;)<0), and RV;"= Zszl X, Ii(x,,)>0), where I3
is the indicator function. Downside and upside realized semivariances allow us to capture the sign
asymmetry of the prices process, which is crucial for portfolio risk assessment and management. Again,
we observe significant test results, this time for downside as well as upside realized semivariance,
for the short forecast horizon. The test results for the two longer forecast horizons are insignificant

(Table 5).

Table 5. Good and bad realized volatility.

Rolling Window h=1 h=5 h=22

RVG
1000 0.0711 0.7816  0.4886
1200 0.0015 0.8577 0.6647
1400 0.0005 0.9646  0.9708
RVB
1000 0.0615 0.7825 0.5795
1200 0.0519 0.8274 0.6431
1400 0.0095 0.9687 0.9663

Note: p-values of the modified Diebold-Mariano test under the assumption of a quadratic (L2 loss) function.
Null hypothesis: the series of forecasts from the HAR-RVG/RVB vs. HAR-RVG/RVB-HA models are equally
accurate. Alternative hypothesis: the forecasts from the HAR-RV-HA model are more accurate. RVG: Good
realized volatility. RVB: Bad realized volatility.

5. Concluding Remarks

We have estimated various HAR-RV model to assess whether a recently developed search-based
measure of investor happiness predicts the daily realized volatility of oil-price returns, where we have
estimated realized volatility from high-frequency intraday data. We have reported results of both in
sample and out-of-sample analyses. Our main finding is that, when we use the HAR-RV model to
capture the implications of the heterogeneous market hypothesis, investor happiness is significantly
negatively linked at a short forecast horizon to realized volatility as far as the in-sample analysis is
concerned. In a similar vein, investor happiness improves the accuracy of short-term forecasts of
realized volatility in our out-of-sample analysis. In sum, our empirical results are consistent with
the view that (i) trading in the oil market and, thereby, realized volatility increase in times of lower
investor happiness because oil acts as a hedge against risks in traditional financial assets, and, (ii) this
hedging property helps to improve the accuracy of short-term out-of-sample forecasts of realized
volatility of oil-price returns.

In a recent paper, [61] Deeney et al. (2015) developed sentiment indices directly related to the WTI
and Brent crude oil markets using a suite of financial proxies similar to those used in equity research,
though at lower (monthly) frequency. As part of future research, it would be interesting to develop
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such indices at daily frequency and use it in our forecasting experiment. This will allow us to compare
the relative roles of the proxies of sentiments that are directly related to the oil market with those that
measure the general mood of investors associated with the overall financial market. Finally, it would
be particularly interesting to expand our study so as to see whether investor happiness predicts other
energy commodities.
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