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Abstract: The present study aims at developing an efficient bacterial consortium to biodegrade
butyric acid, one of the odor-causing compounds that contribute significantly to pit latrine malodors.
Six bacterial strains isolated from pit latrine fecal sludge were selected for the study. Nineteen
bacterial consortia of different combinations were artificially constructed. The individual bacterial
strains and bacterial consortia were compared by culturing in mineral salt medium supplemented
with 1000 mg/L butyric acid as a sole carbon and energy source at pH 7, 30 ◦C, and 110 rpm under
aerobic growth conditions. A co-culture of Serratia marcescens and Bacillus cereus was an effective
bacterial consortium compared to individual component bacterial strains and other bacterial consortia,
in which 1000 mg/L butyric acid was completely degraded within 16 h of incubation. A temperature
of 30 ◦C and pH 7 were found to be optimum for the maximum degradation for both S. marcescens
and B. cereus. The inoculation sizes of 2.0 and 2.5 were optimal for the maximum degradation for
B. cereus and S. marcescens, respectively. The study provides insights that will be of substantial help in
the development of effective biological treatment technologies for pit latrine odor to change the pit
latrine user community’s and would be users’ perception of pit latrines.

Keywords: Bacillus cereus; bacterial consortia; biodegradation; odor-causing compounds; sanitation;
Serratia marcescens

1. Introduction

United Nations member states adopted the 2030 Agenda for Sustainable Development in
September, 2015 to replace the expired Millennium Development Goals [1]. The Millennium
Development Goal sanitation targets were not achieved and were replaced with a more ambitious
Sustainable Development Goal (SDG) 6 sanitation target that aims to achieve access to adequate
and equitable sanitation for all by 2030. Globally, there are 2.4 billion people that have no access to
improved sanitation [1]. The worst affected people are living in the informal urban settlements and
rural areas in developing countries [2]. A lack of access to sanitation facilities compels people to practice
open defecation. Global estimates indicate that approximately 946 million people, without access to
improved sanitation, habitually practice open defecation [1]. This practice facilitates the spread of water
and sanitation related diseases, such as cholera, typhoid, hepatitis, polio, cryptosporidiosis, ascariasis
schistosomiasis, and others [3] that precipitate morbidity and mortality, especially in developing
countries [4].
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The relative importance of sanitation in the interruption of pathogen transmission through the
proper disposal of human excreta together with minimum levels of personal and domestic hygiene
have been reported in literature. [5,6]. Additionally, an investment in sanitation is not only crucial
for improved human health, but also offers a foundation for economic growth and social gains [7].
In developing countries, especially in the peri-urban and rural areas, pit latrines remain a predominant
method of providing on-site sanitation facilities [8]. Even though pit latrines are the lowest rung on the
sanitation ladder, they are utilized by an estimated 1.77 billion people worldwide [9]. The reality in the
developing countries is that the number of pit latrines is anticipated to increase either as a transitional
or permanent standalone solution or in combination with other improved human excreta disposal
systems if the SDG 6 sanitation target is to be met. However, pit latrines are not without performance
limitations. Malodors emanating from the pit are one of the performance limitations associated with
pit latrines. Malodors are reported to be one of the most important determinants of the investment,
adoption, and consistent use of pit latrines [10–12].

Butyric acid is one of the predominant odor-causing compounds detected in pit latrine
emissions [13]. In its pure state, it has an extremely pungent, sweet, and rancid smell that makes it
quite difficult to tolerate [14]. Butyric acid, a four-carbon volatile organic compound, is an intermediate
product generated in the anaerobic bioconversion of complex organic matter to methane and carbon
dioxide [14]. Some pit latrine fecal portions are anaerobic accumulation systems for stabilizing
both human wastes, grey water, and household solid wastes [15,16]. This means that they can emit
malodorous compounds, including butyric acid [17]. The mechanism for the generation of malodorous
compounds, including butyric acid, are described by Mainville [18]. To promote the uptake and
consistent use of pit latrines and, consequently, reduce the practice of open defecation in developing
countries, it is a necessity to develop appropriate low-cost and intrinsically environmentally friendlier
pit latrine deodorization techniques. These techniques may attenuate or eliminate the odor-causing
compounds, such as butyric acid, to realize the benefits of sanitation.

Numerous pro-poor techniques and strategies have been devoted to the elimination of
unpleasant smells in developing countries. These include the use of naturally scented substances,
wood ash, saw dust, disinfectants, dry grass, husks, pesticides, oil, laundry and soapy water,
detergents, and car-battery acids. Modified latrine designs, such as a ventilated improved pit
(VIP) latrine, urine-diversion, and composting toilets and water seal latrines, etc., have also been
used [10,19,20]. Although these techniques and strategies are available, they are associated with their
own social, economic, institutional, and technological challenges, which have often made them a less
desirable choice.

Bioremediation is the use of microorganisms to transform or mineralize hazardous organic
materials into harmless or less hazardous compounds [21]. In this process, microorganisms obtain
energy from the oxidation of primary substrates—i.e., carbon—which are converted into innocuous
end products, such as carbon dioxide (CO2), water (H2O), inorganic salts, some volatile organic
compounds, and microbial biomass, by assimilating part of the carbon into new cell material [22].
Microorganisms play a significant role in degrading pollutants in the environment [23]. Microorganisms
capable of degrading malodorous compounds may be an attractive alternative to the existing odor
control techniques and strategies currently used in low-income settings. Previous studies [24–26] have
found that many bacterial strains can degrade butyric acid. However, despite the increased attention
internationally in bioremediation, there is limited information on the biodegradation of butyric acid in
the environment, particularly in pit latrine fecal sludge.

The importance of reducing malodors in pro-poor sanitation technologies, such as pit latrines,
has not received much attention, despite their widespread use with respect to developing
countries. Most of the literature related to odor reduction in wastewater focuses on high-tech
sanitation technologies. Our previous work showed that Achromobacter xylosoxidans, Bacillus subtilis,
Lysinibacillus fusiformis, B. cereus, P.Pseudomonas aeruginosa, Bacillus methylotrophicus, S. marcescens,
Achromobacter animicus, and Alcaligenes sp. strain SY1 isolated from pit latrine fecal sludge samples
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could grow using butyric acid as a sole source of carbon and energy [27]. However, bacteria in
natural environments do not live in seclusion, but they dynamically interact with many other bacterial
strains in complex multispecies communities [28]. Precisely for this reason, the present study seeks
to address the following research questions: (1) do the constructed bacterial consortia enhance
butyric acid degradation or not? (2) How do selected environmental factors of initial inoculation
size, temperature, and pH affect the performance of individual strains of the most efficient bacterial
consortium? The following objectives were derived from the research questions: to evaluate and
compare the butyric acid degradation efficiencies of the bacterial consortia formulated using different
combinations and their respective individual bacterial strains; to evaluate the effect of initial inoculation
concentration, temperature, and pH on the growth and butyric acid degradation efficiencies of the
constituent bacterial strains of the most efficient bacterial consortium.

2. Materials and Methods

2.1. Bacterial Cultures

The bacterial strains used in this work were isolated from pit latrine fecal sludge in Mpumalanga
Province, South Africa (26◦5′24” S, 28◦58′17” E). The bacterial strains were phylogenetically identified
in our previous work [20]. The bacterial cultures were maintained by streaking on nutrient agar
medium and incubated at 35 ◦C in a static incubator for 24 h. Thereafter, the cultures were kept at 4 ◦C.
The maintenance was done every two weeks.

2.2. Chemicals and Media

Butyric acid was purchased from Sigma-Aldrich Inc., St. Louis, MO, USA. HPLC grade H2SO4

was purchased from Glassworld, South Africa. NaOH, HCl, 37% W/W, as well as all other chemicals
used for the preparation of the growth medium were purchased from Merck Chemicals (Pty) Ltd.,
Johannesburg, South Africa. Ultra-filtered, deionized water (18.2 MΩ) was prepared by a Purelab
Flex purification system, ELGA Lab Water Ltd., London, U.K. Sterilized deionized water was used
to make 6 M NaOH. All chemicals used in the experiments were of analytical grade—the highest
purity available.

The mineral salt medium (MSM) used for the isolation, maintenance, and growth of bacteria,
as well as the bacterial degradation of butyric acid, was prepared according to Roslev et al. [29]. The pH
of the MSM was adjusted to 7.0 with 6 M NaOH unless otherwise stated. The other medium that was
used was 31 g of nutrient agar in 1 L. Both culture media were prepared in deionized water (18.2 MΩ)
and sterilized by autoclaving at a temperature of 121 ◦C and pressure of 115 kg/cm2 for 15 min prior
to use.

2.3. Phylogenetic Tree Construction

The phylogenetic trees of S. marcescens and B. cereus were constructed using the best-fit evolutionary
model parameters determined by MEGA version 6 [30]. The best of the Nearest Neighbor Interchange
and Subtree-Pruning-Regrafting search algorithms were applied for tree searching. Branch support
was evaluated using bootstrap analyses based on the same model parameters and was estimated using
100 pseudo replicates [30].

2.4. Bacterial Consortia Development

The isolates for the consortium development were selected based on two categories. The first
category comprised of three bacterial strains that were able to degrade butyric acid completely within
20 h. The second category comprised of three bacterial strains that were able to degrade butyric acid
within 24 h. Bacterial consortia were formulated using the selected bacterial strains by applying a
combinational statistical formula, which is denoted by Equation (1) [31]:
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(n r ) =
n!

r!(n− r)!
(1)

where (n r) is the combinatorial symbol, read as “n choose r”, n is the total number of bacterial strains,
and r is the number of bacterial strains in each consortium. The bacterial consortia were developed by
aseptically mixing in 1/1 (V/V) (1 mL of pure bacterial cell suspension with absorbance of 2.0 (OD600))
into a 50 mL pre-sterilized centrifuge tube (Greiner Bio-One, Kremsmünster, Austria). The mixture
was then vigorously vortexed to ensure the homogenous distribution of all bacterial strains.

2.5. Butyric acid Degradation by Pure cultures and Bacterial Consortia

The experiments were carried out by inoculating 1 mL of bacterial consortium or pure bacterial
cultures into 150 mL each of MSM supplemented with 1000 mg/L of butyric acid as a sole carbon
source in a sterile 250 mL Erlenmeyer volumetric flask in triplicates. Abiotic MSM with the same
butyric acid concentration was used as the control in triplicates. After sealing with aseptic cotton
wool, the flasks were incubated in the dark at 30 ◦C in a temperature-controlled rotary shaker at an
agitation rate of 110 rpm for 24 h. The samples were taken aseptically at regular 4 h time intervals to
determine the butyric acid concentration, as well as the optical density. The samples for determining
the butyric acid degradation were taken at time, t = 4, 8, 12, 16, 20, and 24 h. The suspensions were
vortexed and centrifuged for 10 min at 10,000 rpm at 4 ◦C. The supernatant from each sample was
analyzed by high-performance liquid chromatography (HPLC), as explained in Section 2.7. Based on
Equation (2), the degradation efficiency at given time intervals was expressed as the percentage of
butyric acid degraded in relation to the remaining butyric acid in appropriate abiotic control samples

Dt (%) = ((Bi − Bt)/Bi) × 100 (2)

where Dt was the butyric acid degradation efficiency (%) at incubation time (h), Bi was the initial
butyric acid concentration (mg/L) of the abiotic sample, and Bt was the butyric acid concentration
(mg/L) of the biotic sample at incubation time, t (h).

2.6. Effect of Environmental Parameters on Bacterial Growth and Butyric Acid Degradation

The effects of temperature, pH, and inoculum size on butyric acid degradation and the growth
of S. marcescens and B. cereus were investigated. Bacterial strain cell suspension was inoculated in
250 mL Erlenmeyer flasks in triplicates containing 150 mL MSM supplemented with 1000 mg/L of
butyric acid as a sole source of carbon. The Erlenmeyer flasks were kept at varied temperatures,
initial pH values, and initial inoculum sizes and incubated for 16 h by inoculating (OD600 = 2.0) the
biomass of each of the bacterial strains separately unless otherwise stated. The effects of temperature
on butyric acid degradation and bacterial growth were assessed at various temperatures of 25, 30, 35,
40, and 45 ◦C at pH 7 and 110 rpm. The effects of the initial pH value on butyric acid degradation and
bacterial growth were assessed with MSM initial pH values of 5, 6, 7, 8, 9, and 10 at 30 ◦C and 110 rpm.
The initial pH values were obtained by the titration of concentrated HCl or 6M NaOH. To assess the
effect of the initial inoculum concentrations on butyric acid degradation and bacterial growth, MSM
was inoculated with 1 mL of cell suspension with varied inoculum sizes of 0.5, 1.0, 1.5, 2.0, and 2.5 at
30 ◦C, pH 7, and 110 rpm. Abiotic controls were also set up for each experiment. After 16 h, the butyric
acid degradation efficiencies in the respective cultures’ flasks were determined based on Equation (2).

2.7. Analytical Methods

The degradation of butyric acid was determined by HPLC using a Waters Alliance 2695 Separation
Module HPLC system (Waters Corporation, Milford, MA, USA) equipped with Aminex HPX-87H
ion-exclusion organic acid, 300 mm × 7.8 mm, 9 µm particle size column (Bio-Rad Laboratories,
Berkeley, CA, USA). The mobile phase was 0.02 MH2SO4 (1.1 mL of 98% H2SO4 with 18.2 MΩ



Sustainability 2020, 12, 5156 5 of 18

deionized water to a final volume of 1.0 L). The isocratic flow rate used was 1 mLmin−1 and the
column temperatures were maintained at 60 ◦C. An injection volume of 10 µL was used for all
analyses. The column eluent was passed through a Waters 2998 photodiode array detector (PAD)
equipped with a micro UV cell (Waters Corporation, Milford, MA, USA) monitored at a wavelength
of 210 nm. The bacterial growth was spectrophotometrically monitored by measuring the optical
density at single wavelength λ = 600 nm (OD600) using a UV Lightwave II spectrophotometer (Labotec,
Gauteng, South Africa).

3. Results and Discussion

3.1. Selection of the Bacterial Strains

The effective biodegradation of butyric acid entails the presence of an acclimatized microbial
population capable of degrading butyric acid. Bacterial isolates were consequently obtained from
composite fecal sludge from the pit latrines that had butyric acid as one of the emitted compounds
responsible for malodors [17]. The detailed representative total ion chromatogram of the fecal sample
is presented in Figure 1. These bacterial isolates were well adapted to the pit latrine environment;
hence, it is assumed that they have better potential for the degradation of butyric acid in such
similar environments. In our previous work [27], nine bacterial strains were found to possess butyric
acid-degrading capabilities.
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Figure 1. Detailed total ion chromatogram of fecal sludge sample, mass spectrum of butyric acid, and
chemical structure of butyric acid.

However, in this work, only six bacterial strains were selected. These butyric acid-degrading
bacterial strains were phylogenetically identified based on the 16S rRNA gene sequencing (Table 1).
The bacterial strains were selected because they are commonly associated with fecal sludge according
to previous studies found in the literature. For instance, in their study on the estimation of nitrous
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oxide (N2O) release from pit toilets in Mulbagal town, Karnataka, India, Rao et al. [32] revealed that the
microbial denitrification reaction was facilitated by Pseudomonas spp., Serratia spp., B. cereus, B. subtilis,
and Achrobacter spp. Similarly, Déportes et al. [33] and Carrington [34] have indicated that Bacillus spp.,
Pseudomonas spp., and Serratia spp. were bacteria of epidemiological concern that are associated with
fecal sludge. Thus, the isolation of the indigenous bacterial strains that are acclimated to the local
environmental conditions of pit latrine fecal sludge are vital for the microbial proficiency of butyric
acid removal in the pit latrine or analogous environments [35].

Table 1. Computation of Bacterial Consortia Using the Six Selected Butyric Acid-Degrading Bacteria:
A. xylosoxidans (AX), B. cereus (BC), P. aeruginosa (PA), S. marcescens (SM), A. animicus (AA), and
Alcaligenes sp. Strain SY1 (AS).

Bacterial Strains Group Computed Bacterial Consortia Using
Combinations Consortium Designation

Top Two Best Bacterial Strains in
Category 1 and Best Bacterial Strain in

Category 2 [AX, SM, BC]

[AX, SM]
[AX, BC]
[SM, BC]

C1
C2
C3

Top Two Best Bacterial Strains in
Category 1 and Top Two Best Bacterial
Strains in Category 2 [AX, SM, BC, AA]

[AX, SM, BC]
[AX, SM, AA]
[AX, BC, AA]
[SM, BC, AA]

C4
C5
C6
C7

All Three Bacterial Strains in Category
1 and Top Two Best Bacterial Strains in

Category 2
[AX, SM, BC, AA, PA]

[AX, SM, BC, AA]
[AX, SM, BC, PA]
[AX, SM, AA, PA]
[AX, BC, AA, PA]
[SM, BC, AA, PA]

C8
C9

C10
C11
C12

All Three Bacterial Strains in Category
1 and all Three Bacterial Strains in

Category 2
[AX, SM, BC, AA, PA, AS]

[AX, SM, BC, AA, PA]
[AX, SM, BC, AA, AS]
[AX, SM, BC, PA, AS]
[AX, SM, BC, PA, AS]
[AX, BC, AA, PA, AS]
[SM, BC, AA, PA, AS]

C13
C14
C15
C16
C17
C18

All Six Bacterial strains [AX, SM, BC, AA, PA, AS] C19

3.2. Butyric Acid Degradation by Pure Bacterial Strains

To take the role as butyric acid attenuation agents, the bacterial strains ought to have the capacity
to grow in an environment that contains a high concentration of butyric acid as a sole source of
carbon. Butyric acid degradation by individual pure bacterial strains was assessed at an initial
butyric acid concentration of 1000 mg/L in a defined MSM. The choice of 1000 mg/L butyric acid
concentration in the present study was based on the butyric acid concentration used for experiments
in our previous study [27]. According to Lin et al. [17], 90% of pit latrines surveyed in Durban,
Nairobi, Kampala, and Pune, and the model toilet had a butyric acid concentration between 46.2
and 1042 mg/L. The comparison of butyric acid degradation efficiencies by the individual bacterial
strain cultures is shown in Figure 2a, and their corresponding bacterial growth curves are indicated
in Figure 2b. The results showed that butyric acid biodegradation occurred in each of the bacterial
strains, as measured by the HPLC analysis and comparison to abiotic controls.

The butyric acid degradation efficiency results reflected the relationship between bacterial growth
and butyric acid degradation. In all the experiments, the removal of butyric acid was accompanied by
a concomitant increase in bacterial growth even though the length of the lag phase varied between
the bacterial strains. After 4 h, the results showed that A. xylosoxidans degraded 4.0% of the butyric
acid and B. cereus degraded 3.7% of the butyric acid when compared with the abiotic control. At the
end of 8 h, B. cereus, P. aeruginosa, A. xylosoxidans, A. animicus, S. marcescens, and Alcaligenes spp.
strain SY1 degraded 24.9%, 12.16%, 7.03%, 4.84%, 3.94%, and 2.10%, respectively, when compared
with the abiotic control. The results suggested that the inoculum degradation efficiencies of butyric
acid past 8 h incubation time were in descending order, as follows: A. xylosoxidans > B. cereus >
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P. aeruginosa > S. marcescens > A. animicus > Alcaligenes spp. strain SY1 compared to the abiotic control.
However, it is also evident from Figure 2a that each bacterial strain showed variations in butyric acid
degradation efficiencies at different times. It was observed that the rates of degradation were high in the
exponential phase of bacterial growth. It was clearly shown that all three bacterial strains—P. aeruginosa,
A. xylosoxidans, and B. cereus could perform the complete degradation of 1000 mg/L butyric acid within
20 h of incubation, as shown in Figure 2a.
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Whilst the bacterial strains Alcaligenes sp. strain SY1, A. animicus, and S. marcescens could degrade
1000 mg/L of butyric acid completely within 24 h of incubation, no butyric acid degradation was
observed in the abiotic controls. Studies regarding bacteria-degrading butyric acid have been reported
in the literature [24–26]. Nevertheless, except for the study by Chin et al. [26], all these studies were
performed with butyric acid as a sole source of carbon. To the best of our knowledge and after
a thorough literature search, none of the bacterial strains used in this work have been specifically
reported as butyric acid-degrading bacteria.

3.3. Degradation of Butyric Acid by Bacterial Consortia

Characteristically, the application of individual bacterial strains for biodegradation does not
represent the real situation of environmental microorganisms during the biodegradation of butyric
acid in pit latrine fecal sludge. This is because in real environmental settings, biodegradation relies
on the cooperative metabolic activities of mixed microbial populations. There are no studies in the
literature regarding the construction of bacterial consortia from bacterial strains isolated directly from
pit latrine fecal sludge for the biodegradation of butyric acid. Nineteen different bacterial consortia that
were constructed involving the selected bacterial strains in five different combinations are presented in
Table 1.

The successful bacterial consortium was established based on the compatibility of the individual
component bacterial strains of the consortium. Hence, there was an absence of any antagonism among
constituent bacterial strains to concomitantly accomplish all the metabolic processes for enhanced
degradation [36]. From the 19 constructed bacterial consortia, the best performing bacterial consortia
were selected based on comparatively higher butyric degradation efficiency in relation to the mean
degradation efficiencies of the individual component bacterial strains studied after 16 h of incubation
under the same environmental conditions. The 16-h incubation time was chosen for comparison
because some of the bacterial consortia had already achieved 100% butyric acid degradation within 16 h
of incubation. Butyric acid degradation, which was examined after 16 h of incubation, as measured by
the HPLC analysis, is shown in Figure 3. The butyric acid degrading bacteria in all the samples achieved
the degradation efficiencies in the range of 55.6% to 100% after 16 h of incubation, as monitored by
the HPLC.
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Figure 3. Butyric acid degradation by different constructed bacterial consortia after 16 h of incubation
at pH 7, 30 ◦C, and 110 rpm.
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The concentration of butyric acid in all the treatments varied throughout the incubation period
monitored (data not shown). The samples inoculated with bacterial consortia, C1, C2, and C3,
achieved 100% butyric acid degradation within 16 h of incubation. However, the bacterial consortium,
C3 (combination of S. marcescens and B. cereus), had the highest degradation efficiencies at all sampling
times (4 h, 8 h, and 12 h) compared to the other bacterial consortia that degraded butyric acid completely
within 16 h (data not shown). Moreover, the butyric acid degradation efficiency of consortium, C3,
was higher than the individual butyric acid degradation efficiencies of S. marcescens and B. cereus of
52.4% and 78.3%, respectively. This is much higher than the butyric acid degradation efficiencies of the
individual component bacterial strains of consortia, C1 and C2, as shown in Table 2. The phylogenetic
trees of S. marcescens and B. cereus, showing the closest relatives as maintained by National Centre for
Biotechnology Information using BLAST searches at http://www.ncbi.nlm.nih.gov/BLAST based on the
16S rRNA gene sequence are shown in Figure 4a,b, respectively. Substantial degradation efficiencies of
butyric acid of 86.0%, 99.9%, and 97.6% were also achieved in the samples inoculated with bacterial
consortia C4, C7, and C16, respectively. The butyric acid degradation efficiencies of C7 and C16 were
the same. This was also higher compared to the butyric acid degradation efficiencies of the individual
component bacterial strains. It was apparent that the biodegradation of butyric acid by these consortia
were more effective, as they outperformed the individual component bacterial strains of the consortia.

Table 2. Degradation Efficiencies of Individual Bacterial Strains and Their Mean Efficiencies and
Degradation Efficiencies of Consortia.

Degradation Efficiencies of Individual Bacterial Strains (%) Mean Efficiency
(%)

Consortium
Degradation

Efficiencies of
Consortia (%)AX SM BC AA PA AS

94.97 52.41 - - - - 73.69 C1 100
94.97 - 78.29 - - - 86.63 C2 100

- 52.41 78.29 - - - 65.35 C3 100
94.97 52.41 78.29 - - - 75.22 C4 97.56
94.97 52.41 - 57.16 - - 68.18 C5 94.86
94.97 - 78.29 57.16 - - 76.81 C6 85.33

- 52.41 78.29 57.16 - - 62.62 C7 99.89
94.97 52.41 78.29 57.16 - - 70.71 C8 55.66
94.97 52.41 78.29 - 71.57 - 74.31 C9 63.28
94.97 52.41 - 57.16 71.57 - 69.03 C10 75.82
94.97 - 78.29 57.16 71.57 - 76.24 C11 71.89

- 52.41 78.29 57.16 71.57 - 64.85 C12 65.15
94.97 52.41 78.29 57.16 71.57 - 70.88 C13 74.53
94.97 52.41 78.29 57.16 - 44.94 65.55 C14 73.21
94.97 52.41 78.29 - 71.57 44.94 68.44 C15 86.21

- 52.41 78.29 57.16 71.57 44.94 60.87 C16 86.01
94.97 - 78.29 57.16 71.57 44.94 69.39 C17 81.31
94.97 52.41 - 57.16 71.57 44.94 64.21 C18 80.79
94.97 52.41 78.29 57.16 71.57 44.94 67.39 C19 82.82

The results suggested that bacterial synergism may be indispensable for butyric acid degradation
in the pit latrine fecal sludge where the bacterial strains were isolated. It is widely recognized in the
field of microbiology that coordinated bacterial consortia have the potential to be more productive,
robust, and effective to environmental fluctuations than individual pure bacterial cultures [37]. This is
undoubtedly because of the concerted activities of the individual component bacterial strains of
the consortium.

The interspecific interactions within the constructed bacterial consortia that coxswained to improve
the degradation ability were not determined. However, numerous mechanisms that promote synergetic
interactions between constituent members of the degradative mixed communities in nature have been
postulated by Deng and Wang [38], but in the present study, two possible mechanisms may be offered
at this point based on previous reports inter alia, including:

(i) the metabolic and physiological inadequacies of one bacterial strain in the consortium are
compensated for by the presence of other bacterial strains in the consortium with the appropriate

http://www.ncbi.nlm.nih.gov/BLAST
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complementary physiology, which are able to provide the appropriate metabolic benefit to all
bacterial strains involved [39];

(ii) associated metabolism, wherein one bacterial strain in the consortium take up the intermediates
of the metabolic pathway released during the degradation of butyric acid, which may be toxic
and which may hinder the metabolic activities, thus, appearing to protect the other constituents
of the bacterial consortium from toxicity that would otherwise accrue from the accumulation of
the metabolites [40].
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Several studies of the biodegradation potency of bacterial consortia exhibiting similar results
were reported earlier. Thus, for instance, a defined consortium of indigenous Pseudomonas
and actinobacteria offered a synergetic activity for effective poly aromatic hydrocarbon removal
capabilities when compared to their pure cultures [41]. A mixed bacterial consortium described by
Sathishkumar et al. [42], in which Bacillus sp. IOS17, Corynobacterium sp. BPS2-6, Pseudomonas sp.
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HPS2-5, and Pseudomonas sp. BPS1-8 incubated together showed the superior growth and degradation
of crude oil to individual bacterial strains. Saratale et al. [43] reported evidently higher degradation
and decolorization efficiency for a mixture of reactive dyes by a bacterial consortium of Proteus
vulgaris and Micrococcus glutamicus compared to the use of individual bacterial strains. Similarly,
Tizntzun-Camacho et al. [44] found low hexadecane degradation efficiencies by pure cultures of
Xanthomonas sp., Acinobacter bouvetti, and Defluvibacter lusatiensis, which were noticeably enhanced
(79 ± 3%) when such bacterial strains were grown together. The concerted metabolic potential of
the mixed cultures to degrade butyric acid has also been reported by Kristiansen et al. [45], wherein
uncharacterized bacterial strains only identified as members of phyla—Microbacterium, Gordonia,
Acetobacteria, Rhodococus, Propionibacteria, Janibacter, Alpha-, Beta-, and Gamma—proteobacteria were
used. The results showed up to 70% reduction of organic acids, including butyric acid, in the presence
of other odorous compounds in a full-scale biological air filter treating air from a pig facility. Similarly,
Sheridan et al. [14] used a mixed aerobic microbial culture consisting of two fungi and five bacterial
strains of phylum, Gamma-proteobacteria, identified as members of genera—Moraxella, Enterobacter,
and Pseudomonas—which were isolated from under a diesel storage tank for the degradation of butyric
acid from waste exhaust air.

Other bacterial consortia—C5, C6, C8, C9, C10, C11, C12, C13, C14, C15, C17, C18, and
C19—exhibited lower degradation efficiencies compared to the degradation efficiencies of at least
one of the individual component bacterial strains that made up each of them, as shown in Table 2.
The possible explanation could be that the bacterial strains were engaged in competition for a pool of
resources with limited availability, such as space, dissolved oxygen, and nutrients. This is very common
for constituent bacterial strains with analogous nutritional requirements within the consortium [46,47].
Studies that have demonstrated that the combined efforts of consortia may not always have a synergetic
effect for all the substrates were also found in the literature. Kumar and Phillip [48] reported that
the degradation of endosulfan was performed potently better in monocultures of three bacterial
strains—Staphylococcus sp., Bacillus circulans-I, and Bacillus circulans-II—than by them in a consortium.
Similar results were observed by Guo et al. [49], who demonstrated that the isolate of Paracoccus spp.
was more efficient in the degradation of pyrene than that of the mixed cultures.

3.4. Environmental Factors Affecting the Growth and Butyric Acid Biodegradation by Bacterial Consortium, C3

Effective biodegradation can only be achieved when environmental conditions are favorable
for microorganisms’ metabolic activities [50]. In the present study, factors such as temperature, pH,
and inoculum size, as explained in Section 2.6, were considered for each of the bacterial strains (B. cereus
and S. marcescens) of bacterial consortium, C3, to elucidate how they can affect the accomplishment of
the butyric acid biodegradation process and their growth.

3.4.1. Effect of Incubation Temperature

In microbiology, it is well established that biological processes, such as aerobic metabolism and
growth, are known to exhibit environmental temperature dependence [51]. Temperature influences
the rates of enzymatically catalyzed reactions and the diffusion rate of the substrate to the cell [52].
Both S. marcescens and B. cereus degraded significant quantities of butyric acid at various incubation
temperatures (25, 30, 35, and 40 ◦C) at 16 h of incubation, as shown in Figure 5. The results show that the
growth and butyric acid degradation of both S. marcescens and B. cereus were optimal at an incubation
temperature of 30 ◦C. It was observed that there was a slight gradual decrease in the bacterial growth
and degradation efficiencies of butyric acid when the incubation temperature decreased from 30 to
25 ◦C. The degradation efficiencies of S. marcescens and B. cereus decreased from 72.41% to 70.42%
and 78.29% to 66.37%, respectively, at 16 h of incubation. This could be due to a reduced catalytic
capacity at lower temperatures [51]. However, the bacterial growth and butyric acid degradation
efficiencies decreased when the incubation temperature increased by the same 5 ◦C with comparatively
higher decreased degradation efficiencies at 16 h of incubation. This suggests the bacterial strains
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were much less sensitive to low temperatures than high temperatures. There was a drastic decrease in
bacterial growth and butyric acid degradation efficiencies at 16 h of incubation with an increase of
incubation temperature from 40 to 45 ◦C. This could be attributed to the denaturation of proteins at high
temperatures. This is because with a further rise in temperature, the components with heat sensitivity,
such as enzymes, which are secreted outside the cell into the surrounding medium to perform metabolic
processes, are irreversibly denatured and growth rates drop quickly and cause inhibition and then
mortality [53]. Furthermore, with increasing temperature, the solubility of oxygen is decreased in the
aqueous phase and, as a result, the metabolic activity of aerobic microbes is reduced [54].
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Figure 5. Growth and degradation of butyric acid after 16 h of inoculation by S. marcescens and B. cereus
at different incubation temperatures: butyric acid degradation efficiency: bar graphs; bacterial growth;
line graph.

This is supported by the previous report that temperatures higher than the organism’s optimum
temperature range causes cell death, which is fast, while lower temperatures still result in cell
death rate, which is slower [55]. The complete degradation of butyric acid was observed in the
inoculated flasks incubated at 30 ◦C at 16 h of incubation. These results are in accordance with
the work of Chin et al. [26], who reported that a temperature of 30 ◦C was an optimal incubation
temperature for the degradation of the butyric acid by Acinetobacter calcoaceticus at a pH of 7 under
aerobic conditions. The literature available regarding temperature values inside pit latrines is limited.
However, a study by Sherpa et al. [56] found that the temperature of fecal sludge sampled from
urine-diverting dehydrating toilets with ash as a primary additive in Kathmandu Valley, Nepal was
in a range of 19.5–32.8 ◦C. Similarly, Nabateesa et al. [57] investigated the temperature of fecal sludge
inside pit latrines in Kampala, Uganda. The temperature was found to be in a range of 22.3–30.7 ◦C,
with an overall mean of 25.4 ◦C, with higher temperatures in the top layer and decreasing with depth.
According to Nwaneri et al. [58], aerobic processes inside pit latrines occur in the top layers of fecal
sludge portions of pit contents. Therefore, the temperature and the aerobic nature of fecal sludge in the
top layer of pit contents can favorably support the metabolic activities of the bacterial strains, since it
provides the mesophilic temperature range at which both S. marcescens and B. cereus optimally grow
and degrade butyric acid.
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3.4.2. Effect of Initial pH of the Medium

pH is another important parameter for microbes and different species prefer different pH values.
Environmental pH has a strong effect on their cell metabolism and growth. The effect of medium pH
on the bacterial growth and butyric acid degradation efficiencies over an initial medium pH of 5 to 10
are shown in Figure 6. The pH range was carefully chosen to mimic the range of pH values found in
pit latrine fecal sludge in the range of environmental settings according to previous studies [57,59,60].
However, the pH values of fecal sludge are more complex, since they are influenced by numerous
factors [60].
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Figure 6. Growth and degradation of butyric acid after 16 h of inoculation by S. marcescens and B. cereus
at different initial medium pH: butyric acid degradation efficiency: bar graphs; bacterial growth:
line graph.

In the samples inoculated with S. marcescens or B. cereus, substantial bacterial growth and butyric
acid degradation were observed at an initial pH of 5 to 7 at 16 h of incubation. An increase in the
initial pH above pH 7 significantly decreased the bacterial growth butyric acid degradation of both
bacterial strains. In the range of initial pH investigated, the highest bacterial growth and butyric acid
degradation for both B. cereus and S. marcescens were achieved at an initial medium pH of 7 at 16 h
of incubation. This suggests that the butyric acid-degrading enzymes have their optimal enzymatic
activity in neutral surroundings, implying that the bacterial strains are neutrophiles. Coincidentally,
the optimal degradation of butyric acid as the sole carbon source inoculated with Acinetobacter
calcoaceticus, Burkholdeira cepacia, and Wautersia paucula was accomplished at pH 7.0 [26].

In the pH values outside the range of 6 to 8, the bacterial strains exhibited a characteristic sensitivity
to pH that inhibited bacterial growth and butyric acid degradation. It is, however, worth mentioning
that the bacterial strains might have mechanisms to modify the pH of the medium. It was noted that
the pH of the culture medium with initial pH values in the acidic condition increased with incubation
time and shifted towards the optimal pH. On the other hand, the pH of the culture medium with initial
pH values of the extreme alkaline condition decreased with incubation time and shifted towards the
optimal pH (data not shown). The increasing and lowering of pH of the culture medium could be due
to the production of organic acids and ammonia, respectively, as metabolic products [26,61]. However,
further research is required to understand the mechanisms that the bacterial strains use to modify the
extremes of medium initial pH.
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3.4.3. Effect of Initial Inoculum Size

To ascertain the effect of the initial inoculation size on the degradation of butyric acid and
bacterial growth, the initial inoculum sizes varied from 0.5 to 2.5. Only 1 mL in a volume of cell
suspension prepared with these optical densities was used. This means that different inoculum
sizes affected the initial population of bacteria in the medium. After increase in the initial inoculum
sizes of B. cereus from 0.5 to 2.0 after 16 h of incubation, the bacterial growth increased marginally
and the butyric acid degradation efficiencies varied, but not significantly, as shown in Figure 7.
The optimal degradation efficiency was reached at 2.0. However, with an increase in inoculation
concentration above 2.0, there was a decrease in butyric acid degradation, as well as bacterial growth.
The decrease in degradation efficiency with a further increase in initial inoculum size is not a new
phenomenon. Increasing the inoculum size of Bacillus thuringiensis did not result in the dimethyl
phthalate degradation [62]. This is because a bacterial population rise also intensifies the bacterial
competition for resources, such as substrates, oxygen, space, etc., and, therefore, restricts bacterial
growth when these resources are depleted in the medium [63].
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Figure 7. Growth and degradation of butyric acid after 16 h of inoculation by S. marcescens and B. cereus
with different initial inoculum sizes: butyric acid degradation efficiency: bar graphs; bacterial growth:
line graph.

The results showed that an increase in inoculum size from 0.5 to 1.5 did not reduce the lag
phase (data not shown) to help the batch system to attain the exponential growth phase rapidly to
attain significant butyric acid degradation. This could be because the initial densities of the bacteria
were not large enough to ensure quick proliferation and biomass synthesis in the cultivation [64],
while for S. marcescens, the optimum degradation was attained with an inoculum size of 2.5.
For economic and comparison purposes, the inoculum size was not increased. The increase in the initial
inoculum size of S. marcescens resulted in increased butyric acid degradation and bacterial growth.
Bildan and Monomania [65] reported that the aerobic degradation of dichlorodiphenyltrichloroethane
by S. marcescens DT-1P increased with an increase in inoculum size in liquid culture. The differences
between the two bacterial strains could be attributed to the fact that dissimilar bacterial strains have
different population sizes that can do rapid and complete butyric acid degradation.
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4. Conclusions

This work provides an insight into the potential impacts of the composition of bacterial consortium
on the biodegradation of butyric acid. The work has shown that the effectiveness of the constructed
bacterial consortia to enhance butyric acid degradation is not simply a result of the adding together of
the individual component bacterial strain degradation capacities of the consortium. The co-culture
of S. marcescens and B. cereus was selected as an effective butyric acid degrading consortium that
degraded 1000 mg/L butyric acid in liquid culture within 16 h. This may be the first instance in which
1000 mg/L of butyric acid degradation has been achieved in a short incubation time of 16 h. However,
the detailed molecular mechanism of butyric acid degradation by consortium C3 and the contribution
of S. marcescens and B. cereus individually in the degradation process will be further carried out to
envision the role that each play in the consortium. A temperature of 30 ◦C and pH 7 were found to be
optimum for maximum degradation for both S. marcescens and B. cereus. The inoculation concentrations
of 2.0 and 2.5 were optimal for maximum degradation for S. marcescens, B. cereus, and S. marcescens,
respectively. Even though laboratory studies may not accurately reflect butyric acid biodegradation
occurring in situ, this work suggests that the biodegradation process studied here has potential
application for the attenuation of butyric acid-related malodors emanating from pit latrines, and this
might lead to the development of better deodorization technologies. This work is of international
value, as it will contribute to knowledge and progress on the bioremediation of odors emitted from pit
latrine fecal sludge, hence, leading to improved sanitation uptake in developing countries.
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