Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Field Management
2.3. Measurements and Calculations
2.3.1. Soil Temperature
2.3.2. Soil Water Storage
2.3.3. Aboveground Fresh Yield
2.3.4. Silage, Grain, and Biomass Yield
2.3.5. Economic Benefits
2.4. Statistical Analyses
3. Results
3.1. Weather Conditions
3.2. Soil Temperature
3.2.1. Soil Temperature in the 5–25 cm Soil Layer Throughout the Growing Season
3.2.2. Soil Temperature of Different Soil Layer Throughout the Growing Season
3.2.3. Soil Temperature in the 5–25 cm Soil Layer at Different Growth Stages
3.2.4. Spatiotemporal Dynamic Temperature Difference at Different Soil Layers of Different Growth Stages
3.3. Soil Water Storage in the 0–200 cm Soil Layer throughout the Growing Season
3.4. Maize Growth Development Accumulation at Different Stages
3.4.1. Maize Growth Day Accumulation at Different Stages
3.4.2. Accumulated Temperature at Different Stages
3.4.3. Aboveground Fresh Weight Accumulation
3.5. Silage, Grain, and Biomass Yield, Silage Harvest Parameters, and Grain Yield Components
3.6. Economic Benefits of Silage, Grain, and Biomass Yields
3.7. Agricultural Ecological Environment before and after Straw Strip Mulching Crops in RainFed Agricultural Regions
4. Discussion
4.1. Straw Strip Mulching Affects the Temporal and Spatial Dynamics of Soil Temperature
4.2. Straw Strip Mulching Increased Soil Water Storage
4.3. Straw Strip Mulching Increased the Silage Yield, But Grain Yield Was Opposite
4.4. Straw Strip Mulching Increased Net Economic Return from Silage Yield
4.5. Straw Strip Mulching as an Alternative to Plastic Film Mulch in Maize Production in Rainfed Regions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Statistical Databases and Data-Sets of the Food and Agriculture Organization of the United Nations. 2010. Available online: http://faostat.fao.org/default.aspx (accessed on 28 April 2010).
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Pute, W.; Zhao, X.N.; Persaud, N. Effect of different mulches on harvested rainfall use efficiency for corn (Zea mays L.) in semi-arid regions of Northwest China. Arid. Land Res. Manag. 2013, 27, 272–285. [Google Scholar] [CrossRef]
- Li, N.; Chen, Q.; Du, W.W.; Wang, L.L. Research on the optimization of corn planting structure under the background of supply-side reform of agriculture-Base on the measurement of specialization level of corn production in the northwest region of China. Food Econ. Res. 2017, 3, 61–72. [Google Scholar]
- Bai, Y.H.; He, J.; Li, H.W.; Wang, Q.J.; Chen, H.; Kuhn, N.J.; Hikel, H.; Chen, F.; Gong, Y.S. Soil structure and crop performance after 10 years of controlled traffic and traditional tillage cropping in the dryland Loess Plateau in China. Soil Sci. 2009, 174, 113–119. [Google Scholar] [CrossRef]
- Zhang, S.L.; Sadras, V.; Chen, X.P.; Zhang, F.S. Water use efficiency of dryland maize in the loess plateau of china in response to crop management. Field Crops Res. 2014, 163, 55–63. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.J.; Qi, J.G.; Li, F.M. A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China. Agric. For. Meteorol. 2018, 248, 458–468. [Google Scholar] [CrossRef]
- Nolan, S.; Unkovich, M.; Shen, Y.Y.; Li, L.L.; Bellotti, W. Farming systems of the Loess Plateau, Gansu Province, China. Agric. Ecosystems Environ. 2008, 124, 13–23. [Google Scholar] [CrossRef]
- Bu, L.D.; Liu, J.L.; Zhu, L.; Luo, S.S.; Chen, X.P.; Li, S.Q.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.X.; Jacinthe, P.A. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems? Agric. Water Manag. 2017, 190, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mo, F.; Wang, J.Y.; Zhou, H.; Luo, C.L.; Zhang, X.F.; Li, X.Y.; Li, F.M.; Xiong, L.B.; Kavagi, L.N.; Nguluu, S.; et al. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in east African plateau. Agric. For. Meteorol 2017, 236, 100–112. [Google Scholar] [CrossRef]
- Dong, H.Z.; Li, W.J.; Tang, W.; Zhang, D.M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res. 2009, 111, 269–275. [Google Scholar] [CrossRef]
- Wang, Y.J.; Xie, Z.K.; Malhi, S.S.; Vera, C.L.; Zhang, Y.B.; Wang, J.N. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid loess plateau, china. Agric. Water Manag. 2009, 96, 374–382. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, F.Y.; Jia, Z.K.; Ren, X.L.; Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Tillage Res. 2017, 166, 113–121. [Google Scholar] [CrossRef]
- Jiang, R.; Li, X.; Zhu, W.; Wang, K.; Guo, S.; Misselbrook, T.; Hatano, R. Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China. Agric. Water Manag. 2018, 203, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2017, 612, 422–435. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.; Gonçalves, J.M.; Shi, H.; Tian, T.; Chen, N. Effects of residual plastic-film mulch on field corn growth and productivity. Sci. Total Environ. 2020, 729, 138901. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Niu, W.Q.; Zou, X.Y.; Liu, J.J.; Zhang, M.Z.; Lü, W.; Gu, J. Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis. Trans. Chin. Soc. Agric. Eng. 2016, 32, 110–119. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Chen, X.; Wang, Z. Straw mulch as an alternative to plastic film mulch: Positive evidence from dryland wheat production on the Loess Plateau. Sci. Total Environ. 2019, 676, 782–791. [Google Scholar] [CrossRef]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Li, B.; Wu, H.; Giesy, J.P. Controlling air pollution from straw Burning in China calls for efficient recycling. Environ. Sci. Technol. 2012, 46, 7934–7936. [Google Scholar] [CrossRef] [PubMed]
- Boccia, F.; Di Donato, P.; Covino, D.; Poli, A. Food waste and bio-economy: A scenario for the Italian tomato market. J. Clean. Prod. 2019, 227, 424–433. [Google Scholar] [CrossRef]
- Wheaton, H.N.; Sewell, H.B.; Martz, F.A.; Meinershagen, F.H. Corn Silage. 1993. G4590. Available online: http://extension.missouri.edu (accessed on 28 April 2010).
- Schroede, J.W. Corn Silage Management; NDSU Extension Service Publication: Morrill Hall, NE, USA, 2004; p. AS–1253. [Google Scholar]
- Pishgar Komleh, S.H.; Keyhani, A.; Rafiee, S.; Sefeedpary, P. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy. 2011, 36, 3335–3341. [Google Scholar] [CrossRef]
- Wang, J.D.; Zhang, Y.Q.; Gong, S.H.; Xu, D.; Juan, S.; Zhao, Y.F. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain. Field Crops Res. 2018, 217, 218–228. [Google Scholar] [CrossRef]
- Soon, Y.K.; Lupwayi, N.Z. Straw management in a cold semi-arid region: Impact on soil quality and crop productivity. Field Crops Res. 2012, 139, 39–46. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Li, Z.; Lai, X.; Yang, Q.; Yang, X.; Cui, S.; Shen, Y. In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Res. 2018, 217, 199–210. [Google Scholar] [CrossRef]
- Xiao, L.G.; Zhao, R.Q.; Kuhn, N.J. Straw mulching is more important than no tillage in yield improvement on the Chinese Loess Plateau. Soil Tillage Res. 2019, 194, 104314. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Khan, A.; Ren, G.; Afridi, M.Z.; Feng, Y.; Yang, G. Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Yang, H.K.; Wu, G.; Mo, P.; Chen, S.H.; Wang, S.Y.; Xiao, Y.; Ma, H.L.A.; Wen, T.; Guo, X.; Fan, G.Q. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Tang, H.M.; Xiao, X.P.; Tang, W.G.; Wang, K.; Sun, J.M.; Li, W.Y.; Yang, G.L. Effects of winter covering crop residue incorporation on CH4 and N2O emission from double- cropped paddy fields in southern China. Environ. Sci. Pollut. Res. 2015, 22, 12689–12698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, P.F.; Liu, E.K.; He, W.Q.; Sun, Z.X.; Dong, W.Y.; Yan, C.R.; Zhang, Z. Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China. Arch. Agron. Soil Sci. 2018, 64, 398–408. [Google Scholar] [CrossRef]
- Song, D.G.; Pan, K.W.; Zhang, A.P.; Wu, X.G.; Tariq, A.; Chen, W.K.; Li, Z.L.; Sun, X.M.; Olatunji, O.L.; Zhang, L. Optimization of growth and production parameters of walnut (juglans regia) saplings with response surface methodology. Sci. Rep. 2018, 8, 9992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahma, A.E.; Wang, W.; Tang, Z.J.; Lei, T.W.; Warrington, D.N.; Zhao, J. Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agric. For. Meteorol. 2017, 232, 141–151. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Jones, O.R. Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil Tillage Res. 2002, 68, 71–82. [Google Scholar] [CrossRef]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Yang, B. Effects of rainfall harvesting and mulching technologies on soil water, temperature, and maize yield in Loess Plateau region of China. Soil Res. 2012, 50, 105–113. [Google Scholar] [CrossRef]
- Yin, W.; Feng, F.X.; Zhao, C.; Yu, A.Z.; Hu, F.L.; Chai, Q.; Gan, Y.T.; Guo, Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int. J. Biometeorol. 2016, 60, 1423–1437. [Google Scholar] [CrossRef]
- Salinas-Garcia, J.R.; Baez-Gonzalez, A.D.; Tiscareño-López, M.; Rosales-Robles, E. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil Tillage Res. 2001, 59, 67–79. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Pang, H.C.; Wang, J.; Huo, L.; Li, Y.Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Dong, Q.G.; Yang, Y.C.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Mufradi, I.; Klitman, S.; Asido, S. Wheat grain yield and soil profile water distribution in a no-till arid environment. Agron. J. 1999, 91, 368. [Google Scholar] [CrossRef]
- Taa, A.; Tanner, D.; Bennie, A.T.P. Effects of stubble management, tillage and cropping sequence on wheat production in the south-eastern highlands of ethiopia. Soil Tillage Res. 2004, 76, 69–82. [Google Scholar] [CrossRef]
- Gao, Y.J.; Li, Y.; Zhang, J.C.; Liu, W.G.; Dang, Z.P.; Cao, W.X.; Qiang, Q. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutr. Cycl. Agroecosyst. 2009, 85, 109–121. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Sun, H.Y.; Shao, L.W. Cause and mechanism of winter wheat yield reduction under straw mulch in the north China plain. Chin. J. Eco Agric. 2013, 21, 519–525. [Google Scholar] [CrossRef]
- Chai, S.X. A new technique of crop planting with straw strip mulching in rainfed area. J. Gansu Agric. Univ. 2014, 49, 42. [Google Scholar] [CrossRef]
- Lan, X.M.; Huang, C.X.; Li, B.W.; Li, S.L.; Song, Y.L.; Chai, Y.W.; Cheng, H.B.; Chang, L.; Chai, S.X. Effects of different mulching materials on soil temperature and yield of winter wheat in northwest arid land of china. J. Triticeae Crops. 2016, 36, 1084–1092. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Chai, S.X.; Tian, H.H.; Chai, Y.W.; Li, Y.W.; Chang, L.; Cheng, H.B. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric. Water Manag. 2019, 211, 142–151. [Google Scholar] [CrossRef]
- Chang, L.; Han, F.; Chai, S.; Cheng, H.; Yang, D.; Chen, Y. Straw strip mulching affects soil moisture and temperature for potato yield in semiarid regions. Agron. J. 2020, 112, 1126–1139. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Soil map of the world: Revised legend. In World Soil Resources; Report no. 60; Food and Agriculture Organization of the United Nations: Rome, Italy, 1990. [Google Scholar]
- Chinese Soil Taxonomy Cooperative Research Group. Chinese Soil Taxonomy (Revised Proposal); Institute of Soil Science/Chinese Agricultural Science and Technology Press: Beijing, China, 1995. [Google Scholar]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; PMR 1009; Iowa State University: Ames, IA, USA, 2011. [Google Scholar]
- Li, R.; Hou, X.Q.; Jia, Z.K.; Han, Q.F.; Ren, X.L.; Yang, B.P. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Accurate determination of moisture content of organic soils using the oven drying method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Filya, I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim. Feed Sci. Technol. 2004, 116, 141–150. [Google Scholar] [CrossRef]
- China National Agricultural Market Service Database. Available online: http://datacenter.cngrain.com (accessed on 28 April 2010).
- Ji, Y.H.; Zhou, G.S.; He, Q.J.; Wang, L.X. The effect of climate change on spring maize (Zea Mays, L.) suitability across china. Sustainability 2018, 10, 3804. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Li, Z.; Sun, Z.; Bu, Q. Straw mulching reduces maize yield, water, and nitrogen use in Northeastern China. Agron. J. 2015, 107, 406–414. [Google Scholar] [CrossRef]
- Li, X.Y.; Gong, J.D.; Gao, Q.Z.; Li, F.R. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions. Agric. Water Manag. 2001, 50, 173–183. [Google Scholar] [CrossRef]
- Lu, H.D.; Xue, J.Q.; Hao, Y.C.; Gao, J. Effects of black film mulching on soil environment and maize growth in dry land. Acta Ecol. Sin. 2016, 36, 1997–2004. [Google Scholar] [CrossRef]
- Liakatas, A.; Clark, J.A.; Monteith, J.L. Measurements of the heat balance under plastic mulches. I. Radiation balance and soil heat flux. Agric. For. Meteorol. 1986, 36, 227–239. [Google Scholar] [CrossRef]
- Gan, Y.T.; Siddique, K.H.M.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.P.; Chai, Q. Chapter seven—Ridge-furrow mulching systems—An innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.S.; Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef]
- Jurgens, S.K.; Johnson, R.R.; Boyer, J.S. Dry matter production and translocation in maize subjected to drought during grain fill. Agron. J. 1978, 70, 678–682. [Google Scholar] [CrossRef]
- Tollenaar, M. Response of dry matter accumulation in maize to temperature: Ii. leaf photosynthesis. Crop. Sci. 1989, 29, 1275–1279. [Google Scholar] [CrossRef]
- Bhardwaj, R.L. Effect of mulching on crop production under rainfed condition–A review. Agric. Rev. 2013, 34, 188–197. [Google Scholar] [CrossRef]
- Dong, J.; Liu, J.; Tao, F.; Xu, X.; Wang, J. Spatio-temporal changes in annual accumulated temperature in china and the effects on cropping systems. Clim. Res. 2009, 40, 37–48. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Yan, Q.Y.; Dong, F.; Lou, G.; Yang, F.; Lu, J.X.; Li, F.; Zhang, J.C.; Li, J.H.; Duan, Z.Q. Alternate row mulching optimizes soil temperature and water conditions and improves wheat yield in dryland farming. J. Integr Agric. 2018, 17, 2558–2569. [Google Scholar] [CrossRef]
- Chakraborty, D.; Garg, R.N.; Tomar, R.K.; Singh, R.; Sharma, S.K.; Singh, R.K.; Trivedi, S.M.; Mittal, R.B.; Sharma, P.K.; Kamble, K.H. Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 2010, 97, 738–748. [Google Scholar] [CrossRef]
- Walter, A.; Schurr, U. Dynamics of leaf and root growth: Endogenous control versus environmental impact. Ann. Bot. 2005, 95, 891–900. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesström, I.; Brito, R.; Messing, I. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. Field Crops Res. 2017, 200, 143–162. [Google Scholar] [CrossRef]
- Afyuni, M.M.; Cassel, D.K.; Robarge, W.P. Effect of landscape position on soil water and corn silage yield. Soil Sci Soc. Am. J. 1993, 57, 1573. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.J.; Huang, G.H. Effects of different tillage methods on soil water content and water productivity of silage summer maize. Trans. Chin. Soc. Agric. Eng. 2012, 28, 91–98. [Google Scholar]
- Liu, X.E.; Li, X.G.; Hai, L.; Wang, Y.P.; Fu, T.T.; Turner, N.C.; Li, F.M. Film mulched ridge-furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci. Soc. Am. J. 2014, 78, 1434–1441. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.G.; Guan, Z.H.; Jia, B.; Turner, N.C.; Li, F.M. The effects of plastic-film mulch on the grain yield and root biomass of maize vary with cultivar in a cold semiarid environment. Field Crops Res. 2018, 216, 89–99. [Google Scholar] [CrossRef]
- Chen, Y.L.; Liu, T.; Tian, X.H.; Wang, X.F.; Li, M.; Wang, S.X.; Wang, Z.H. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Zhou, L.M.; Li, F.M.; Jin, S.L.; Song, Y.J. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of china. Field Crops Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Zhou, L.M.; Jin, S.L.; Liu, C.A.; Xiong, Y.C.; Si, J.T.; Li, X.G.; Gan, Y.T.; Li, F.M. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crops Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Zhang, S.L.; Li, P.R.; Yang, X.Y.; Wang, Z.H.; Chen, X.P. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res. 2011, 112, 92–97. [Google Scholar] [CrossRef]
- Lyu, Y.; Li, J.; Hou, R.X.; Zhu, H.; Zhu, W.X.; Hang, S.; Ouyang, Z. Goats or pigs? Sustainable approach of different raising systems fed by maize silage. J. Clean. Prod. 2020, 254, 120151. [Google Scholar] [CrossRef]
- Kumm, K.-I. Sustainability of organic meat production under Swedish conditions. Agric. Ecosyst. Environ. 2002, 88, 95–101. [Google Scholar] [CrossRef]
- Koesling, M.; Hansen, S.; Schueler, M. Variations of energy intensities and potential for improvements in energy utilisation on conventional and organic Norwegian dairy farms. J. Clean. Prod. 2017, 164, 301–314. [Google Scholar] [CrossRef]
- Argemi-Armengol, I.; Villalba, D.; Ripoll, G.; Alvarez-Rodriguez, J. Genetic but not lean grade impact on growth, carcass traits and pork quality under organic husbandry. Livest. Sci. 2019, 227, 75–81. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, W.; Li, T.; Cheng, X.; Liu, Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renew. Sust. Energ. Rev. 2018, 81, 2695–2702. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 2017, 51, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
Years | Mulching method a | Yield (kg ha−1) | Silage harvest parameter | Grain yield components | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Silage | Grain | Biomass | X1 | X2 | X3 | X4 | X5 | X6 | ||
2017 | DRWP | 105,467b b | 9873a | 23,806a | B | 1 | 75.1c | 53,043a | 553b | 337a |
DRBP | 102,188c | 9793b | 22,633b | B | 1 | 76.6b | 52,255b | 571a | 328b | |
MSSM | 112,376a | 7724c | 19,410c | A | 2 | 82.0a | 52,360b | 531c | 277c | |
2018 | DRWP | 129,938b | 11,551a | 28,440a | B | 1 | 75.0c | 53,130a | 659a | 347a |
DRBP | 124,722c | 11,081b | 27,730b | B | 1 | 76.8b | 52,360b | 666a | 333b | |
MSSM | 135,334a | 9726c | 26,593c | A | 2 | 79.0a | 51,853c | 640b | 308c | |
p > F | Mulching method (M) | <0.001 | <0.001 | <0.001 | — | — | <0.001 | <0.001 | <0.001 | <0.001 |
Years (Y) | <0.001 | <0.001 | <0.001 | — | — | <0.001 | 0.009 | <0.001 | <0.001 | |
M * Y | <0.001 | 0.002 | <0.001 | — | — | <0.001 | <0.001 | <0.001 | <0.001 |
Variable a | Soil Depth (cm) | 2017 | 2018 | ||||
---|---|---|---|---|---|---|---|
Yield (kg ha−1) | Yield (kg ha−1) | ||||||
Silage | Grain | Biomass | Silage | Grain | Biomass | ||
SWS (MGP) | 0−200 | 0.572 | −0.823 ** b | −0.918 ** | 0.893 ** | −0.971 ** | −0.955 ** |
ST (MGP) | 0−25 | −0.757 * | 0.939 ** | 0.975 ** | −0.804 ** | 0.981 ** | 0.986 ** |
Mean ST throughout the whole growth period | 5 | −0.760 * | 0.911 ** | 0.914 ** | −0.919 ** | 0.964 ** | 0.938 ** |
10 | −0.860 ** | 0.979 ** | 0.974 ** | −0.902 ** | 0.989 ** | 0.958 ** | |
15 | −0.866 ** | 0.981 ** | 0.977 ** | −0.901 ** | 0.964 ** | 0.947 ** | |
20 | −0.600 | 0.840 ** | 0.919 ** | −0.684 * | 0.933 ** | 0.963 ** | |
25 | −0.566 | 0.820 ** | 0.916 ** | −0.156 | 0.611 | 0.708 * | |
Mean ST at the two leaf collar stage | 5 | −0.712 * | 0.911 ** | 0.962 ** | −0.932 ** | 0.980 ** | 0.947 ** |
10 | −0.792 * | 0.951 ** | 0.979 ** | −0.882 ** | 0.988 ** | 0.974 ** | |
15 | −0.820 ** | 0.966 ** | 0.984 ** | −0.853 ** | 0.957 ** | 0.955 ** | |
20 | −0.821 ** | 0.968 ** | 0.979 ** | −0.759 * | 0.948 ** | 0.965 ** | |
25 | −0.689 * | 0.901 ** | 0.957 ** | −0.233 | 0.680 * | 0.778 * | |
Mean ST at the six leaf collar stage | 5 | −0.875 ** | 0.982 ** | 0.962 ** | −0.934 ** | 0.936 ** | 0.907 ** |
10 | −0.862 ** | 0.983 ** | 0.980 ** | −0.931 ** | 0.958 ** | 0.905 ** | |
15 | −0.781 * | 0.950 ** | 0.983 ** | −0.917 ** | 0.928 ** | 0.902 ** | |
20 | −0.439 | 0.719 * | 0.843 ** | −0.859 ** | 0.948 ** | 0.931 ** | |
25 | −0.379 | 0.674 * | 0.811 ** | −0.480 | 0.804 ** | 0.854 ** | |
Mean ST at the silking stage | 5 | 0.094 | −0.149 | −0.217 | −0.857 ** | 0.929 ** | 0.924 ** |
10 | −0.058 | −0.130 | −0.240 | −0.805 ** | 0.677 * | 0.581 | |
15 | −0.485 | 0.379 | 0.278 | −0.947 ** | 0.845 ** | 0.788 * | |
20 | 0.715 * | −0.787 * | −0.786 * | −0.509 | 0.821 ** | 0.863 ** | |
25 | 0.593 | −0.410 | −0.237 | −0.396 | 0.665 | 0.720 * | |
Mean ST at the milk stage | 5 | −0.050 | −0.208 | −0.390 | −0.812 ** | 0.918 ** | 0.893 ** |
10 | 0.181 | −0.361 | −0.490 | −0.612 | 0.852 ** | 0.883 ** | |
15 | 0.210 | −0.298 | −0.330 | −0.214 | 0.386 | 0.401 | |
20 | 0.580 | −0.791 * | −0.871 ** | 0.058 | 0.358 | 0.452 | |
25 | −0.338 | 0.001 | −0.196 | 0.460 | 0.018 | 0.135 | |
Mean ST at the physiological maturity stage | 5 | 0.875 ** | −0.844 ** | −0.776 * | −0.775 * | 0.834 ** | 0.805 ** |
10 | 0.770 * | −0.926 ** | −0.959 ** | −0.358 | 0.647 | 0.686 * | |
15 | 0.253 | −0.559 | −0.710 * | −0.728 * | 0.882 ** | 0.875 ** | |
20 | 0.780 * | −0.925 ** | −0.942 ** | −0.064 | 0.521 | 0.624 | |
25 | 0.534 | −0.676 * | −0.713 * | 0.619 | −0.162 | −0.043 |
Year | Dependent Variable | Grain Yield | Ears ha−1 | Kernels ear−1 |
---|---|---|---|---|
2017 | Ears ha−1 | 0.414 | ||
Kernels ear−1 | 0.867 ** | −0.069 | ||
Thousand kernel weight (g) | 0.995 ** | 0.495 | 0.813 ** | |
2018 | Ears ha−1 | 0.905 ** | ||
Kernels ear−1 | 0.850 ** | 0.598 | ||
Thousand kernel weight (g) | 0.979 ** | 0.935 ** | 0.792 * |
Year (Y) | Mulching Method (M) a | Dependent Variable | ||||||
---|---|---|---|---|---|---|---|---|
TIC | RS | NERFS | TIC/RS | RG | NERFG | TIC/RG | ||
2017 | DRWP | 8016 | 27,421b b | 19,405b | 0.292b | 17,771a | 9755a | 0.451b |
DRBP | 8016 | 26,569c | 18,553c | 0.302a | 17,627b | 9611b | 0.455a | |
MSSM | 4866 | 29,218a | 24,352a | 0.167c | 13,903c | 9037c | 0.350c | |
2018 | DRWP | 8016 | 33,784b | 25,768b | 0.237b | 20,792a | 12,776a | 0.386b |
DRBP | 8016 | 32,428c | 24,412c | 0.247a | 19,945b | 11,929b | 0.402a | |
MSSM | 4866 | 35,187a | 30,321a | 0.138c | 17,507c | 12,641a | 0.278c | |
p > F | M | — | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 |
Y | — | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
M * Y | — | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Chai, S.; Coulter, J.A.; Cheng, H.; Chang, L.; Huang, C.; Li, R.; Chai, Y.; Li, Y.; Ma, J.; et al. Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region. Sustainability 2020, 12, 6273. https://doi.org/10.3390/su12156273
Lan X, Chai S, Coulter JA, Cheng H, Chang L, Huang C, Li R, Chai Y, Li Y, Ma J, et al. Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region. Sustainability. 2020; 12(15):6273. https://doi.org/10.3390/su12156273
Chicago/Turabian StyleLan, Xuemei, Shouxi Chai, Jeffrey A. Coulter, Hongbo Cheng, Lei Chang, Caixia Huang, Rui Li, Yuwei Chai, Yawei Li, Jiantao Ma, and et al. 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region" Sustainability 12, no. 15: 6273. https://doi.org/10.3390/su12156273
APA StyleLan, X., Chai, S., Coulter, J. A., Cheng, H., Chang, L., Huang, C., Li, R., Chai, Y., Li, Y., Ma, J., & Li, L. (2020). Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region. Sustainability, 12(15), 6273. https://doi.org/10.3390/su12156273