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Abstract: The supply chain is currently taking on a very important role in organizations seeking
to improve the competitiveness and profitability of the company. Its transversal character mainly
places it in an unbeatable position to achieve this role. This article, through a study of each of the
key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state
of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the
scientific community says is carried out, dividing each of the technologies into different categories.
In addition, the global vision of countries interested in each of the enabling technologies is also
studied. Both studies present a general vision to the companies of the concerns of the scientific
community, thus encouraging research on the subject that is focused on the sustainability of the
shipbuilding supply chain.

Keywords: sustainability; supply chain; shipbuilding; key enabling technologies; industry 4.0

1. Introduction

The existing flow of materials and information within an organization is defined as the supply
chain, and it goes from the suppliers of raw materials to the consumer of the final product [1].
In addition, the Council of Supply Chain Management Professionals also assigns it the role of
integrator among all actors involved. The evolution of the supply chain has reached the point
where it is considered a strategic concept within the business model of companies [2]. This strategic
tool, with a multidisciplinary and transversal character, affects the three strategic levels that are
distinguished in the organizations. The first strategic level defines where the organization is framed
and the market in which it competes. The second strategic level defines how it will compete and the
third, functional strategy as put into practice within each area that makes up the company [3].

Based on this transversality, which is assigned to the supply chain, the models that can be most
interesting to follow are studied. The techniques and practices provided by lean manufacturing are
fully applicable to the supply chain as it is considered a network of small businesses that becomes
a network of small independent companies, which must be coordinated in the best possible way.
A lean supply chain supports collaborative relationships based on mutual trust between suppliers,
develops programs to give them technical support, establishes open door policies, and promotes
participation from the first stages of working as a team in the search for solutions [4].

The agile contribution to the supply chain allows it to respond to the continuous changes that
exist in the market by establishing new competencies. It is based on a dynamic structure management
providing information visibility [5]. There is also the supply chain defined as a combination of both
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paradigms, known as leagile [6]. Most studies focus on the supply chain from a financial risk aspect,
which has led to new studies from a social perspective, hence creating a new model [7]. In addition,
it is known at the outset how many interruptions a supply chain will be subjected to, and, knowing
this, the most appropriate approach would be to try to prevent and properly manage the changes in
status that the supply chain may be subjected to. Resilience offers this contribution [8].

Special mention is made of sustainability. Sustainability and green—there are different terms
that refer to this concept but, although there are nuances, the objective is the same. It must be
understood that the sustainable supply chain concerns the creation of economic, environmental,
and social considerations—in other words, integrating the environment into the management of the
supply chain [9].

For the shipbuilding sector, sustainability carries a very important weight. To be able to integrate
the environmental dimension into all the operations carried out within a shipyard has been a matter of
vital importance in the last years. Therefore, one of the advantages of such integration into the supply
chain will give the company a certain competitive advantage, for example, with regard to improving
energy efficiency [10,11].

Considered also are the efforts that have been lately directed towards its adaptation to the
requirements marked by Industry 4.0 in order not to be left behind in the market, this being the
only way to survive in such a competitive market in a sector. That is why it is proposed to
improve management by using a tool as useful in this sense as the systematic review for companies.
For companies, used to using business articles, the contribution provided by a scientific study is
beneficial for decision-making [12].

The term Industry 4.0 originated in Germany, where Kagermann, Lukas and Wahlster based their
industrialization proposal on nine high technologies, in addition to establishing strategies for their
implementation, which were later known as Key Enabling Technologies (KETs) [13,14]. Some authors
have varied these technologies, adapting them as best suits their sector. In shipbuilding, there have been
few contributions and differences with respect to overall adaptation [15]. In our study, those described
in a conceptual model developed specifically for shipbuilding are considered [16]. These studies
have even allowed defining an index that allows evaluating the state of maturity in the implantation
in the company [17]. These technologies will affect the development of new products and services,
the business models carried out by organizations, and the supply chain, creating competitive advantage
and cost reduction. In order to generate benefits for all stakeholders, Supply Chain 4.0 can define itself
as the transformation of the traditional supply chain using enabling technologies [18–20]. This is not the
only new dimension of Supply Chain 4.0; it must also be supported by other new dimensions, such as
those related to management and capacity supports, process performance requirements, and strategic
results. This makes the concept of Supply Chain 4.0 an evolution of the traditional concept which,
despite being in its initial period, is in the process of development [18]. This development of Supply
Chain 4.0 can be considered as a transformation that includes the incorporation of technologies in
addition to the human and environmental dimensions, placing sustainability at the center of improving
the company [19]. Furthermore, Industry 4.0 itself helps industries to incorporate actions for the
protection and control of the environment by converting supply chains into Sustainable Supply Chains
4.0. The purpose of these Sustainable Supply Chains 4.0 is to plan and project the supply chain itself
by taking into account environmental and social concerns besides profits [20].

Therefore, this study aims to give an overview of the state of the art in the shipbuilding adaptation
of Industry 4.0. Firstly, it provides an analysis of the interests of countries around the world in Key
Enabling Technologies for Industry 4.0. Secondly, it provides a review of studies focusing on making
the supply chain sustainable by trying to encourage greater concern about this issue.

2. Materials and Methods

In order to carry out the proposed study, the article aimed to follow a systematic review.
This systematic review procedure is a tool for both advanced management scholarships and
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studies carried out in organizations that wish to improve their management practice. In this way,
the management of companies becomes enriched by the contribution of the scientific community,
which goes beyond those sources consulted by companies, usually comprising journals more focused
on business. This enrichment provides a clear, scientific, and replicable process, and while it does not
provide answers, it provides what is known and not known about the question, which are both equally
important. The five steps of the systematic review are (1) planning the review, (2) locating studies,
(3) assessing contributions, (4) analyzing and synthesizing information, and (5) reporting evidence.
These steps will allow getting to know the state of the art of the studied proposal. [12].

There are different possibilities to frame a systematic review, such as PICO (Patient, Intervention,
Comparison, Outcomes), SPICE (Stakeholder, Phenomenon of Interest Comparison Evaluation),
and CIMO (Context, Intervention, Mechanism, Outcomes). The CIMO logic (Context, Intervention,
Mechanism, Outcomes) was adapted to developing the set of propositions of the research sections as
being appropriate to the field of management [21], where we could define: Context: Shipbuilding;
Intervention: Each of the KETs; Mechanisms: Categories into which the impact on the supply chain has
been divided; and Outcomes: Effects of these interventions. Figure 1 shows the methodology followed
in the article based on the reviewed literature for the systematic review [12,22].
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Figure 1. Methodology Review. Adapted from [12,22].

During the preparation of the review, the need for it was identified through proposed research
questions that were not answered by previous studies. Subsequently, the search strategy was defined,
and the selection criteria for data extraction and quality assessment were established. The checklist of
Preferred Information Items for Systematic Reviews and Meta-Analyses (PRISMA) [22] was used to
provide for the accuracy of the review process.

Regarding the search strategy, different databases were evaluated. We started by carrying out the
search with the same argument in several databases and evaluating the answers obtained in each of
them, until reaching the conclusion that the Scopus database offered a greater number of contributions,
including those provided by the rest of the databases and the possibility of classification with different
criteria including impact criteria [23]. No a priori exclusion criteria were made with respect to the time
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horizon of the publications since the search arguments already marked recent studies. The established
search arguments allowed the intersection of “marine” AND each of the 12 Industry 4.0-enabling
technologies for the shipbuilding sector [16]. The term “shipbuilding” was logically the first search
argument, although a number of items were not generated that would allow it to be considered an
appropriate indicator. Therefore, “shipbuilding” was not considered as a search argument, as it was
preferable to establish exclusion criteria extending the search term to “marine” given in this extension,
which included the publications generated with shipbuilding.

It was decided that only articles from peer-reviewed journals would be accepted, with the inclusion
of a book chapter being an exception. It was the co-authors who decided whether publications were
accepted or not, and they debated until agreement was reached. Most of the indexed journals used had
a high impact factor between the first two quartiles, considered through the Journal Citation Report
(JCR), an appropriate tool for the area in which the study was framed.

Each of the elements studied was collected to be classified according to the context, the intervention,
and the mechanism and result relationship. In this way, categories were established that allowed the
content of each topic to be analyzed (see Appendix A). In addition, it was decided to carry out a study
that would allow us to know which countries were studying what technology, which would allow us
to identify the development of each technology at a global level.

3. Results

As a first contact and applying the search strategy limited to “supply chain” AND each of the
12 enabling technologies with their most common nomenclatures, shown in Figure 2 as “Search String
1”, 680 publications were obtained. However, when the term “marine” was included in the search
string, the number of publications decreased considerably to the 284 publications shown in Figure 2 as
“Search String 2”, which we will study next.
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Figure 2. Search string comparison.

The second search string was therefore the term “marine” with each of the KETs and filtered
by the term “shipbuilding”. “Supply chain” was understood as a transversal and driving factor of
the shipbuilding industry. At this point it can be stated that many of the publications related to
shipbuilding were directly associated with the object of research, without any relation with the term
“shipbuilding”.
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3.1. An Overview of the Results

Regarding the country study, Figure 3 shows the distribution of each of the publications grouped
by technology. As can be seen, the trend was that these technologies were being studied globally in
a general way, however, it was possible to make a breakdown of this.
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Figure 3. Worldwide distribution of technology studies.

The United States was the only country with publications on all enabling technologies, with the
highest number on additive manufacturing (9/50). China showed more interest in simulation (15/43)
followed by big data (7/43). This behavior was the same for South Korea (simulation: 14/22; big
data: 3/22). Neither had publications in cybersecurity, horizontal and vertical integration systems
or the Internet of Things. In the same way, England and Japan also showed the highest numbers
of publications in simulation; however, Norway had the highest in big data and Spain in artificial
intelligence. India, Singapore, and Canada also opted for additive manufacturing, along with Italy,
while France was highest in augmented reality. The rest of the contributing countries presented a few
publications in each of the technologies, such as the Netherlands with 4/5 in simulation, and, on the
other hand, the Internet of things was of interest only to Croatia, outside of the countries with the
highest number of publications.

Figure 4 shows the technologies studied by the different countries, as well as the number of
publications provided. As stated above, the United States was the only country that studied all the
technologies, being the one with the highest number of publications. Of the 44 countries that made up
the study, 18 focused on a single technology. Most of the studies dealt with simulation. However, 11 of
these countries had interests in different technologies such as cloud computing, automated guided
vehicles, augmented reality or autonomous robots.
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3.2. Analysis of the Key Enabling Technologies

In order to carry out our study and as previously indicated in the methodology, the values of the
surveys to be confronted were divided into two groups, one comprising experts of the sector and the
other the scientific community. For this second group, using the scientific database, we searched for
the up-to-the-minute publications of each of the KETs associated with the shipbuilding supply chain.

Additive manufacturing has been one of the most disruptive manufacturing technologies provided
in the context of Industry 4.0. Additive manufacturing can be classified according to the material used,
the way it is provided, and the method used to induce consolidation. Based on this, the largest number
of published papers were in the general technology group: firstly, the application of technology for
metal [24], for composite materials [25], and the simulation of processes for marine components with
the intention of inserting the simulation of additive manufacturing in the large-scale shipbuilding
environment [26]. Also included were studies on how additive manufacturing benefits the shipbuilding
supply chain [27]. Other studies focused on the manufacture of parts using a direct laser-forming
technique for the blades of a turbine or to X-band a horn with 3D printing [28], and even the
refurbishment of parts outlining the benefits of laser cladding technology for in situ marine crankshaft
repairs [29]. There were also articles dealing with the improvement of the properties of manufactured
parts, and the elasticity of naval steels [30] on corrosion [31], even going as far as redesigning them for
application in additive manufacturing [32].

Big data and analytics enable real-time decision-making through stored data and their evaluation,
key to promoting operational excellence by adding value to the company. As applied to shipbuilding,
publications were grouped into four groups. In the first group were those aimed at improving processes
and systems. One of the most important systems was the navigation system, where solutions are
based on ship performance, monitoring and navigation data that improve navigation strategies [33].
There were also processes focused on correlating the sound of the arc with the quality of the welding [34]
or studying how the adoption of big data analytics increases the production and productivity of the
company and helps it to have more control of its processes [35]. The second group was focused on its
potential application motivated by growing concern about climate change [36] and the optimization
of energy consumption through the transfer of energy that exists in the hull, the propeller, and the
main engine, demonstrating the efficient reduction of energy consumption and CO2 emissions [37].
The third group focused on the improvement of intelligent systems, such as the case of a tool to analyze
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data obtained through the Internet of Things (IoT) [38]. Moreover, other publications showed guidance
for implementation [39] and sector analysis [40].

Cloud computing improves reaction times and improves production systems through data-based
services. There were three different groups, one of which aimed to improve ship behavior in service by
analyzing stress, fatigue, fracture [41], its maintenance [42], and improving the safety of ship operations
by developing a method of accident analysis with a bridge simulator [43]. The second group focused
on improving data management by improving the detection, identification, and ship tracking [44]
and their application on ship routing [45]. The third one concerned environmental efficiency through
marine engine failure detection to reduce marine pollution [46] and sustainable development [47].

The general application of augmented reality provides workers with information to improve
decision-making and work procedures in real time. Applied to shipbuilding, three groups were
distinguished, the first one based on a general assessment of the technology of applying augmented
reality techniques to learning and for daily management of the marine hydraulic system [48]; on its
impact on the sector by considering how it could be applied in order to provide useful and attractive
interfaces that allow workers to obtain information about their tasks and to interact with certain
elements around them [49]; and on its use as a training tool [50]. A second group focused on its
application to simulated naval environments [51], specifically in the fields of navigation, alleviating
cognitive load problems for ships [52], safety [53], and maintenance work [51]. A last group aimed
at improving the efficiency of systems, for example, through the development of a methodology to
match images to different fields of view of the camera and display device by means of coordinate
conversion [54].

Autonomous and collaborative robots are born for tackling complex tasks and working as a team
with humans. Their main activity in shipbuilding is automated welding, including the welding robots
used in the prefabrication of sub-assemblies in production lines, as well as a new high-speed welding
process that uses two wires in the welding torch, allowing productivity to be at least doubled [55].
In this case, a rail-running mobile welding robot for the double hull ship structure [56] can be considered
for one of the complex tasks mentioned. In addition, there are cleaning and inspection tasks, such as
solving the huge environmental and financial problem for the marine industry of marine growth on
ships [57], and those corresponding to dimensional control, in particular, the difficulty of measuring
marine propellers [58]. The improvement of systems efficiency through simulation is again present in
this technology [59], as well as the study of the technology from a general perspective.

Autonomous vehicles was divided into two initial categories, one focused on improving the systems
and the other on the applications derived from their use. In the first group, distinctions were made
between surface vehicles by studying the propulsion topologies of ships with mechanical, electrical,
and hybrid propulsion and energy supply systems and demonstrating that hybrid architectures with
advanced control strategies can reduce fuel consumption and emissions, improve noise, maintainability,
maneuverability and comfort [60] of underwater vehicles, integrating the obstacle detection and analysis
capabilities [61]. Within the applications of their use, there are autonomous vehicles dedicated to
Inspection–Maintenance–Repair, so they are called IMR vehicles. Therefore, their use is more focused
on inspection by incorporating the Smart Loop Management System (STMS) [62]; others focus on
maintenance [63] and on repair, which allows engineers and marine operators to assess the risks
associated with certain tasks, such as pipeline repair or the installation of hoses, in real time using
an ROV (Remotely Operated Vehicle) simulation technology. This is a very useful system that gives
a quick response [64].

The blockchain technology allowed the division into three groups, one formed by applications of
its use in the sector, saving the industry from intermediaries and rebuilding all business models [65].
A second group was made up of publications aimed at strengthening security where it was stated that
the blockchain technology allows extraction of the information of the contract directly, guaranteeing
the reliability of the system. It also guarantees its authenticity and security, building a more ecological
environment [66]. The last group was devoted to the search for energy efficiency from the perspective
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of cryptocurrencies, because of the algorithms used for developing an increase of energy consumption,
it was necessary to develop new algorithms [67].

With respect to the category of horizontal and vertical integration systems, the majority of
publications addressed vertical integration. These publications aimed at the development of new
products such as the aero-derivative gas turbine [68]. It is also used as an indicator of productivity in
the sector, developing strategies that allow it to improve costs, quality indices, flexibility, and delivery
time, among others [69], and is valued as an alternative in management by supporting efforts aligned
with the supply chain and commercial strategy [70]. Other publications considered it to be positive
compared to the transfer of information to foreign shipyards in an increasingly globalized world [71]
and compared it to the alternative of outsourcing [72].

The groups into which we divided cybersecurity technology were focused on reducing
environmental risks, so essential today that optical communications and quantum encryption are
included to ensure the operations of the safest ships and to guarantee the safety of the oceans [73].
A second group studied the safety of the systems onboard by developing virtual laboratories to
characterize and identify security events in maritime control systems [74]. Of course, there was a group
aimed at supporting other technologies, as was the case with IoT. Considering that, as more devices are
brought online, safety must be a major concern for users and operators. It is established that embedded
applications should be built on a secure platform that can extend security features to the applications it
houses [75]. Also included was a group aimed at general considerations of the implementation of the
same [76].

Artificial intelligence is present in different aspects in the shipbuilding sector, although it
was foreseeable that most of the publications would concern the development of improvements to
navigation and control systems, such as algorithms that help route planning to avoid ship collisions [77].
In general, the technology has many applications in the sector from the design stages by studying
the main dimensions, hull shape selection, stability or propulsion, through the use of artificial neural
networks [78]. There was also a group of publications focused on decision support [79], energy efficiency,
and even process optimization [80], such as the formation of certain parts of the hull by heating or
mechanical forming by developing an automatic line heat-forming process based on the intensive
application of numerical simulation and artificial intelligence [81].

The industrial Internet of Things (IoT), which allows field devices to communicate with each
other and with the control systems with real-time responses, comprised three groups. The first
group included the linkage it has with other technologies, as explained above with cybersecurity [82].
The second group included the use of technology to support the design stage of vessels, allowing for
increased performance and value of the ship, although there are challenges to be considered in ensuring
that relevant, accurate, and reliable data are articulated to stakeholders [83]. The third group was
composed of publications that reflect the integration of processes and systems [84].

Within simulation, we distinguished, depending on the type, simulation by finite elements,
simulation of discrete events, Smoothed Particle Hydrodynamics (SPH), Computational fluid dynamics
(CFD). In the six established groups, we found studies with the different types of simulation previously
identified. The first group contained the new propulsion systems in which electronic propulsion
systems are established [85] or the effects that the hydrodynamic efficiency of the propellers has [86].
Both are physical simulations. The second group studied the ship structure and services with respect to
crack propagation behavior [87] or residual stress analysis [88], finite element simulations. There were
publications focused on spill prevention [89] and risk analysis due to high pressure of fuel gas in
tanks [90]. The third group was dedicated to welding, which is so important in the shipbuilding
sector [91] from the perspective of different positions [92] and deformations in assembly [93].

The next group [94] covered the study of navigation systems, and a fifth group [95] covered the
supply chain. The sixth group included planning [96], production control [97] and optimization [98].
Finally, an important number of publications were dedicated to the earlier stages of shipbuilding,
such as ship design as a tool for optimization [99] and analysis [100].
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3.3. Evaluation of the Key Enabling Technologies according to Some Basic Categories

From the 12 Industry 4.0-enabling technologies specific to the shipbuilding sector, the categories
that are common to most of them were identified. One of the common categories focused on the general
study of technology in its application to the sector (66 studies). Another common approach with
a larger number of articles focused on the application of systems improvement and efficiency, especially
for navigation systems (66 studies). Another category was dedicated to design, including within this
category tasks aimed at ship design and the design of new related products (64 studies). The other
grouping subjects ranged from productivity, production control, decision support, process optimization,
and the supply chain (16 studies). There was a specific category dedicated to one of the most relevant
activities in the sector, which is the welding distributed in only two technologies: autonomous robots
and simulation. (12 studies). This left other non-common categories with fewer than 10 studies
(44 studies).

Finally, it was followed by two categories with the same number of studies, one dedicated to
studying the effects on energy efficiency and environmental sustainability (16 studies). This was the
indicator offered by the study of the trend followed by the scientific community in its approach to
supply chain sustainability. It can be seen that less than 6% of the publications were of concern to
researchers in the sector.

Not all KETs addressed the category of environment called Energy Efficiency and Environmental
Sustainability. Only five of the 12 KETs dealt with studies related to sustainability. The weight fell on
big data analytics with a total of nine of the 16 articles counted, the rest being distributed among cloud
computing, blockchain, cybersecurity and artificial intelligence. It was very striking that the rest of the
technologies did not incite any interest in this field, when it should include all technologies as being
the key points of Industry 4.0. Figure 5 shows the seven categories addressed by each KET.
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This therefore highlighted the lack of integration of the environment into supply chain management,
i.e., the economic, environmental, and social considerations necessary for the understanding of
a sustainable supply chain are not taken into account. There is still a long way to go to implement
sustainable practices and techniques for a sector such as shipbuilding, for which they carry considerable
weight. This information should be taken into account both by the interested scientific community
and by the companies of the sector, which besides being an imperative need, could be reversed as
a competitive advantage.
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4. Conclusions

The supply chain is considered today as a strategic tool because of its transversality, affecting all
levels within an organization. One of the tasks that this study carried out was using it also as a guide
to make the company more sustainable. Sustainability should be studied as a basic requirement in
all sectors but it is more important for the shipbuilding industry. Such sustainability, carried out
through the supply chain, will make the techniques and practices that are used applicable to different
companies, thus contributing to the extension of an appropriate and extensible sustainability network.
Industry 4.0 brings to the industry the necessity to implement new technologies that allow the industry
to be updated, improving sustainability and benefits. This transformation also affects the supply chain
in which, in addition to using new technologies, it considers the human and environmental dimensions.
This is why the supply chain is now considered Sustainable Supply Chain 4.0.

Firstly, the enabling technologies of Industry 4.0 as adapted to the shipbuilding sector were
studied. Studies of each one of them that belongs to the sector were located and grouped by categories,
giving a clear vision of which technologies have been studied for the longest time and in which ones,
it could be interpreted, the sector has not yet shown enough interest. Additionally, which countries are
researching these technologies and which are not was studied at a global level, providing a clear vision
of the major powers, such as the United States and Asia, that are choosing to advance in technologies
such as additive manufacturing and simulation, which are experiencing a peak.

The proposed categories were measured in the literature and served as a starting point to study
the implementation of supply chain model practices in shipbuilding. However, the research method
carried out allows to have a general vision of what the scientific community is studying and what
reference places are available to the companies that decide to consult about and improve their practices.
One of the proposed categories is related to the environment, sustainability, and energy efficiency as key
points for the advancement of technologies and coincides with one of the lines of interest of Industry
4.0. However, it was detected that not all KETs include in their research this key category, which one
should emphasize above all: the big data analysis that presents studies focused on climate change and
emissions reductions. Cloud computing is concerned with the subject, presenting articles focused on
engine failure detection to reduce marine pollution and to reduce energy costs. Blockchain also shows
interest in developing new algorithms that take into account this dimension. Cybersecurity deals with
the security of ships, thus guaranteeing the oceans in the same way that artificial intelligence does.

With regard to simulation technology, it is important to add that although no direct reference
was made, its indirect involvement with sustainability should be acknowledged. Moreover, it should
also be noted that additive manufacturing did not have any articles either, despite the fact that it is
considered to be a clean technology in its own right; it is an intrinsic property of the technology itself.
However, this means that there is not enough attention paid to the subject and companies should
provide the means to expand research in this area, so that they can implement sustainable policies at
all levels, taking advantage of the transversality offered by the supply chain.

Author Contributions: M.R.-P. and M.B. conceptualized the paper. M.B. and F.J.A.F. approved the experimental
procedure; M.R.-P. and J.S. analyzed the data; M.R.-P. wrote the paper; M.B. and J.S. revised the paper; F.J.A.F.
supervised the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Navantia S.A. S.M.E. and University of Cadiz (UCA) supported this work.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2020, 12, 6373 11 of 26

Appendix A

Table A1. Results categorized by key enabling technologies.

KET Interventions Author(s)

Additive Manufacturing Improvement techniques for the
minimization of defects [101]

General study of the technology [24–27,102–120]
Parts manufacturing and repair [28,29,121–128]

Parts property improvement [30,31,129–135]
Redesign for application in

additive manufacturing [32,136,137]

Big Data Analytics Process and system improvement [33–35,138–144]
Environmental studies [36,37,80,145–150]

Smart systems [38,40]
General study of the technology [39,40,151,152]

Cloud Computing Performance improvement in service [41–43,153]
Control system improvement [44,45,47,154–158]

Energetic efficiency and
environmental sustainability [46,47,158]

Augmented Reality Learning and the influence of technology on
the sector [39,48,49,159–168]

Simulated naval environments applied to
navigation, safety and maintenance [50–53,169–180]

Application to the improvement of the
efficiency of systems, mainly navigation [54,181,182]

Autonomous Robots Welding [55,56,183–185]
General study of the technology [39,168]

Improvement of system efficiency [59,186]
Cleaning, inspection and

maintenance work [57,58,187,188]

Unmanned vehicles [189–192]

Automated
Guided Vehicle

System improvement [60,193–196]
Repairs, maintenance, and inspection [61–64,197–202]

Vehicle systems improvement [203–206]

Blockchain Applications of its use [65,207]
Strengthening security [66,208]

Energetic efficiency [67]

Cybersecurity General considerations in the
implementation of the technology [75,76,208–212]

Environmental risk reduction [73,213]
Improving the safety of onboard systems [74]

Horizontal and Vertical
Integration System

New product development [68]
Impact on productivity [69,214,215]

Alternatives study [70]
Encouraging transfer [216]

Outsourcing comparison [72,217,218]
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Table A1. Cont.

KET Interventions Author(s)

Artificial Intelligence Navigation and control
systems improvement [77,219–223]

General study of the technology [39,78,82,224,225]
Decision support [79,226]
Energy efficiency [80]

Process optimization [81,227]

Internet of Things Linking to other technologies [49,82,228]
Support to the design of ships [83,225]
Process and system integration [84,168]

Simulation New propulsion systems [85,86,229]
Structure and services ship study [87–90,230–274]

Welding [55,91–93,275–277]
Navigation systems study [94,278,279]

Supply chain [95,280,281]
Production planning and control [96–98,282–284]

Design [40,99,100,285–293]
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176. Vasilijević, A.; Borović, B.; Vukić, Z. Primjene proširene stvarnosti u pomorstvu. Brodogradnja 2011,
62, 136–142.

177. Von Lukas, U.F. Virtual and augmented reality for the maritime sector—Applications and requirements.
IFAC Proc. Vol. 2010, 43, 196–200. [CrossRef]

178. Grabowski, M. Research on Wearable, Immersive Augmented Reality (WIAR) Adoption in Maritime
Navigation. J. Navig. 2015, 68, 453–464. [CrossRef]

179. Von Lukas, U.; Quarles, J.; Kaklis, P.; Dolereit, T. Underwater Mixed Environments. In Medical Image
Computing and Computer Assisted Intervention–MICCAI 2018; Springer Science and Business Media: Berlin,
Germany, 2015; Volume 8844, pp. 56–76.

180. Morikawa, K.; Ando, T. Reduction of piping management person-hours through use of AR technology at
shipbuilding sites. Fujitsu Sci. Tech. J. 2019, 55, 20–26.

http://dx.doi.org/10.1016/j.procs.2013.11.050
http://dx.doi.org/10.1016/j.procs.2013.11.051
http://dx.doi.org/10.1109/THMS.2019.2944384
http://dx.doi.org/10.1109/svr.2017.47
http://dx.doi.org/10.13189/ujme.2019.070201
http://dl.acm.org/citation.cfm?doid=3317326.3317331
http://dx.doi.org/10.1016/S1474-6670(17)31737-8
http://dx.doi.org/10.3182/20100915-3-DE-3008.00045
http://dx.doi.org/10.1017/S0373463314000873


Sustainability 2020, 12, 6373 21 of 26

181. Butkiewicz, T. Designing augmented reality marine navigation AIDS using virtual reality. In OCEANS
2017-Anchorage; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 1–9.

182. Morgere, J.C.; Diguet, J.-P.; Laurent, J. Mobile Augmented Reality System for Marine Navigation Assistance.
In Proceedings of the 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing,
Milano, Italy, 26–28 August 2014; pp. 287–292.

183. Kazasidis, M.; Chionopoulos, S.; Pantelis, D. Experimental investigation of FCAW-G weldments of HSLA
AH40-FCA (fatigue crack arrester) steel, used in marine applications. In Proceedings of the 18th Int Conf
Ships Shipp Res NAV, Milan, Italy, 24–26 June 2015; pp. 417–426.

184. Çevik, B.; Koç, M. The effects of welding speed on the microstructure and mechanical properties of
marine-grade aluminium (AA5754) alloy joined using MIG welding. Kov. Mater. 2019, 57, 307–316.

185. Bragagna, R. Automazione e robotka nella fabbricae di strutture saldate per il settore navale. Riv. Italia Della
Saldatura 2010, 62, 37–41.
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