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Abstract: The fourth industrial revolution and the digital transformation of consumer markets
require contemporary manufacturers to rethink and reshape their business models to deal with the
ever-changing customer demands and market turbulence. Manufacturers nowadays are inclined
toward product differentiation strategies and more customer-focused approaches to stay competitive
in the Industry 4.0 environment, and mass customization and product diversification are among the
most commonly implemented business models. Under such circumstances, an economical material
supply to assembly lines has become a significant concern for manufacturers. Consequently, the
present study deals with optimizing the material supply to mixed-model assembly lines that contribute
to the overall production cost efficiency, mainly via the reduction of both the material transportation
and material holding costs across production lines, while satisfying certain constraints. Given the
complexity of the problem, a novel two-stage heuristic algorithm is developed in this study to enable
a cost-efficient delivery. To assess the efficiency and effectiveness of the proposed heuristic algorithm,
a set of test problems are solved and compared against the best solution found by a commercial solver.
The results of the comparison reveal that the suggested heuristic provides reasonable solutions, thus
offering immense opportunities for production cost efficiency and manufacturing sustainability under
the mass customization philosophy.

Keywords: mass customization; Industry 4.0; heuristic algorithm; mixed-model assembly line;
in-plant material supply

1. Introduction

Industry 4.0 and the digitization of the manufacturing sectors were once considered as future
trends [1,2]. Nowadays, Industry 4.0 and the transformation of manufacturing strategies for a more
customer-oriented implication of mass customization are strategic priorities for manufacturers who seek
sustainable competitiveness [3]. Modern manufacturers, therefore, are required to alter their existing
linear and rigid production models and develop a more flexible and modular production system
that effectively addresses the ever-changing customer demands and market circumstances within the
Industry 4.0 environment [4]. Customer-oriented mass customization is among many competitiveness
strategies that are linked tightly to the concept of manufacturing sustainability within the Industry
4.0 literature [5,6], particularly in the sense that manufacturers commonly struggle with meeting
the micro-economic sustainability criteria while transitioning into the more customer-oriented mass
customization of products under the umbrella of Industry 4.0 [7]. As a common strategy for staying
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economically sustainable in the current competitive market, manufacturers aiming for mass customization
strategies are interested in producing different models of their products while undergoing the smallest
change in costs in terms of tools and facilities [8]. In such circumstances, among many manufacturing
configurations, mixed-model assembly lines are widely used, as they enable manufacturers to produce
different models of a basic product model in the same line without incurring a high cost [9]. In general,
the use of a mixed-model assembly line enables the production of various versions of a base product with
some differences from the base product [10,11]. The mixed-model assembly line has several advantages,
such as quick response to customer demands, fewer expenses to produce the new models of a given
base model by using the same facilities, and more production flexibility [12,13]. In other words, the
mixed-model assembly line is an essential factor for today’s manufacturers to overcome the recent
challenges associated with operating in the Industry 4.0 environment, particularly regarding the diversity
of products, as well as the rapid response to ever-changing customer expectations and demands [14].
Despite many advantages of mixed-model assembly lines, supplying these high-variant mixed-model
lines with the required material is a challenging task. In reality, a massive number of parts/materials
must be transferred to a location near the production line (at stations), and any shortage of parts results
in the line stopping and interruption of production [15].

Moreover, modern manufacturers’ decision to apply various Just-In-Time (JIT) principles to
minimize the inventory near the line while avoiding shortages imposes another significant difficulty to
the material supply [16]. To cope with this problem and to increase the reliability and flexibility of the
part feeding process, it is a common practice for world-class manufacturers to implement and benefit
from the supermarket concept. The supermarket is a decentralized logistic area near the assembly
line where all parts/materials are sorted nearby the assembly line. This in-plant decentralized logistic
area (supermarket) enables the manufacturers, especially those who are dealing with high-volume of
production, to massively take advantage of a reliable and frequent small-lot JIT part delivery [17,18].
Typically, parts in supermarkets are transported to the shop floor according to the predefined production
sequence in small bins and utilizing tugger trains, which are either automatically guided or human-driven
vehicles [19]. Applying the supermarket concept has several advantages. Nonetheless, planning and
control of these in-plant logistics areas is a considerably complex problem that requires careful
optimization [20,21]. Two crucial decisions immensely affect the performance of the in-plant material
supply process when it comes to using the supermarket concept, including (1) the decision on a delivery
schedule for each tugger train, and (2) the decision on the quantity of each material that should be
loaded on each tugger train during each line visit.

It is worth mentioning that the in-plant material supply problem is an extensive research area
that covers many sub-areas, such as transport of parts, storage of parts, and parts feeding policy,
among many others. Each of the areas mentioned contains several operational, tactical, and strategic
problems to be solved. For instance, targeting the transport of parts, material handling equipment
selection, loading, scheduling, and routing are among the optimization problems that should be
addressed [22,23].

The present study concerns planning the frequent small-lot deliveries from a decentralized storage
area and utilizing tugger trains. In particular, this study addresses the Tugger Train Loading (TTL)
and Delivery Schedule (DS) problems, where the material types and their quantity, as well as the
best sequence of materials that should be delivered to each assembly station at each time, should be
decided to minimize the total cost associated with transportation and material holding at assembly
stations. In this regard and borrowing from the computer science field, a two-stage heuristic algorithm
is developed based on the concept of the multilevel queue scheduling algorithm.

The remainder of the paper is structured as follows. Section 2 provides a brief review of the
literature and related studies. Section 3 discusses the material supply problem at assembly lines by
highlighting the specific problem under study. A quantitative analysis of the problem in the form of
a mathematical model is presented in Section 4. The two-stage heuristic algorithm is presented in
Section 5, and the results of the computational study for testing the heuristic algorithm is reported in
Section 6. Finally, Section 7 discusses the concluding remarks and future research directions.
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2. Literature Review

The in-plant material supply problem contains different aspects and requires solving various
decision problems that may not be in the scope of this study. Therefore, this review is merely limited
to the previous studies that addressed the transport of parts to assembly lines and considered the
application of the supermarket concept and the utilization of tugger trains for material delivery.

Emde et al. [24] addressed the tugger train loading problem by proposing a polynomial-time
solution procedure. The authors tried to minimize the sum and maximum inventories at the assembly
stations by determining an optimum loading plan for tugger trains in successive tours. Golz et al. [15]
introduced a new heuristic to cope with the routing, scheduling, and loading problems of tugger trains
simultaneously. Their study attempted to minimize the number of tugger trains (equivalently minimize
the drivers) used for part delivery purposes at the assembly lines while the stock-outs at the stations
were not allowed. Moreover, the decision on the routes was limited to choosing a path from a set of
predetermined delivery paths. Emde and Boysen [25] presented nested dynamic programming (DP)
to deal with tugger train routing and scheduling problems. They tried to find fixed routs for tugger
trains as well as cyclic and non-cyclic schedules. Emde and Boysen’s [25] study showed that the level
of inventory at stations in a non-cyclic delivery schedule is considerably lower than the cyclic tours.
Rao et al. [26] introduced a model to optimally schedule the single-vehicle (tugger train equivalent)
part delivery problem within which parts were delivered from the storage center to the workstations in
a mixed-model assembly line. To minimally reduce the total inventory holding and travel costs, these
authors tried to develop a detailed specification of the destination workstation and the part quantity
along with the departure time of each particular delivery. In doing so, Rao et al. [26] introduced a
hybrid genetic algorithm and simulated annealing (GASA) and implemented a backward-backtracking
approach. These authors tested both approaches on a series of real-world data collected from an
automobile manufacturer in China. The results showed that although the backward-back tracking
approach was not able to solve the large-size problems, the GASA approach could efficiently solve all
the test problems.

Faccio et al. [27] presented a simulation model of an assembly line feeding system based on a real
case study in an Italian automotive manufacturer. They tried to cope with the problems of scheduling
and loading of tugger trains while considering a kanban-controlled production system and stochastic
demand. Different scenarios by considering four critical parameters, namely the number of tugger
trains, service level, tour frequency, and tugger train capacity, were analyzed. The performance of
solutions related to each scenario was investigated based on six production factors, and the effect of
each parameter on the solution was examined.

Fathi et al. [28] tackled the part feeding problem at the assembly line by proposing a mathematical
model and an ant colony optimization algorithm (ACO). The study attempted to find the best sequence
and quantity of parts to be loaded on tugger trains on fixed routes and with cyclic delivery trips.
Fathi et al. [29] addressed the part delivery scheduling problem by presenting a mathematical model
and simulated annealing (SA) algorithm. The authors tried to plan the tugger train delivery to minimize
the total number of deliveries as well as the inventory levels at assembly stations. Muguerza et al. [30]
studied the material supply problem at assembly lines with an emphasis on energy efficiency. Their
study aimed to define the sequence of assembly stations that are to be visited by the tugger train at each
delivery trip as well as the number of pallets to be delivered at each visit. Muguerza et al. [30] presented
an analytical approach in the form of a mathematical model as the solution method. The ultimate goal
of the model was to minimize the energy consumption of the supplying strategy. Fathi et al. [31] tried to
solve the part delivery problem at assembly lines by suggesting a modified particle swarm optimization
(PSO) algorithm. The study aimed to optimally schedule the part delivery to assembly stations via
tugger trains to minimize the total number of delivery trips and the sum of inventory. A mathematical
model and complexity analysis of the problem were also provided in this study.

Emde and Schneider [32] addressed the Vehicle Routing problem for JIT part delivery to assembly
lines. The authors proposed a mathematical formulation of the problem and developed a large
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neighborhood search algorithm (NSA) to solve it. The optimization objectives in their study were to
minimize the number of transport vehicles as well as the total route duration, while considering the
limited storage capacity at assembly stations. This study also investigated the effect of the inconsistency
of the demand rates on the part feeding system. Peng and Zhou [33] made an effort to facilitate the
material supply process in automobile assembly lines through solving the multiple server scheduling
problems. Peng and Zhou [33] proposed a mathematical optimization model as well as a hybrid ant
colony optimization (HACO) algorithm to find an optimum schedule for sequencing and loading
the materials on servers. The optimization objective considered in this study was to minimize the
line-side inventory while relaxing some critical assumptions, such as stock-out occurrence and line-side
storage limitation. Zhou and Shen [9] addressed the material supply problem at the assembly line by
proposing a multi-objective hybrid Tabu search and particle swarm optimization (TSPSO) algorithms.
The optimization objectives considered were to minimize the total weighted tardiness and energy
consumption. The authors also presented a mathematical formulation of the problem. The results of
the study showed that energy consumption could be reduced significantly by following an optimal
delivery schedule. Zhou and Peng [34] assumed that several parallel machines could be used for
material delivery to workstations at assembly lines. Therefore, the authors studied the parallel machine
scheduling problem to find a good schedule for loading the machines with materials to minimize
the line-side inventory. An exact algorithm was developed based on the problem properties capable
of solving small size problems. To cope with large-scale problems, the authors proposed a hybrid
teaching–learning-based optimization algorithm.

In conclusion, the existing academic contributions by prior scholars have significantly advanced
the current understanding of supermarket-based in-plant material supplying optimization and, in
particular, transport of parts to assembly lines. A summary of the studies reviewed, including the
solution methods used and the decision problem addressed, is presented in Table 1.

Table 1. Summary of the studies reviewed.

Study Problem Solution
Method

Mathematical
ModelScheduling Loading Routing

Emde et al. [24] 4 PSSP a 4

Golz et al. [15] 4 4 4 OH b 4

Emde and Boysen [25] 4 4 DP 4

Rao et al. [26] 4 4 GASA 4

Faccio et al. [27] 4 4 Simulation
Fathi et al. [28] 4 4 ACO 4

Fathi et al. [29] 4 4 SA 4

Muguerza et al. [30] 4 4 4

Fathi et al. [31] 4 4 PSO 4

Emde and Schneider [32] 4 NSA 4

Peng and Zhou [33] 4 4 HACO 4

Zhou and Shen [9] 4 4 4 TS PSO 4

Zhou and Peng [34] 4 4 OH & PSSP 4

a Problem-specific solution procedure; b Other heuristics.

The review of the literature shows the importance of Tugger Train Loading (TTL) and Delivery
Schedule (DS) problems, as most of the previous studies targeted at solving these two. Moreover, it
can be seen that although a mathematical model was presented in almost all of the earlier studies, the
authors resorted to heuristic algorithms due to the complex nature of the problem.

Most of the algorithms proposed in the previous studies are complicated and hard to understand
and use by logistics operators in the real-world industry, specifically by small- and medium-sized
enterprises. In such circumstances, the current study aims at proposing a simple, yet effective, solution
method based on some rule of thumbs that can be efficiently used in the shop floor with little to no
prior knowledge in programming and optimization. In terms of the problem specification, this study
differs from the previous ones by allowing the delivery on specific paths available to the tugger trains



Sustainability 2020, 12, 6669 5 of 15

and imposing restriction on making shortcuts. These restrictions are applied based on the observations
in real-world shop floors and to address the issue of space scarcity near the stations in the assembly
lines, as well as to avoid any disorder on the shop floor. Additionally, this study also assumes that
only a single supermarket can support each assembly line. This assumption ensures that deliveries,
as well as the part requests, are all managed entirely at a single location close to the assembly line
(i.e., supermarket).

3. Problem Description

In general, most manufacturing companies have the main central warehouse to receive and store
goods, which is far from the assembly line and a supermarket that is close to the shop floor/assembly
line. Companies follow different strategies for supplying materials to the production lines. The main
supply strategies are (1) direct transportation of the parts from the warehouse to the assembly line
in pallets, (2) direct transportation of the materials in small containers from the warehouse to the
assembly line in case no pre-assembly or excessive operation is needed, and (3) transportation of the
parts to the supermarket, i.e., the parts that are received in pallets from the supplier, but have to be
delivered more frequently to the stations in small containers.

This study is focused on the assembly line part feeding from the supermarket, utilizing tugger
trains and in small identical standardized shapes and size bins, which is a requirement for the shooter
racks [20]. A tugger train consists of a towing vehicle, operated by a driver, which is connected to a
few wagons. First, bins are loaded into wagons at the supermarket. Consequently, the supermarket
will be a starting point for tugger trains to commute to the assembly plant based on a predetermined
schedule to deliver the bins full of parts to the corresponding stations while collecting the empty bins.
This means that at each stopover in the assembly line, full bins are unloaded in the respective stations,
and the empty bins are loaded to return. Finally, the empty tugger train returns to the supermarket
to be reloaded for the next tour. The tours are frequently done in each working shift due to the JIT
philosophy to reduce the inventory level in the shop floor by frequent small-lot deliveries, as well as
space scarcity near the stations in the assembly lines. The tugger trains are only authorized to travel on
predefined paths through the assembly plant due to safety reasons.

To better understand the material supplying process explained above, a graphical view of the
process is depicted in Figure 1. As shown in this figure, the focus of the study is on material delivery
from the supermarket to the assembly line.

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 16 

observations in real-world shop floors and to address the issue of space scarcity near the stations in 
the assembly lines, as well as to avoid any disorder on the shop floor. Additionally, this study also 
assumes that only a single supermarket can support each assembly line. This assumption ensures 
that deliveries, as well as the part requests, are all managed entirely at a single location close to the 
assembly line (i.e., supermarket). 

3. Problem Description 

In general, most manufacturing companies have the main central warehouse to receive and store 
goods, which is far from the assembly line and a supermarket that is close to the shop floor/assembly 
line. Companies follow different strategies for supplying materials to the production lines. The main 
supply strategies are (1) direct transportation of the parts from the warehouse to the assembly line in 
pallets, (2) direct transportation of the materials in small containers from the warehouse to the 
assembly line in case no pre-assembly or excessive operation is needed, and (3) transportation of the 
parts to the supermarket, i.e., the parts that are received in pallets from the supplier, but have to be 
delivered more frequently to the stations in small containers. 

This study is focused on the assembly line part feeding from the supermarket, utilizing tugger 
trains and in small identical standardized shapes and size bins, which is a requirement for the shooter 
racks [20]. A tugger train consists of a towing vehicle, operated by a driver, which is connected to a 
few wagons. First, bins are loaded into wagons at the supermarket. Consequently, the supermarket 
will be a starting point for tugger trains to commute to the assembly plant based on a predetermined 
schedule to deliver the bins full of parts to the corresponding stations while collecting the empty bins. 
This means that at each stopover in the assembly line, full bins are unloaded in the respective stations, 
and the empty bins are loaded to return. Finally, the empty tugger train returns to the supermarket 
to be reloaded for the next tour. The tours are frequently done in each working shift due to the JIT 
philosophy to reduce the inventory level in the shop floor by frequent small-lot deliveries, as well as 
space scarcity near the stations in the assembly lines. The tugger trains are only authorized to travel 
on predefined paths through the assembly plant due to safety reasons. 

To better understand the material supplying process explained above, a graphical view of the 
process is depicted in Figure 1. As shown in this figure, the focus of the study is on material delivery 
from the supermarket to the assembly line. 

Despite the advantages of applying the concept of small-lot deliveries, it needs an accurate plan 
to avoid any material shortage at the workstations and requires the solving of the Tugger Train 
Loading (TTL) and Delivery Schedule (DS) problems. The DS aims to find the best sequence of 
stations to be visited, which will further lead to the improvement of some criteria, such as lead time, 
inventory level, and number of line visits. Moreover, the TTL aims to find the best order and quantity 
of bins to be loaded in a tugger train, which also results in the use of fewer transport vehicles as well 
as the number of line visits. 

 
Figure 1. An overview of the material supply process. 

Figure 1. An overview of the material supply process.

Despite the advantages of applying the concept of small-lot deliveries, it needs an accurate plan to
avoid any material shortage at the workstations and requires the solving of the Tugger Train Loading
(TTL) and Delivery Schedule (DS) problems. The DS aims to find the best sequence of stations to be
visited, which will further lead to the improvement of some criteria, such as lead time, inventory level,
and number of line visits. Moreover, the TTL aims to find the best order and quantity of bins to be
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loaded in a tugger train, which also results in the use of fewer transport vehicles as well as the number
of line visits.

The main assumptions and characteristics of the in-plant material supply process are presented
below.

• Only one supermarket is available to serve the stations on each assembly line;
• The traveling path, location of the stations, and the supermarket on the shop floor are given;
• The storage capacity in each station is limited and known;
• Tugger trains are only allowed to travel on predefined paths;
• There is no more than one tugger on the same path, and tuggers do not block each other during

a tour;
• All tugger trains are identical in terms of speed and loading capacity;
• Parts are supplied only in small containers with a given capacity for each part type, and only fully

loaded bins are delivered, and empty bins are collected at each station;
• The assembly line is assumed to be straight; therefore, there is no restriction to visit the stations,

because all the stations have to be passed by on each line visit;
• Tugger trains can only enter and leave the assembly plant at specific points, and no shortcut

is allowed;
• There is no restriction on the number of stations that can be supplied on each line visit;
• Containers have identical and standardized shapes and sizes;
• The production sequence is known within the planning horizon;
• A limitation of tugger wagons per tugger trains is applied due to the difficulty in sharp turns on

the shop floor;
• Each container only contains one specific part;
• Each wagon can be loaded with different containers in terms of content;
• The weight restriction is not considered, as tuggers are adequately powerful;
• There is a capacity limitation for each tugger;
• All the time interval between line visits are identical and known in advance;
• The shortage is not allowed throughout the entire planning horizon.

4. Problem Formulation

To better understand the problem, including the underlying assumption and constraints, a
mathematical model of the problem is presented. The assumptions and constants of the model are the
same as those found in Fathi et al. [29]. The model presented is a mixed-integer linear programming
(MILP) model. The MILP model is an optimization model for optimally loading tugger trains and
scheduling the deliveries. The objective of the optimization is to minimize the total martial supply
cost, including the cost of line visits and material storage at the stations.

The notation used in the MILP model, including indices, parameters, and decision variables are
as follows.

• Indices:

• I: Set of material types;
• i: Index of material type (i ∈ I);
• C: Set of cycles;
• c: Index of cycles (c ∈ Cmax).

• Parameters:

• ILi0: Inventory level of material type i at the beginning of the production;
• LC : Loading capacity of tugger train;
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• Wi : The storage capacity at the line for material type i;
• dic : Demand of material type i on cycle c;
• n: Total number of material types;
• Cmax: maximum number of cycles;
• DC: Delivery cost;
• IC: Inventory cost.

• Decision variables:

• Pic : Amount of material type i delivered in cycle c;
• ILic : Inventory level of material i in cycle c;
• LVc: Equals one if delivery is planned at cycle c is, otherwise equals 0.

Equation (1) represents the objective function, that consists of the cost of line visits and the cost
of holding inventory at stations. Equation (2) ensures that the total amount of each material that is
delivered in all cycles satisfies the total demand of that specific material. Equation (3) ensures that no
shortage of material will happen in any cycle. Equation (4) ensures that the transport vehicle (i.e., in
this case, tugger train) is not overloaded, while ensuring that any material is delivered unless a tugger
train is assigned for the line visit. Equation (5) ensures that the storage capacity for each specific type
of material is not overloaded. Equations (6)–(8) define the domain of the variables and enforcing that
only full containers can be delivered, no backlog of material orders can happen, and no material can be
delivered if no tugger train is available for the line visit, respectively.

MinZ = DC
Cmax∑

c
LVc + IC

n∑
i

Cmax∑
c

ILic, (1)

subject to:
Cmax∑

c
Pic + ILi0 ≥

Cmax∑
t

dic ∀i = 1, . . . , n, (2)

Pic + ILic−1 − dic = ILic ∀i = 1, . . . , n, c = 1, . . . , Cmax, (3)
n∑
i

Pic ≤ LC× LVc ∀c = 1, . . . , Cmax, (4)

Pic + ILic−1 ≤Wi ∀i = 1, . . . , n, c = 1, . . . , Cmax, (5)

Pic ≥ 0 and integer. ∀i = 1, . . . , n, c = 1, . . . , Cmax, (6)

ILic ≥ 0 ∀i = 1, . . . , n, c = 1, . . . , Cmax, (7)

LVc ∈ {0, 1} c = 1, . . . , Cmax. (8)

5. Proposed Heuristic Algorithm

The algorithm proposed in this study is a two-stage heuristic that was developed based on the
well-known concept of multilevel queue scheduling in the computer science field. The multilevel
queue scheduling algorithm suggests that processes should be divided into groups based on their
specific properties. Then, a certain number of queues should be created where the total number of
queues is equal to the groups the processes are divided into. Each queue has a particular priority and
applies its scheduling algorithm. The processes in a queue can only be executed if all the queues with
a higher priority are empty. In other words, the process in higher priority queues must be completed
before executing the process in a lower priority queue. There are several advantages to using multilevel
queues. Some of these advantages are: (1) flexibility in implementation, (2) shorter execution time due
to prioritizing the process, and (3) possibility of applying the preemptive or non-preemptive concept.
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Following the main idea and reasoning behind the multilevel queue scheduling algorithm, the
proposed heuristic algorithm for material supply consists of four queues with different priority levels.
The introduction of priority levels is necessary because in material supply using tugger trains, not all
the materials can be delivered at once due to the limited capacity of the trains as well as the space
limitation at the stations. Therefore, material delivery to stations should be gradual, meaning having
a priority plan is crucial to avoid a shortage or over-delivery. In this regard, a particular priority
rule is suggested for each queue to load the tugger trains with materials and deliver them to stations.
The proposed priority rules are named Critical Part First (CPF), Least Slack Time First (LSTF), Greatest
Upper Bound First (GUBF), and First-Part, First Served (FPFS).

The CPF aims to rank the materials based on their urgency for the production. To decide on the
level of urgency of each specific material, a criticality number is calculated for each material type using
Equation (9):

CN(i) =
∑Cmax

c dic −
∑Cmax

c Pic∑Cmax
c dic + 1

∀i = 1, . . . , n, (9)

where CN(i) is the criticality number of material type i, dic is the demand for material type i in cycle c,
and Pic is the amount of material type i already delivered to stations in cycle c.

The LSTF assigns a priority value to each material type by following this principle that the less the
material is available at a station concerning the demand of the station, the higher the material priority.
In other words, the shorter the slack time (i.e., the maximum time allowed to the next delivery) of
a material type, the higher the priority value of that material. The priority value is calculated using
Equation (10). The higher the priority value, the higher the delivery priority:

PV(i) =
dic
ILic

, (10)

where PV(i) is the priority value for material type i, dic and ILic are the demand and the available
inventory at stations for material type i in cycle c.

The GUBF refers to the unused storage capacity at stations and suggests that higher priority
should be assigned to materials that have more space left for storage. An upper bound value can be
calculated using Equation (11), where a higher value proposes higher property for delivery:

UBV(i) =
ILic
Wi

, (11)

where UBV(i) is the upper bound value for material type i, Wi is the total storage capacity at stations
for material type i, and ILic the available inventory at stations for material type i in cycle c.

The FPFS is a simple rule of thumb that suggests delivering the materials according to their
reference number. It means that a material with a smaller reference should be delivered before a
material with a greater number.

Given the above-proposed priority rules, materials are sorted according to their given priority in
four different priority lists and are located in their specified queue in each cycle. Then, starting from
the first queue, materials are chosen for delivery based on their given priority while satisfying all the
constraints, e.g., storage capacity at stations and tugger tarins. The process is continued until all the
demands are delivered to stations. Figure 2 depicts the proposed solution methodology.

As mentioned before, the proposed algorithm has two stages. The first stage aims to reduce the
total cost of the line visit by minimizing the number of visits, and the second stage aims to minimize the
material holding cost by reducing the inventory level at stations. In the first stage of the algorithm,
based on the maximum possible number of line visits (e.g., the maximum number of cycles) that is
assumed to have the same time interval, material containers are loaded onto the tugger trains on each
cycle according to the methodology presented in Figure 2. This stage of the algorithm is summarized as
Algorithm 1.
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Algorithm 1 First stage: minimizing the number of line visits.

1. While all demands are not delivered, start a new cycle and create the LAM(c) according to Equation (12)

P(i) ∈ LAM(c)⇔

ILic ≤Wi − 1&
Cmax∑

c
Pic ≤

Cmax∑
c

dic

 (12)

2. If LAM is not empty, create priority lists 1 to 4 as presented in Figure 2.
3. While priority list 1 is not empty, select a material type from priority list 1 that has the highest CN(i).
4. If there are one or more material types with the same CN(i) as the selected material, choose a material

type from list 2 to 4, respectively
5. End if
6. Assign the exact amount of containers needed from the selected material to satisfy its demand in the

current cycle.
7. Remove the selected material type from LAM(c).
8. End while
9. While there is any free space on the tugger train, create the list of extra material (LEM) according to

Equation (13)

P(i) ∈ LEM(c)⇔ [Pic + ILic]
+ <W(i)&

Cmax∑
c

Pic <
Cmax∑

c
dc (13)

10. If LEM is not empty, create priority lists 1 to 4
11. Assign only one container of the material type that has higher priority in list 1 (If there are one or more

material types with the same CN(i), choose a material type from list 2 to 4, respectively) to the tugger
train and update the capacity of the tugger train.

12. End if
13. Update all the information and terminate the assigning process in the current cycle.
14. End while
15. Else
16. Leave the current cycle without assigning any material and update all the information to start the

next cycle.
17. End if
18. End while
19. Return to the solution.
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Consistent with the JIT philosophy, the second stage in the execution of the algorithm involves
the heuristic aiming for the reduction of the inventory level at stations. Using the solution obtained
from the first stage as the starting point, the algorithm in the second stage tries to reduce the inventory
at stations. In doing so, it will attempt to re-schedule the deliveries so that only the most necessary
materials will be delivered on the active cycles identified in the first stage. In other words, without
adding any new cycle, the second stage of the algorithm rearranges the deliveries to delay the delivery
of material to the latest possible time. An algorithmic description of this stage is given as Algorithm 2.

Algorithm 2 Second stage: minimizing the inventory level.

1. Create the set of available cycles (i.e., the cycles that are not removed in the first stage) AC, according to
Equation (14).

c− th ∈ AC⇔
n∑
i

Pic , 0 ∀c = c + 1, . . . , Cmax (14)

2. While AC is not empty
3. Select the first possible cycle (which is in the AC) and find the number of the consecutive removed cycles

(RC) after the selected cycle, according to Equation (15).

(c + 1) − th ∈ RC(c)⇔
n∑
i

Pic = 0 ∀c = c + 1, . . . , Cmax (15)

4. Keep the required amount of all material types to meet the demand of the current cycle and all the
consecutive removed cycles after the current cycle and transfer the extra containers to the next
available cycle.

5. Remove the selected cycle from AC.
6. End while
7. For all available cycles in the AC, from the last to the first (recursive process)
8. If the number of assigned containers to the tugger train in the current cycle exceeds the capacity of the

tugger train
9. While the number of containers is more than the capacity of the tugger train
10. Create a new candidate list (NCL), according to Equation (16).

P(i) ∈ NCL(t)⇔ Pic + ILic > dic&[Pih + ILih]
+ <W(i) ∀c = c + 1, . . . , Cmax (16)

11. If NCL is not empty, create priority lists 1 to 4, as presented in Figure 2
12. Transfer only one container of the material type that has higher priority in list 1 (If there are one or more

material types with the same CN(i), choose a material type from list 2 to 4, respectively) to the first
available cycle before the current tour.

13. Update the information concerning the current cycle as well as the cycle that received the
selected material.

14. End if
15. End while
16. End if
17. End for
18. Return the solution.

6. Computational Results

A set of instances taken from the literature (i.e., [29]) that included nine different problems with
different sizes (small, medium, and large) were solved to allow for a more detailed assessment of the
efficiency and effectiveness of the heuristic proposed. The loading capacity of the tugger train (LC)
was set to be between 50 and 150 containers, depending on the number of wagons attached to each
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tugger train (i.e., 50 containers per wagon and the maximum of 3 wagons per tugger train). All the
instances were solved considering three different maximum allowed number of line visits. In total,
27 instances were solved by the proposed heuristic, and the results obtained were compared against
the best solution found by a well-known commercial solver, i.e., CPLEX. The proposed heuristic was
coded in MATLAB R2019b and run on a personal computer with Intel Core i5, with 2.4 GHz CPU and
8 GB of RAM.

To evaluate the performance of the heuristic, the results achieved from the heuristic and the
MILP model solved by CPLEX were compared concerning the cost of line visits (CLV), cost of holding
inventory (CHI) at stations, and the total cost including the CLV and CHI. It is worth noting that
comparison of the inventory holding cost can only be made if the number of line visits is the same,
because it is not unexpected to have less inventory when having more line visits.

The computational results for both the proposed heuristic and the CPLEX are given in Table 2.
To facilitate the comparison, the worst and best results obtained by the heuristic in comparison with
the results achieved from CPLEX are shown in bold numbers and marked with “*”, respectively.

Table 2. Results obtained by the heuristic and CPLEX for the solved instances.

Sample n Cmax LC
Heuristic CPLEX b

CLV CHI PR-CHI(%) a TC CPU (s) CLV CHI TC CPU (s)

1 110 24 350 23,000 1302.95 0 24,302.95 1.18 23,000 1302.95 24,302.95 7200
23 350 22,000 1386.66 * −0.3478 23,386.66 1.23 22,000 1391.5 23,391.5 7200
20 350 20,000 908.6 * −0.2415 20,908.6 0.91 20,000 910.8 20,910.8 7200

2 95 24 300 23,000 1184.27 0 24,184.27 1.08 23,000 1184.27 24,184.27 7200
23 300 220,00 1228.92 0 23,228.92 1.09 22,000 1228.92 23,228.92 7200
19 350 19,000 790.59 0 19,790.59 0.89 19,000 790.59 19,790.59 7200

3 75 24 250 18,000 * 1648.35 3.74321 19,648.35 1.13 19,000 1588.875 20,588.875 7200
22 250 20,000 1164 0 21,164 0.97 20,000 1164 21164 7200
17 300 17,000 583.95 0 17,583.95 0.66 17,000 583.95 17,583.95 34.93

4 60 24 150 17,000 1528.98 4.02498 18,528.98 0.72 17,000 1469.82 18,469.82 7200
15 200 15,000 358.2 0 15,358.2 0.45 15,000 358.2 15,358.2 4.507
13 250 13,000 323.7 0 13,323.7 0.44 13,000 323.7 13,323.7 2.062

5 50 22 150 16,000 1332 16.1898 17,332 0.84 16,000 1146.4 17,146.4 7200
16 200 16,000 346.4 0 16,346.4 0.48 16,000 346.4 16,346.4 4.084
11 250 11,000 224.95 0 11,224.95 0.44 11,000 224.95 11,224.95 1.928

6 40 23 100 17,000 * 1285.2 58.6666 18,285.2 0.89 18,000 810 18,810 7200
15 150 15,000 231 0 15,231 0.47 15,000 231 15,231 2.097
12 200 12,000 180 0 12,180 0.46 12,000 180 12,180 1.281

7 30 19 100 12,000 357.48 1.63766 12,357.48 0.46 12,000 351.72 12,351.72 15.78
17 100 16,000 247.2 0 16,247.2 0.46 16,000 247.2 16,247.2 87.16
15 100 15,000 182.7 0 15,182.7 0.46 15,000 182.7 15,182.7 1.303

8 20 21 50 13,000 350.22 10.7730 13,350.22 0.58 13,000 316.16 13,316.16 27.51
16 50 13,000 292.76 0 13,292.76 0.56 13,000 292.76 13,292.76 5.943
11 100 11,000 84.92 0 11,084.92 0.45 11,000 84.92 11,084.92 0.633

9 10 15 50 8000 110.4 0 8110.4 0.45 8000 110.4 8110.4 2.019
11 50 10,000 67.2 0 10,067.2 0.57 10,000 67.2 10067.2 0.783
8 50 8000 27.44 0 8027.44 0.44 8000 27.44 8027.44 0.208

a Percentage error (PR) of the heuristic algorithm as compared to the results obtained by CPLEX for the CHI. b A 2-h
time limitation has been applied for CPLEX.

The analysis of the results listed in Table 2 shows that the proposed heuristic found a solution with
the same or lower cost for line visits (i.e., lower cost in two instances, as shown with “*”) as compared
to the solution obtained by CPLEX during the limited 2-h time. Moreover, the heuristic algorithm
successfully found the same amount of inventory holding cost for 25 instances out of 29. Moreover,
it was observed that CPLEX was not able to find the optimum solution during the predetermined
computation time (2 h) for 11 instances (mostly comprised of large-scale problems). Nevertheless, the
heuristic algorithm proposed managed to find an optimum or near-optimum solution in the majority
of the instances solved within a minimal computational time.

Table 2 lists the percentage error of the heuristic algorithm from CPLEX regarding the cost of
holding inventory to facilitate the necessary comparisons. The assessment of the percentage error
value revealed that in close to 86% of the solved instances, the heuristic algorithm found the same cost
for holding inventory as compared to the MILP model solved by CPLEX.



Sustainability 2020, 12, 6669 12 of 15

Regarding the total cost, the heuristic algorithm found the same solution in 19 out of 27 (almost
70%) of the solved instances and a better solution in four problems as compared to the MILP model.

Figure 3 shows a comparison of the solution time for each problem by the proposed algorithm
and the MILP. As can be observed, the proposed algorithm was extremely fast in finding a good and
feasible solution to the problems solved in a fraction of time. The results also show that the MILP can
solve the small and medium-size problems in a reasonable amount of time, but the computation time
severely increases as the problem size increases.
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7. Concluding Remarks and Future Directions

For decades, mass-production and the underlying goals of cost-saving and higher productivity
have been the leading business strategy across the manufacturing Industry. With the advent of digital
transformation and the progression of Industry 4.0, more customer-focused goals are an integral part of
the business strategy across various industrial sectors. Since some degree of product personalization
and manufacturing modularity is a necessary response to the market turbulence, manufacturers
nowadays are increasingly concerned with reshaping their strategies from mass production to mass
customization as the manufacturing sector revolution under the umbrella of Industry 4.0 grows. To meet
the micro-economic sustainability criteria while altering the preexisting production models consistent
with the customer-oriented mass customization philosophy, manufacturers need to minimize changes
to the production layout, machinery, processes, and facilities, while improving the overall production
modularity and agility. To meet both customer orientation and manufacturing sustainability criteria
simultaneously, contemporary manufacturers are striving to implement mixed-model assembly lines
to produce a wide variety of basic products, while minimizing the machinery and production line
reconfiguration costs. To enable manufacturers to take greater advantage of mixed-model assembly lines,
the present study addressed the issue of the material supply problem at a mixed-model assembly line
while considering the use of the supermarket concept. A two-stage heuristic algorithm was proposed
as the solution approach. The proposed heuristic was designed based on the central concept of the
multilevel queue scheduling algorithm. As part of the heuristic, four priority rules were presented
with specific formulas enabling the prioritization of the materials to be chosen for delivery in each line
visit. The main decision problems considered in this study were the tugger train loading and material
delivery scheduling. The main optimization objective was defined as minimizing the total cost material
delivery cost, including the cost of the line visits and inventory holding at stations.

The performance of the heuristic algorithm proposed was tested by solving a set of problem
instances taken from the literature. To illustrate the efficiency of the proposed algorithm, the results
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achieved by the heuristic algorithm were compared against the solutions obtained by solving the
related MILP model. Comparisons performed, collectively, demonstrated that the heuristic proposed
offers a satisfying level of efficiency, as it successfully found ‘good’ results in the majority of the cases.
More precisely, the heuristic found the same or lower line visits cost as compared to the MILP across
all the instances solved. Moreover, and in comparison to the solution provided by the MILP model, the
algorithm also found the same results for close to 86% of the problems solved in terms of inventory
holding cost. Moreover, it is worth mentioning that while the computational time for solving the MILP
model by CPLEX was significantly high and in 11 out of 27 instances, no optimal solution could be
found during the 2-h time limit; however, the heuristic proposed in this study managed to successfully
find a ‘good’ solution for the majority of the solved instances in one minute or less. Overall, the
present study contributed to the issue of micro-economic sustainability of manufacturers by enabling
factories to reduce the overall production costs thanks to the optimization of line visits and inventory
holding costs across the production lines, favorable conditions that offer an indirect contribution to the
plant-level energy sustainability as well.

For future works, the proposed heuristic can be adapted to cope with the material supply problem
considering another type of assembly line, e.g., U-shaped and parallel. Moreover, stochastic material
demand might also be considered as an extension of the current study. Furthermore, the performance
of the proposed heuristic can also be benchmarked against metaheuristic algorithms, such as Tabu
Search and Genetic Algorithm. Considering the satisfying performance of the proposed algorithm, the
concept of multilevel queue scheduling can also be adapted to design algorithms for other types of
production and logistics problems. Additionally, the performance of each priority rules proposed in
this study can be tested in dealing with other similar problems.
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