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Abstract: Trip generation modeling is essential in transportation planning activities. Previous modeling
methods that depend on traditional data collection methods are inefficient and expensive. This paper
proposed a novel data-driven trip generation modeling method for urban residents and non-local
travelers utilizing location-based social network (LBSN) data and cellular phone data and conducted
a case study in Nanjing, China. First, the point of interest (POI) data of the LBSN were classified into
various categories by the service type, then, four features of each category including the number
of users, number of POIs, number of check-ins, and number of photos were aggregated by traffic
analysis zones to be used as explanatory variables for the trip generation models. We used a random
tree regression method to select the most important features as the model inputs, and the trip models
were established based on the ordinary least square model. Then, an exploratory approach was used
to test the performance of each combination of the variables with various test methods to identify
the best model for residents’ and travelers’ trip generation functions. The results suggest land use
compositions have significant impact on trip generations, and the trip generation patterns are different
between urban residents and non-local travelers.

Keywords: trip generation model; urban transportation planning; location-based social network
data; traveler trip estimation; POI

1. Introduction

Trip generation modeling is the first step in the traditional travel demand forecasting procedure,
and it is integral in evaluating the transportation impacts of land use developments. In transportation
planning activities, the cities are divided into various traffic analysis zones (TAZs). The trip generation
models aim to predict the total number of trips generated and attracted to each TAZ. Transportation
planning agencies need to collect the travel survey data, land use data, and socio-economic data to
implement the calculation of the trip generation models [1]. Traditional methods to acquire these data
are expensive and inefficient since a significant number of trained staff are required to collect trip data
from residents of various family sizes and income levels [2,3]. Moreover, the non-local travelers are
often neglected during the in-house survey procedure. However, with the development of urban cities,
the connections and trip exchanges between urban major cities become more frequent. The non-local
traveler trips contribute an increasing fraction of the total trips in the city. In addition, existing research
has found that the non-local travelers’ trips are different from residents’ trips in terms of trip length
distributions, trip purposes, and trip frequencies [4]. New, effective trip survey methods are required to
construct more accurate and effective trip generation models for both residents and non-local travelers.
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Recent research on transportation planning, especially trip generation forecasting, explored various
methods to collect travel data, including global positioning system (GPS) data, cellular service data,
and location-based social network (LBSN) data. The GPS data can provide trip makers’ travel
trajectories with high spatial accuracy. Researchers have used GPS data to obtain real-time traffic status
on roadway segments [5] and to construct personal users’ travel choice recommendation systems [6],
however, GPS data are rarely used to analyze travel patterns on a large scale at a city level since
users may not use navigation services for every trip, especially for their routine commuting trips,
therefore, the GPS technique has a deficiency in collecting data of a sufficiently large sample size.
The cellular phone data can provide trip information of a large population size, including for both
residents and travelers with high temporal and spatial resolution. Previous research utilized cellular
phone data to obtain travel information of a large population size for various transportation studies
such as origin–destination matrix estimation [7,8], traffic status monitoring [9,10], travel behavior
analysis [11] etc. The disadvantage of cellular phone data is that they do not include the purpose of
users’ travel activities and the information of users’ personal social and economic attributes. In LBSN
services, locations in the real world are labeled by service providers and users with specific service
types such as office, residence, food, etc., which constitutes the points of interest (POIs) of the LBSN.
Users check-in at different POIs by sharing their locations and comments with their friends, creating
abundant trajectory records. The LBSN data can provide an inexpensive and convenient data source
for quantifying the strength of trip activity in an area and inferring land use type by the most popular
activity type. The transportation researchers have demonstrated the advantages of LBSN data in
various applications [12]. Some research utilized the check-ins of the LBSN data to estimate trip
demand [3,13,14]: one research paper used Foursquare check-in data to estimate the Origin Destination
matrix for non-commuting trips [14], and another research paper utilized check-in data to estimate trip
demand for shared-bikes [13]. In urban cities, many areas have compound service types. The POIs in
the LBSN data have the advantage of describing the land use type and quantify the fraction of different
service types. Some research focused on utilizing the service types of the POI data in the LBSN [15–18]:
one research paper proposed a trip purpose inference method using POI service type compositions in
the destination area [17], one research paper used the POI data to identify the land use type of city
blocks [18], and another research paper identified the correlation between roadway traffic flow and
built-in environments [16].

In conclusion, combining the advantages of the cellular phone data and those of the LBSN data
could provide new opportunities to c new trip generation models with better accuracy and at low cost.
The cellular phone data could be used to calculate the number of trips produced and attractions of
urban residents and non-local travelers. The LBSN data, which includes the POI type and check-in
number, could be used as variables suggesting land use and attractiveness of trips. With the cellular
phone data and LBSN data combined, we can explore the relationship between trip production and
attraction and different POI types in a traffic analysis zone. For future trip generation estimation with
new land use developments, reasonable prediction of trip production/attraction of urban residents and
non-local travelers could be calculated using the LBSN data.

This paper aimed to propose a novel trip generation modeling method using LBSN data and
cellular phone data for both residents and travelers in urban cities. The rest of the paper is organized
as follows: Section 2 introduces the data sets used in this research and presents some preliminary
data analysis; Section 3 introduces the procedures of the methodology, including four steps: feature
selection, exploratory approach to building trip models, model selection, and model evaluation;
Section 4 describes a case study conducted in Nanjing and analyzes the results. Section 5 concludes
the paper.

2. Data

This study was conducted in the city of Nanjing in China, which is an urban metropolitan area
with a population size of 8.27 million [19]. The area of the city is approximately 6587 km2 [19]. The city
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is divided into 11 administrative zones and 38 traffic analysis zones (TAZs) by the transportation
management department. Figure 1a illustrates the research area with the TAZ divisions. In the central
area where the population is densely distributed, the TAZs are relatively small compared with the
TAZs in the suburban area where the population is less densely distributed. Figure 1b presents the
spatial distribution of the 77,061 cellular signal base stations in Nanjing. Figure 1c illustrates the spatial
distribution of the 11,719 points of interest (POI) of a location-based social network (LBSN) service.
The LBSN data were collected from Weibo, which is one of the most popular social service providers in
China with over 465 million active users nationwide as of 2019 [20]. As indicated in Figure 1, both the
cellular signal base stations and POIs have good spatial coverage in Nanjing. The base stations and the
POIs are more densely distributed in the central area and less distributed in the suburban area.
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Figure 1. The research area: LBSN: (a) Research Area; (b) Locations of Base Stations; (c) Locations of
LBSN POIs.

Figure 2 shows the trip productions and attractions for the residents and the travelers, which were
collected from a travel survey conducted by the transportation management department using cellular
phone data in February 2016. As indicated in Figure 2, most of the residents’ and travelers’ trips were
generated in the central area where the population is densely distributed, while trips were fewer in the
suburban area compared with the central area. There were more resident trips than traveler trips since
the resident population is larger than that of travelers.
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Weibo provides an application programming interface (API) [21] for collecting detailed information
at each POI, including the locations, the service types, and statistics about the total check-in counts,
user counts, and number of photos uploaded by users. The service types of the Weibo POI are
labeled with 272 detailed categories, we further grouped these categories into 10 classifications:
residence, office, entertainment, school, transportation facility, outdoor, service, food, hotel, and others.
The “other” category contained POIs labeled as district names or street names, from which we cannot
infer the specific service type. The user-created personal tags were also classified as other. The service
types were classified as per the following list:

• Transportation Facility: Bus Stop, Subway Entrance, Parking Lot, Train Station, Inter-city Bus
Station, etc.

• Residence: Residential Building, Residential District, Apartment, etc.
• Office: Office Building, Government Building, Tech Startup, Design Studio, etc.
• Entertainment: Museum, Nightclub, Bar, Theater, Club, Karaoke Club, Cinema, Memorial Hall,

Exhibition Hall, Entertainment, etc.
• School: Campus, University Building, Primary School, High School, etc.
• Outdoor: Park, Historical Spot, Botanical Garden, Scenic Lookout, etc.
• Service: Mall, Supermarket, Store, Cosmetics Shop, Bookstore, Boutique, Miscellaneous Shop, etc.
• Food: Diner, Restaurant, Local Food, Coffee Shop, Pizza, Burger, Cafe, Bakery, Food, Steakhouse,

Dessert Shop, etc.
• Hotel: Hotel, Inn, Guest House, etc.
• Other: User Created POI, Street Name, etc.

We collected the information of all the 11,719 POIs in the research area from the API. Figure 3
displays the share of POIs per category, the average check-ins per POI, the average number of photos
per POI, and the average number of users per POI, which were calculated based on the historical
accumulative statistics.

Figure 3a presents the details of POIs by the service type in Nanjing. The “other” POIs made
up 22% of all POIs; most of them were created by users for personal use. The historical check-ins
and number of users were very low compared with the POIs with a certain service type. Therefore,
the “other” POI type was not considered as an explanatory variable in the trip generation model.
Instead, the total number of all POIs in each TAZ was considered as an explanatory variable in the
trip generating models, since the total POI number may reflect the general prosperity of the district.
Figure 3b–d displays the average number of photos, check-ins, and users for the potential explanatory
variables including each POI type and “all types”. The average check-in per POI and the average photos
per POI had very similar patterns in POI distributions. The “school”, “service”, and “transportation
facility” POIs attracted more check-ins and photo uploads. The “service”, “school”, and “outdoor” POIs
attracted more users. The “school” category received the largest number of average daily check-ins
while the “office” POIs received the lowest daily check-ins, which suggests that users’ preferences
to check-in vary with different service type categories. Therefore, when the POI data are used as
explanatory variables in trip generation models, the heterogeneity of the different POI service types
should be considered.
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Figure 3. Statistics of the POI distributions: (a) Share of POIs per Category; (b) Average Checkins per
POI; (c) Average Photos per POI; (d) Average Users per POI.

3. Methods

The trip generation modeling in transportation planning procedure calculates the number of trips
produced and attracted by each traffic analysis zone. The data used in this research included the
LBSN data, which consists of the number of POIs, number of users, number of check-ins, number of
photos for each POI service type in the TAZs, and survey data, which provide trip production and
attraction statistics for urban residents and non-local travelers. The survey data were provided by the
transportation management department by using cellular phone data, which guarantees the quality
of the data. The methodology framework of our data-driven method to model the trip generation
function is shown in Figure 4, which includes four steps: feature selection, exploratory approach to
building trip models, model selection, and model evaluation. The LBSN data includes four features for
each traffic analysis zone, and each feature can be classified into 10 different POI categories as listed
in the previous section, which formulate 40 possible factors relating to trip production or attraction.
Firstly, we used the random tree regression method to evaluate the importance of the 40 explanatory
variables, and selected the most important feature out of the four features. Then, we established trip
models for resident trip production, resident trip attraction, traveler trip production, and traveler trip
attraction based on the ordinary least square model. We used an exploratory approach to test the
performances of each combination of explanatory variables. The best models were selected using five
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indicators: the adjusted R-squared value, and the p-value, the variance inflation factor (VIF) value,
the Jarque–Bera p-value, and the spatial autocorrelation p-value for each coefficient. The performances
of the selected models were evaluated using Akaike’s information criterion, joint F-statistic, Wald
statistic, Koenker’s studentized Breusch–Pagan statistic, Jarque–Bera statistic, and the Moran’s index
method to validate the robustness of the models.

Sustainability 2020, 12, x 6 of 16 

3. Methods 

The trip generation modeling in transportation planning procedure calculates the number of 
trips produced and attracted by each traffic analysis zone. The data used in this research included 
the LBSN data, which consists of the number of POIs, number of users, number of check-ins, number 
of photos for each POI service type in the TAZs, and survey data, which provide trip production and 
attraction statistics for urban residents and non-local travelers. The survey data were provided by the 
transportation management department by using cellular phone data, which guarantees the quality 
of the data. The methodology framework of our data-driven method to model the trip generation 
function is shown in Figure 4, which includes four steps: feature selection, exploratory approach to 
building trip models, model selection, and model evaluation. The LBSN data includes four features 
for each traffic analysis zone, and each feature can be classified into 10 different POI categories as 
listed in the previous section, which formulate 40 possible factors relating to trip production or 
attraction. Firstly, we used the random tree regression method to evaluate the importance of the 40 
explanatory variables, and selected the most important feature out of the four features. Then, we 
established trip models for resident trip production, resident trip attraction, traveler trip production, 
and traveler trip attraction based on the ordinary least square model. We used an exploratory 
approach to test the performances of each combination of explanatory variables. The best models 
were selected using five indicators: the adjusted R-squared value, and the p-value, the variance 
inflation factor (VIF) value, the Jarque–Bera p-value, and the spatial autocorrelation p-value for each 
coefficient. The performances of the selected models were evaluated using Akaike’s information 
criterion, joint F-statistic, Wald statistic, Koenker’s studentized Breusch–Pagan statistic, Jarque–Bera 
statistic, and the Moran’s index method to validate the robustness of the models. 

Adjusted R-Squared
Coefficient P-Value 

VIF Value 
Jarque-Bera P-Value 

Spatial Autocorrelation P-Value 

Model Selection

Akaike's Information Criterion
Joint F-Statistic 
Wald Statistic

Koenker's studentized Breusch-Pagan Statistic
Jarque-Bera Statistic

Moran's Index
Cross Validation

Model Evaluation

Number of Users
Number of POIs

Number of Check-ins
Number of Photos

LBSN Data

Resident Trip Production
Resident Trip Attraction
Traveler Trip Production
Traveler Trip Attraction

Survey Data

Random Tree Regression
– Gene Importance

Feature Selection

Ordinary Least Square Models
- Exploratory Approach

Trip Models

 
Figure 4. The methodology framework. 

3.1. Feature Selection Using Random Forest Regression Method 

In this study, the random forest regression method was employed to evaluate the importance of 
each LBSN feature. The calculating procedures were as follows [22]: 

(a) From the available dataset, randomly draw a new training set (bootstrap sample) with 
replacement; 

(b) Grow a tree using the bootstrap sample by iteratively splitting the nodes until no further splits 
are possible or the user-defined stopping criterion is reached. In order to split the nodes at the 
most informative feature, we use an objective function to maximize the information gain at each 
split, which is defined as [23]: 

Figure 4. The methodology framework.

3.1. Feature Selection Using Random Forest Regression Method

In this study, the random forest regression method was employed to evaluate the importance of
each LBSN feature. The calculating procedures were as follows [22]:

(a) From the available dataset, randomly draw a new training set (bootstrap sample) with replacement;
(b) Grow a tree using the bootstrap sample by iteratively splitting the nodes until no further splits

are possible or the user-defined stopping criterion is reached. In order to split the nodes at the
most informative feature, we use an objective function to maximize the information gain at each
split, which is defined as [23]:

IG
(
Dp, xi

)
= I

(
Dp

)
−

Nle f t

Np
I
(
Dle f t

)
−

Nright

Np
I
(
Dright

)
(1)

where xi is the feature to perform the split, I is the impurity function, Np is the number of samples
in the parent node, Dp is subset of training samples at the parent node, Dle f t, Dright are the subsets
of training samples at the left and right child nodes, respectively, after the split, and Nle f t, Nright
refer to the number of samples at the left and right child nodes, respectively, after the split.

(c) Using a decision tree for regression, we define the impurity measure of a node t as the MSE
(Mean Squared Error) instead [24]:

I(t) = MSE(t) =
1

Nt

∑
i∈Dt

(
y(i) − ŷt

)2
(2)

where Nt is the number of training samples at node t, Dt is the subset of training samples at the
node t, y(i) is the target true value, and ŷt is the predicted target value (average of the predictions
of the sample sets). By taking an average of those predictions, the random forest model achieves
a reduced variance, which can yield an overall better model in practice.
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(d) The feature importance can be assessed in the following way: The importance at a Node k can be
calculated as [25]:

nk = wkIk −wle f tIle f t −wrightIright (3)

where wk, wle f t, wright refer to the fraction of the sample in node k and its left/right child in the
overall training sets, respectively. Ik, Ile f t, Iright are the impurity measure of node k and its left/right
child, respectively. After calculating the importance of each node, the feature importance can be
obtained as:

fi =

∑
j∈nodes split on f eature i n j∑

k∈all nodes nk
(4)

In order to make the sum of the feature importance of all features equal to 1, the feature importance
is normalized as:

fni =
fi∑

j∈all f eatures f j
(5)

3.2. Exploratory Approach to Establish Trip Models

The traditional methods used for trip generation modelling include two major methods:
the regression method and the category analysis method [26]. The regression method uses the
characteristics of the individuals and the zone as explanatory variables to predict the number or
frequency of trips. The category analysis, or the cross-classification method, is the most extensively used
approach for trip generation. The FHWA (Federal Highway Administration) trip production model
adopted the category analysis method and has the following sub-models [27]: an income sub-model
that reflects the distribution of households within various income categories, an auto ownership
sub-model that relates the household income to auto ownership, a trip production sub-model that
establishes the relationship between the trips made by each household and auto ownership, and a trip
purpose sub-model that relates the trip purposes to income in such a manner that the trip productions
can be divided among various purposes.

In our research, we use the regression method to establish trip models. After selecting the best
feature out of the four features with the random forest method, we used the feature as the input of the
trip model. Since there are 10 POI categories, we used the ordinary least squares model to establish the
relationship between trips and features of the 10 different POI categories in the 38 TAZs.

In order to identify the ordinary least squares (OLS) models that best explain the relationship
between the trips and the features of the 10 different POI categories, all possible combinations of the
10 candidate explanatory variables were compared in an exploratory approach, the form of the OLS
model is [28]:

yi = β0 +
∑

k
βkxik (6)

where yi is the response variable (resident trip production, resident trip attraction, traveler trip
production, or traveler trip attraction) at a certain TAZ i and xk,i is a row vector of explanatory variables
(LBSN feature of 10 POI categories) at TAZ i, and βk is a column vector of regression coefficients.
The first element of the equation β0 is the intercept.

3.3. Model Selection and Evaluation Criteria

Several measures were used to select the best model for residents’ and travelers’ trip generations
and to evaluate the overall model performance, the significance of each explanatory variables,
the model bias, the model stationarity, the overall model significance, and the spatial autocorrelation.
The measures are listed as follows [29]:

(a) Overall Model Performance

Adjusted R-squared: The adjusted R-squared value is a statistical measure that indicates the
proportion of the variance for a dependent variable that can be explained by the independent variable(s)
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in a regression model [30,31]. Possible values range from 0.0 to 1.0. A higher adjusted R-squared
implies a better regression equation. The adjusted R-squared value is always lower than the R-squared
value because it is adjusted for model complexity (number of variables).

AICc: Akaike’s information criterion (AIC) is a relative measure of performance used to compare
models [30]. Corrected Akaike’s information criterion (AICc) is a second order correction for small
sample sizes. Smaller AIC or AICc values indicate superior models.

(b) Criteria for Each Explanatory Variables

Coefficients represent the strength of the relationship the explanatory variable has with the
dependent variable. A p-value for each coefficient associated with each independent variable is
computed in a statistical test to determine whether the associated variable is an effective predictor.
The null hypothesis for this statistical test is that a coefficient is not significantly different from zero.
A coefficient with a p-value of 0.05 indicates the corresponding explanatory variable is statistically
significant at the 95 percent confidence level.

(c) Model Bias

VIF: The variance inflation factor (VIF) measures multicollinearity among explanatory variables
in an ordinary least squares regression model [28]. It provides an index that measures how much the
variance (the square of the estimate's standard deviation) of a regression coefficient is inflated due
to collinearity.

Jarque–Bera (JB) statistic: The JB statistic is used to determine whether the residuals (the observed
values minus the predicted values) are normally distributed [29]. JB test’s null hypothesis is that the
sample is from normal distribution. The test p-value reflects the probability of accepting the null
hypothesis. A small JB p-value (smaller than 0.10 for a 90 percent confidence level) indicates the
residuals are not normally distributed, which indicates the model is biased.

(d) Model Stationarity

Koenker (BP) Statistic: The Koenker (BP) Statistic (Koenker’s studentized Bruesch–Pagan statistic)
tests the probability that the explanatory variables have a consistent relationship with the dependent
variable both in geographic space and data space [32]. The null hypothesis is that the model is
stationary. A p-value smaller than 0.05 indicates statistically significant non-stationarity at a 95 percent
confidence level.

(e) Model Significance

The joint F-statistic and joint Wald statistic are both used as measures of overall model statistical
significance [29]. The joint F-statistic is used when the Koenker (BP) statistic is not significant, otherwise
the joint Wald statistic is used to determine overall model significance. The null hypothesis for both of
these tests is that the explanatory variables have no significant effect on the dependent variable. For a
95 percent confidence level, a p-value smaller than 0.05 indicates a statistically significant model.

(f) Spatial Autocorrelation

The global Moran’s I statistic is used as a measure to evaluate whether the model residuals
are randomly distributed [33]. The null hypothesis is that the attribute being analyzed is randomly
distributed among the features in the study area. Statistically significant clustering of high and/or low
residuals indicates a key variable is missing from the model.

During the process of testing the performances of each OLS model, the values of the five indicators,
which include the adjusted R-squared value, the p-value, the VIF value, the Jarque–Bera p-value,
and spatial autocorrelation p-value, were confined as [32]:

• Min Adjusted R-Squared > 0.5
• Max Coefficient p-value < 0.05
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• Max VIF Value < 7.50
• Min Jarque–Bera p-value > 0.10
• Min Spatial Autocorrelation p-value > 0.10

The adjusted R-squared value and the AICc value were compared for models with different
numbers of model parameters. The performance of the final selected models were evaluated using the
joint F-statistic, Wald statistic, Koenker’s studentized Breusch–Pagan statistic, and Jarque–Bera statistic
to validate the models. The residuals were plotted and tested using the Moran’s index method to make
sure no explanatory variables were missing in the proposed models.

4. Application of the Methods

Firstly, we aggregated the number of users, the number of POIs, the number of photos, and the
number of check-ins by 10 different POI categories for each traffic analysis zone, resulting in 4 features
with 40 explanatory variables in total. Then, we used the random forest regression method to evaluate
the importance of the variables, the results are illustrated in Figure 5.
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Figure 5. Feature importance.

As indicated in Figure 5, the variables of the POI feature have the largest value in the feature
importance calculation in the random forest regression method. Therefore, the POI feature was
selected. Although some of the variables, such as the number of check-ins of the “office” category,
have significant feature importance values, in order to keep the consistency of the variables in the
feature property, we did not select variables with the highest feature importance values, instead we
chose a group of variables belonging to the same feature.

Then, we used the exploratory regression method to further reduce the number of parameters in
the models and identify key factors influencing trip production/attraction of the two population groups.

A maximum of 10 variables including the number of POIs of the 10 categories were used as input
explanatory variables of the OLS model. We used an exploratory approach to test every possible
combination of the explanatory variables for the OLS models, with the number of variables ranging
from 1 to 10, resulting in 1023 different models (the statistics for the explanatory variables can be found
in Table A1).

Figure 6 plots the AICc value and R-squared value with the best performance of the same number of
input variables. However, no models satisfied all the test requirements (Min Adjusted R-Squared > 0.5;
Max Coefficient p-value < 0.05; Max VIF Value < 7.50; Min Jarque–Bera p-value > 0.10; Min Spatial
Autocorrelation p-value > 0.10). Therefore, we needed to find more explanatory variables to improve
the model.
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Figure 6. Model performances using different numbers of parameters: (a) R-Squared; (b) AICc.

Three extra variables were incorporated into the trip generation models, which include the area
of the TAZ, the number of highway entrances in the TAZ, and the number of public transportation
stations (bus stops and subway entrances). Then, we used the explorative approach to compare and test
the performance of the OLS models with 13 to 1 explanatory variables (the statistics of the explanatory
variables can be found in Table A1).

Figure 7 presents the R-square and AICc values of these models with different numbers of input
variables. When the number of model parameters was above 5, the trip productions and attractions
model for residents achieved good results with the R-squared value greater than 0.93, and the trip
productions and attractions model for travelers was greater than 0.9, and the corresponding AICc
values were among the lowest compared with the other models.
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Figure 7. Performances of the enhanced model using various numbers of parameters: (a) R-Squared;
(b) AICc.

From the models that passed the criteria proposed in Section 3.3 (Min Adjusted R-Squared > 0.5;
Max Coefficient p-value < 0.05; Max VIF Value < 7.50; Min Jarque–Bera p-value > 0.10; Min Spatial
Autocorrelation p-value > 0.10), we selected the one with the lowest AIC value and highest
R-squared value. Table 1 lists the selected variables and the corresponding coefficients, p-values,
and standard coefficients.
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Table 1. Model parameters and corresponding test statistics.

Model Variable Coef Prob Robust_t Robust_Pr StdCoef

Residence Attraction

Intercept −4728.789 0.499 −0.916 0.367 0.000
TOTALPOI −517.792 0.001 −5.847 0.000 −1.759
HOTELPOI 2975.248 0.002 3.247 0.003 0.351

RESIDENCEPOI 691.976 0.029 3.583 0.001 0.345
SCHOOLPOI 1078.626 0.003 4.764 0.000 0.590
SERVICEPOI 3325.694 0.000 5.861 0.000 0.943

PUBLICTRANSPORT 212.390 0.000 8.554 0.000 0.707
HIGHWAYENTRANCE 2518.009 0.002 4.141 0.000 0.177

Residence Production

Intercept −4659.771 0.505 −0.900 0.375 0.000
TOTALPOI −518.320 0.001 −5.848 0.000 −1.762
HOTELPOI 2985.328 0.002 3.247 0.003 0.353

RESIDENCEPOI 693.638 0.029 3.591 0.001 0.346
SCHOOLPOI 1079.650 0.003 4.777 0.000 0.591
SERVICEPOI 3323.835 0.000 5.845 0.000 0.944

PUBLICTRANSPORT 212.078 0.000 8.520 0.000 0.707
HIGHWAYENTRANCE 2521.993 0.002 4.153 0.000 0.178

Traveler Attraction

Intercept −7623.849 0.274 −1.543 0.133 0.000
HOTELPOI 2062.868 0.000 3.065 0.004 0.382

OUTDOORPOI −557.375 0.038 −5.075 0.000 −0.153
SCHOOLPOI 177.590 0.010 3.010 0.005 0.152

AREA 36.901 0.106 2.464 0.019 0.083
PUBLICTRANSPORT 129.545 0.000 5.707 0.000 0.677

HIGHWAYENTRANCE 1030.744 0.025 2.830 0.008 0.114

Traveler Production

Intercept −8141.640 0.253 −1.610 0.118 0.000
HOTELPOI 2065.259 0.000 2.921 0.006 0.380

OUTDOORPOI −523.531 0.055 −4.256 0.000 −0.142
SCHOOLPOI 153.494 0.028 2.451 0.020 0.131

AREA 39.871 0.088 2.648 0.013 0.089
PUBLICTRANSPORT 132.695 0.000 5.729 0.000 0.688

HIGHWAYENTRANCE 935.039 0.045 2.545 0.016 0.103

As indicated in Table 1, for the residence trip production and attraction models, seven variables
were selected including the total number of POIs, the hotel POIs, the residence POIs, the school
POIs, the service POIs, the number of public transportation stations, and the number of highway
entrances. For the trip production and attractions models for travelers, six variables were selected
including the hotel POIs, the residence POIs, the school POIs, the outdoor POIs, the area of the TAZ,
the number of public transportation stations, and the number of highway entrances. The coefficients
of the HIGHWAYENTRANCE variable were very high compared with those of the other variables.
The number of highway entrances was small, while the highway entrance serves as an important
connector between major trip origins and destination areas. The social network service may create
excessive number of POIs for certain service types, for example, there may exist many shops and
restaurants inside one shopping area, and users may create many personal POIs for their home in the
residential area. We also found that the coefficients for the number of outdoor POIs and the TOTALPOIs
were negative while the coefficients for the other variables were positive. The reason may be that
most of the outdoor POIs are located on mountains and lakes where human activities are rare. It was
also found that HOTELPOI had an impact on residence trip production and attraction. The reason
may be that many HOTELPOIs and RESIDENCEPOIs are often in the same zone, which makes
HOTELPOI have an impact on residence trips. The living areas of most Chinese families are too
small to accommodate another friend or family. It is very common to find hotels in residential places,
since people need accommodation when visiting family and friends in a different city.

We further evaluated the performances of the finally selected models using joint F-statistics,
Wald statistic, Koenker’s studentized Breusch–Pagan statistic, and Jarque–Bera statistic. Table 2 lists
the test results. The results indicate that the model performance, the significance of each explanatory
variable, the model bias, the model stationarity, and the overall model significance can satisfy the
statistical requirements, which indicates that the models are validated.
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Table 2. Test statistics of the trip generation models.

Diag_Name Residence_Attr Residence_Pro Traveler_Attr Traveler_Pro

AIC 882.8998437 882.9398733 850.9063464 852.479157
AICc 889.3284151 889.3684448 855.8718636 857.4446743

R2 0.942903061 0.942750317 0.936212674 0.934536774
AdjR2 0.929580442 0.929392058 0.923866739 0.921866472
F-Stat 70.77460184 70.57433842 75.83165942 73.75805124
F-Prob 0 0 0 0
Wald 847.8533814 839.3417653 601.0282936 569.1284202

Wald-Prob 0 0 0 0
K(BP) 6.959252779 6.981087553 12.8255587 11.58648458

K(BP)-Prob 0.433134761 0.430851674 0.045891258 0.071855732
JB 2.111799529 2.162381241 2.20463904 2.029659793

JB-Prob 0.347879277 0.339191437 0.332099877 0.362464081
Sigma2 568,796,858.4 569,396,351.9 249,992,513.7 260,556,760

To further inspect the performance of the model and evaluate the impact of the explanatory
variables spatially, we plotted the residuals of the four models in Figure 8. In addition, a Moran’s I
statistic test was conducted on each of the model’s residuals; Table 3 presents the results, which suggest
the residuals are randomly distributed. Therefore, the OLS models are proven to be useful in modeling
trip production and attraction activities using LBSN data.
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Table 3. Moran’s I statistics of the trip generation models.

Residence Production Residence Attraction Traveler Production Traveler Attraction

Moran’s Index: 0.003338 0.002948 −0.038126 −0.060635
Expected Index: −0.027027 −0.027027 −0.027027 −0.027027

Variance: 0.005003 0.005004 0.005042 0.005041
Z-score: 0.429316 0.42376 −0.156303 −0.473358
p-value: 0.667693 0.671741 0.875794 0.635957
Pattern Random Random Random Random

5. Summary and Concluding Remarks

This paper proposed a data-driven methodology to estimate trip production and attraction for
residents and travelers in urban cities. A case study was conducted in Nanjing using real-world
location-based social network data and cellular data. Four features, including number of POIs,
number of check-ins, number of photos, and number of users, with ten POI categories, including
residence, work, entertainment, school, transportation facilities, outdoor, shop and services, food,
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and others, were used as candidate explanatory variables to establish OLS-based trip generation
models. First, the random forest regression method was used to select the most important feature to
reduce the complexity of the model. The number of POIs feature was selected and the explanatory
variables were reduced to 10 candidate variables, which included the number of POIs for each category.
We further induced three extra variables related to land use including the area, the number of public
transport stations, and the number of highway entrances. An explorative approach was used to test
every combination of these 13 candidate variables to find the optimal number of variables for the
OLS model. Several criteria including the adjusted R-squared value, and the p-value, the VIF value,
the Jarque–Bera p-value, and spatial autocorrelation p-value were used to select the suitable model.
Then, the final selected models were further evaluated using joint F-statistics, Wald statistic, Koenker’s
studentized Breusch–Pagan statistic, Jarque–Bera statistic, and the Moran’s index method to validate
overall model performance, the significance of each explanatory variable, the model bias, the model
stationarity, the overall model significance, and the spatial autocorrelation.

The contribution of this research has three aspects: (1) Our work extends the transitional
transportation planning method with a data-driven approach utilizing LBSN data to model trip
generation functions, which could reduce the human resources and funding costs invested in the
data collection process. (2) We presented an effective method to select the explanatory variables
using the random forest method and the exploratory regression approach, and a set of measures were
used to select the best model and evaluate the overall model performance and the significance of
each explanatory variable, which could be used in other modeling applications to evaluate model
performance. (3) As can be inferred from the research, land use compositions have a significant impact
on trip generations, and the trip generation patterns are different between urban residents and non-local
travelers. Our models established relationships between trip generations and POIs of the location-based
social network, which reveals there exists a linkage between land use characteristics and human activity
patterns. The results of this research could be used in predicting the number of trips originating in or
destined for a particular traffic analysis zone of specific land uses, which could be applied in sizing
transportation facilities, zoning transportation systems, and other land use planning applications.

One limitation of the methods lies in the strong dependency of data, including the historical trip
data and the POI data of the research area. In order to transfer the methods to other cities or regions,
historical trip data need to be collected through trustworthy methods. It might be difficult to collect
reliable trip data using cellular methods in other countries, since the privacy issue might be a concern
and the penetration rate of one cellular service provider might not be high enough to ensure a sufficient
sample size. In addition, the spatial coverage of the POIs may vary with different cities/regions, which
influences the effectiveness of the models. The POIs could be collected from a social network service
provider like Weibo, Foursquare, etc. If social network services are not as popular, the POIs could also
be collected from map service providers and navigation service providers. However, POIs collected
by different services might be different, for example the LBSN service provider may provide more
commercial POIs in the central downtown area but fewer POIs in the suburban area compared with
those provided by map and navigation service providers. Another issue that should be considered is
the sizing of the traffic analysis zone. If the zones are too small, there may be insufficient POIs in a
zone, which renders the model hard to calibrate.

In the future, our research could be extended in the following two directions: (1) The TAZs could
be divided into smaller zones and generate trip estimation results in higher spatial resolution; (2) This
method could also be applied in other cities where cellular data and LBSN data are available to compare
the effectiveness of this approach in cities of different population sizes and Gross Domestic Product.
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Appendix A

Table A1. Statistics of the explanatory variables.

Average Std Max Min

TotalPOI 321.6 313.2 1243 37
EntertainPOI 19.6 19.5 88 1

FoodPOI 49.1 55.3 210 2
HotelPOI 10.9 10.9 39 0
OfficePOI 30.8 32.7 131 1

OutdoorPOI 23.4 16.2 73 2
ResidencePOI 34.8 46.1 179 1

SchoolPOI 37.4 50.7 178 2
ServicePOI 23.9 26.2 115 1

TransportPOI 25.3 26.2 114 0
Area 166.7 126.9 563.182 25.6252

PublicTransport 241.4 304.5 1307 0
HighwayEntrance 7.0 6.3 26 0
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