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Abstract: Rising concerns about the impacts that the road engineering industry is imposing to
the environment have redirected national road authorities to firmly re-consider the sustainability
implications of their operations. Lately, though, sustainability has established a forceful correlation
with the Circular Economy and its principles. The road engineering industry, therefore, is moving
towards more circular approaches. However, this is occurring without the assessment of the
potential impacts of such a transition. For this reason, in this study, a composite indicator, namely,
Environmental Sustainability and Circularity indicator (ESCi), for investigating the potential effects
that increased circularity could have at the environmental sustainability of asphalt mixtures is
developed. It can be utilized as a decision-making support tool from stakeholders involved in
both asphalt mixture production and road pavement management. In addition, in this study,
four asphalt mixtures with different percentages of Reclaimed Asphalt (RA) were assessed in terms of
their “cradle-to-gate” environmental impacts and circularity, by means of Life Cycle Assessment,
and Material Circularity Index, respectively. Their fatigue and permanent deformation performances
play a key role in the assessment and distinctive results obtained for the asphalt mixtures with
increasing RA% and thus, significant environmental benefits and increased circularity are observed
after specific RA% thresholds.

Keywords: circular economy; material circularity index; sustainability; asphalt mixture; reclaimed asphalt;
asphalt recycling; sustainability assessment; circularity assessment

1. Introduction

A concept that persistently keeps on being in the centre of attention by numerous governments,
institutions, businesses and researchers, is Circular Economy (CE). It is a concept that is currently
being promoted by the European Union and by various governments individually, including Japan,
the United Kingdom, China, France, Canada, Sweden, The Netherlands, and Finland [1,2]. The reason
behind this, is that numerous advantages could be exploited by the implementation of a holistic circular
economic approach. According to recent publications, the European Commission estimated that the EU
manufacturing sector alone could potentially have a benefit of 600 billion euros annual economic growth,
if a transition to CE was to be achieved [3–5]. Finland’s annual economy is estimated to experience
growth of 2.5 billion euros, while when it comes to the global annual economy, the magnitude of the
numbers significantly increases and estimates reach values of 1000 billion US dollars per year [6–8].
Furthermore, China is recognised as the first country worldwide to actually have implemented
legislations related to circular economy [5]. In other words, lately, the consensus seems to be that
CE could be utilized as a means of economic growth that complies with the definition of sustainable
development [4,5,9–12]. The linear economic patterns of “make-use-dispose”, which currently
dominate, seem to be agreeably unsustainable [13,14]. On the contrary, CE is able to provide alternative
energy and materials flow-models, within the economic system; flow-models that are circular and
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opt to minimise waste production and maximise the service life of each and every material, service or
product within a system [4,15,16]. The increasing demands for raw materials, the dependence on other
countries, the increasing population and energy demand, and the impact on the planet, comprise the
most crucial factors leading to the belief that shifting towards such an economic approach can have great
advantages. They are not just limited to environmental gains, but instead, the adoption of CE seems able
to deliver economic benefits as well, according to L. Frodermann [17]. According to Su et al. [13] and
Geng et al. [18], the adoption of CE can lead to improved competitiveness of enterprises, more efficient
use of materials and energy, increased competitive advantage, revenues from “waste” sales, and reduced
environmental penalties. Park et al. [19] and Preston et al. [20] state that the implementation of CE can
lead to more direct relationships with the consumers through collaborative consumption, while reducing
the costs through the usage of recycled materials, the utilization of centralized waste management plans
and the resale of used products, projecting a more positive corporate image. Sinkin et al. identified the
benefits of CE as reduced costs through fewer waste inefficiencies, and increased firm value. Kienbaum
Management Consulting [21] published a report identifying the contribution of CE implementation
as reduced costs through less waste pollution, reduced material and energy costs and competitive
advantage. Additional income streams from the selling of refurbished products, reduced labour costs,
enhanced customer value and differentiation, are the most important benefits of the CE according
to Accenture [22]. Finally, through multiple publications of the Ellen MacArthur foundation (EMF),
namely, “Towards the Circular Economy” [4], “Towards a Circular Economy: Business Rationale for
an Accelerated Transition” [9] and “Towards the Circular Economy Vol.3: Accelerating the scale-up
across global supply chains” [23], the potential benefits of a transition to a CE in Europe are described as
annual net material cost savings in the European economy; reduced labour and energy costs, and costs
for carbon emissions, along with improved customer interaction and dependency on resource prices.
Finally, reduced product complexity and simpler lifecycles with reduced warranty risks and improved
product design could be achieved. It thus, becomes apparent that the transition to CE is essential and
stakeholders along with governmental bodies should aim towards the support and acceleration of
this transition.

Having reported the potential benefits of the implementation of the CE in an economic and
environmental perspective, it becomes essential to also highlight some of the most important limitations
that could be encountered towards the way of its implementation. Global economic systems are mostly
linear. Around 75% of global energy production is based on non-renewable energy resources [1].
Non-renewable resources are extracted from nature, processed, used, exploited and then are dumped
again back into nature in a harmful form [1]. Along these lines, although sustainable development
is a worldwide objective, CE-type initiatives that have been executed and/or will be realized in the
not so distant future, will consistently be local or regional at most. Moreover, there is not a global
administrative instrument. Be that as it may, gradually—and obviously—step by step, the future
could be shaped towards a change, projecting a global improvement aligned with the principles
of CE and sustainability [1,24]. Strongly rooted in environmental sustainability, the CE framework
lacks an elaborated description of the social dimension of sustainability (e.g., the fulfilment of human
needs, territorial implications). Its principles are primarily based upon a business perspective and
strive equally for environmental and economic benefits. Social benefits are often omitted. Stahel has
shown that additional manufacturing processes in a Circular Economy—e.g., refurbishing or recycling,
demand more human labour, as these processes cannot often be standardized [8,25]. Even if this can
create employment opportunities, it is not guaranteed that the jobs are created locally. Moreover,
people’s basic needs at a global level may still be further undermined by abuses of power, unhealthy
or unfair labour and living conditions or a disrespect of human rights. As such, the circular economy
framework does not necessarily fulfil all the dimensions of sustainability [1]. To achieve a compatible
fit, CE initiatives have to be analysed via means of global sustainability net gains in the long-term,
before being implemented. When market patterns and their revolving clusters, networks, stakeholders,
and the financial investments are directed towards CE, the resulting innovations will have many
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difficulties to break through in the market. This would happen even if they were economically,
ecologically, and socially superior to the prevailing technologies. In other words, the recycling market,
just like any other market, has operational patterns, cultures and structures that have already been
well-established. CE-based, high-value product reuse, remanufacturing and refurbishment, will have
to compete with the aforementioned aspects, plus the managerial aspect of these actions. The economics
and business logic of path dependency may prevent many of the emerging CE innovations from
penetrating alternative markets [1]. The material and energy flows extracted from nature travel via
many different non-interconnected parts within the economic production-distribution-consumption
system before ending up as wastes and emissions within ecosystems. These flows do not necessarily
respect pre-defined administrative, geographic, sectoral or organizational borders and/or system
boundaries. Innovative business models including designing for multiple life cycles, functional
economy and product-service systems have been proposed for the implementation of the CE. However,
these have as a prerequisite interorganizational sustainability management. Cooperation is required
between the supplier firm and the customer firm and between the producer and consumer [1,6,23,26].
Circular material flows and renewable energy cascades exhibit a noteworthy opportunity towards
more sustainable energy and material exploitation. And this is the case also in the context of entropy.
The second law of thermodynamics suggests that all the CE-type initiatives should be thoroughly
examined for their net environmental sustainability contribution on a global scale. A cyclic flow does
not secure a sustainable outcome [1]. For instance, in the utilization of forest residues as a source
for renewable energy and for replacing fossil fuel combustion, nutrient-rich vegetation parts are
extracted from an ecosystem where they could support ecosystem health, biodiversity and forest
growth. This process demands energy. The machine manufacturing process also requires energy
and materials and produces wastes and by-products. Hence, the sustainability contribution of this
circular process can be conflicting. Due to this, and the fact that sustainability can be characterized
context-sensitive, it is imperative that CE-related initiatives and processes are carefully examined
case-by-case [1,10,27,28].

Such initiatives in the sector of road engineering, which can be widely observed, are the recycling
of reclaimed asphalt (RA), the extension of the service life of asphalt pavements through preventive
maintenance, the utilization of wastes in the production of asphalt mixtures, the attempt of increasing the
allowed percentage of recycled materials inside the asphalt mixtures [29] and partially the prioritization
of regenerative energy sources. Sometimes however, these practices are already being implemented
by the national road authorities or the involved stakeholders not because they serve the principles of
circular economy and are beneficial in terms of sustainability, but just because they are economically
profitable; and by the rule of thumb are considered as best practices. Again, nothing has been published
in terms of asphalt mixtures when it comes to legislative guidelines towards more circular asphalt
mixtures. This however, has not stopped some individual stakeholders to move towards this direction.
The company KRATON, for example, has moved forward by producing SYLVAROADTM RP1000;
an additive derived from Crude Tall Oil (CTO), a renewable raw material, characterized as a by-product
of the paper industry. It is able to increase the levels of RA incorporated into the asphalt mixtures
while avoiding significant environmental burdens [10,30]. Another noteworthy attempt towards more
circular products has been made by Tarpaper Recycling, along with Super Asfalt. They have proposed
the production of REC100. It is a mobile asphalt plant that ensures 100% utilization of the resources
in roofing felt and asphalt waste, in order to produce asphalt mixtures incorporating 100% recycled
resources. Finally, the world’s first fully recycled road, has recently been developed and constructed
by Eurovia, the VINCI subsidiary, that is specializing in the urban development and transportation
infrastructure spheres. This was achieved via the utilization of a mobile continuous asphalt plant,
TRX100%, which is capable of recycling up to 100% of asphalt aggregates.
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2. Scope and Objectives

However, the effort of the pavement engineering industry towards more circular products has
not yet been assessed in terms of its environmental impacts. In other words, as aforementioned,
CE-related initiatives should be carefully examined case-by-case; and in the context of asphalt mixtures,
a composite approach that can identify and evaluate the impacts of the asphalt mixtures’ increased
circularity in the environment, needs to be adopted. An approach towards the integration of circularity
within the framework of Life Cycle Sustainability Assessment has to be followed and supported.
Hence, an integrated framework of environmental sustainability and circularity assessment of asphalt
mixtures is developed in this study. A methodology of quantifying the combined environmental
sustainability and circularity of asphalt mixtures, towards an increased uptake of the latter, is presented.
Moreover, a case study, implementing the aforementioned framework has been orchestrated and
undertaken. A brief representation of the concept developed and presented in this study can be seen in
Figure 1. Schematic presentation of the components constituting the assessment methodology and
composite indicator developed.
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Figure 1. Schematic presentation of the components constituting the assessment methodology and
composite indicator developed.

The purpose of this work is to provide a methodological approach able to quantify and evaluate the
combined environmental sustainability and circularity of asphalt mixtures that incorporate reclaimed
asphalt (RA), through the development of an analytical approach. It is worth highlighting at this
point that the scope of this work, is limited in the assessment of the circularity and the environmental
pillar of sustainability of the life cycles of asphalt mixtures. No previous attempts of the integration of
circularity assessment within the sustainability assessment of asphalt mixtures have been recorded.
Thus, naturally, the first step towards this integration is the combined assessment of the environmental
impacts of the life cycle of asphalt mixtures along with their levels of circularity. However, the CE
economy, or better, CE-related initiatives in the context of asphalt mixtures, seem to be significantly
more influential on the environmental pillar of sustainability than the social or economic pillars [1].
This is why, the first attempt for the aforementioned integration, was decided to be the development
of a parameter that is able to address the change in environmental impacts of asphalt mixtures
while their levels of circularity are fluctuating; addressing in this way the environmental pillar of
sustainability. In detail, perceivably, the results of the Life Cycle Assessment (LCA) study of the
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production of an asphalt mixture can project the environmental relevance of the production process
of the mixture itself, while on the other hand the Material Circularity Index (MCI) is able to provide
an end-product label that characterizes the final product itself. Thus, when combined, LCA and MCI
are able to provide a holistic assessment on both the final product and the process through which
it was produced. To do so, a case study has been developed and undertaken in order to shed light
on the underlying processes of developing this indicator. Firstly, the environmental impacts of four
different asphalt mixtures that contain 0%, 30%, 60%, and 90% RA, respectively, were quantified,
via the utilization of the LCA framework. Secondly, the product MCI of the very same asphalt mixtures
was quantified, by using the methodology developed by the EMF [28] and specifically tailored for
the context of asphalt mixtures by Mantalovas and Di Mino [10]. Finally, the composite indicator
of environmental sustainability and circularity that has been developed, was implemented in order
to rank the four different alternatives. The usefulness of this assessment is inextricably correlated
with the understanding of the underlying importance of the sustainability and circularity assessment
coupling. As mentioned above, in some cases and under specific circumstances, a CE-related initiative
could be unsustainable. The implementation of this methodology to asphalt mixtures could lead
to increased awareness of national road authorities and stakeholders belonging to the sphere of
road engineering and the management sector, about the level of their businesses’ circularity and
environmental sustainability and could eventually constitute a tool for the involved decision-makers
for evaluating how environmentally sustainable their circular practices and choices are. Finally,
this methodology, along with the indicator developed is not geographically restricted and is widely
applicable even on an extended geographical scale.

3. Methods

3.1. Life Cycle Assessment of Asphalt Mixtures with Reclaimed Asphalt

Firstly, in order to quantify the environmental impacts of the production of the asphalt mixtures
with reclaimed asphalt under study, defined in Section 4, the framework of LCA was utilized. LCA
is a potent tool, able to provide an insight into the environmental impacts of a product, service
or process during its whole life. It is widely utilized as a decision-making support tool amongst
national road authorities and it is able to provide a comparative ranking between different designs
or material alternatives. It is a framework that has been standardized [31,32] and there are also
Environmental Product Declarations (EPDs) and Product Category Rules (PCRs) when it comes to
asphalt mixtures [33,34]. In this study, the approach adopted for the LCA exercise was “cradle-to-gate”,
since the analysis is focusing on asphalt mixtures as end-products. Moreover, a declared unit was
defined instead of a functional unit since asphalt mixtures agreeably do not exhibit a function during
their “cradle-to-gate” life cycle stage, according to EN 15804 and the PCRs for asphalt pavements and
mixtures of the European Asphalt Pavement Association (EAPA) and the National Asphalt Pavement
Association (NAPA), respectively [34–36].

3.2. Product Level Material Circularity Index of Asphalt Mixtures with Reclaimed Asphalt (MCIMRA)

Secondly, the quantification of the product level Material Circularity Index of the examined
asphalt mixtures with RA became possible with the utilization of the methodology developed by the
EMF and adjusted for asphalt mixtures with RA by Mantalovas and Di Mino [10,28]. The basis of
the methodology can be seen in Figure 2 The definitions of the parameters/inputs required for the
quantification of the Material Circularity Index that can be seen if Figure 2 can be found in Table 5.
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Figure 2. Workflow followed for the quantification of the product level Material Circularity Index (after
Mantalovas and Di Mino, 2019 [10]).

Compared to the original methodology based on the EMF framework, the quantification of the
utility factor [X] now incorporates two types of mechanical performances of the end-products, namely,
the asphalt mixtures. These are the resistance to fatigue and the resistance to permanent deformation.
By considering both of the aforementioned performances, widely accepted as key drivers for the
design of asphalt mixtures, the utility factor is capable of comprehensively describing the behavior of
the asphalt mixtures during their service life [37]. Thus, the product level Material Circularity Index
of asphalt mixtures with RA (MCIMRA) is also taking under consideration technical aspects of the
mixtures. In order to do so, laboratory tests were conducted to assess the behavior of the investigated
asphalt mixtures in terms of fatigue and permanent deformation resistance; the test themselves and
their results are described in Section 4.3.1.

3.3. Development of the Environmental Sustainability and Circularity Assessment Indicator (ESCi)

Finally, having quantified the environmental impacts of the “cradle-to-gate” life cycle stage of the
examined products, i.e., the asphalt mixtures with RA, and their Material Circularity Index, the final
step is the definition of the indicator able to assess their combined circularity and environmental
sustainability, under a closed-loop product system perspective. This was deemed essential since the
framework of LCA is not taking under consideration the circularity of the end-product, and the
framework of the MCIMRA quantification is not considering the environmental impacts of the
corresponding production process. Thus, it appears necessary, for a decision-making friendly indicator
that can rank different alternatives in terms of their intertwined environmental sustainability and
circularity, to be developed. As mentioned before, attempts to improve the circularity of asphalt
mixtures, might end up exhibiting adverse effects for the environment; and oppositely, attempts to
reduce the environmental impacts of the production of asphalt mixtures could potentially lead to
decreased circularity [1,38]. For this very reason, the indicator developed has as its base value the
aggregated, normalized and weighted LCA results (LCAT) to the power of the value (1-MCIMRA).
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It actually thus, proposes the weighting of the aggregated environmental impacts of an asphalt
mixture’s production, by its circularity level. The formula describing the indicator can be seen below:

ESCi =
1

LCA(1−MCIMRA)
T

× 100 (1)

In order to calculate the Environmental Sustainability and Circularity Indicator, as described in the
previous chapters, the environmental impacts of the examined product and its’ Material Circularity Index
have to be quantified. In order to do so, the environmental impacts quantified via the conduction of an LCA
exercise, have to be converted to a single unitless number through a reductive process. The suggested
process is constituted by two sub-processes; the utilization of normalization and weighting; two optional
elements of the Life Cycle Impact Assessment phase of an LCA, as described in the International Standard
ISO 14044 [39]. Normalization is the calculation of the magnitude of the category indicators results relative
to reference information. Thus, it is able to assist with the communication of the information on the relative
significance of the indicator results [32,39]. Weighting is the process of converting the impact category
indicators’ results by utilizing numerical factors and it allows for further aggregation of the converted
indicators [32,39]. Consequently, the combined normalization and weighting can ultimately provide a single
unitless number (LCAT) that describes the magnitude of the environmental impacts of a product and enables
the comparison between different alternatives. In other words, this methodology can be used as a tool to
rank different alternatives of asphalt mixtures with RA, in terms of their environmental sustainability and
circularity. The higher the value of the indicator for an alternative, the more preferable it is compared to the
lower-ranked ones. An essential aspect of this methodology is that both types of assessment, environmental
sustainability and circularity, are following identical system boundaries. Thus, the product system under
study for the quantification of the environmental impacts of the asphalt mixtures is identical with the
corresponding product system used to quantify the Material Circularity Index. This is an important
consideration, that enables the incorporation of both assessments’ outcomes into one single indicator.

4. Case Study and Results

4.1. Definition of the Case Study

In order to demonstrate the usefulness and functionality of the developed indicator and provide
an insight into how it ought to be utilized in a comparative approach, a case study has been defined and
undertaken. In this study, four different asphalt mixtures for wearing courses are analyzed in terms of
their environmental impacts (LCAT), Material Circularity Index (MCIMRA) and ultimately environmental
sustainability and circularity indicator (ESCi). As the baseline of the comparison, a conventional asphalt
concrete mixture with nominal grain size of 20 mm with 0%RA (AC20) was selected and the rest of the
alternatives were defined as three asphalt concrete mixtures with 20 mm nominal grain size, containing
30%, 60% and 90% RA, respectively [29,40–44]. The asphalt mixtures were designed according to the ANAS
(Italian National Road Authority) specification, which is followed for the asphalt mix designs in Italy [45] and
were produced in Catania, Italy. The description of the asphalt mixtures under study can be seen in Table 1.

Table 1. Specifications and recipes of the investigated asphalt mixtures.

Mixture 0% RA 30% RA 60% RA 90% RA

Definition Asphalt mixture for wearing courses, Type A
grading band, following the ANAS specifications

Coarse aggregates [Kg] 505.5 399.69 238.4 88.5
Fine aggregates [Kg] 368.1 223.4 95.8 -

Filler [Kg] 65.4 36.4 38.5 -
Virgin Bitumen [Kg] 61 40.51 27.3 11.5

RA [Kg] 0 300 600 900

The values refer to a total of 1tonne of asphalt mixture produced.
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Moreover, the transport distances of the raw materials from the quarry to asphalt mixing plant
were 23 km for the coarse and fine aggregates, and the filler; 35 km for the bitumen, while for the RA,
the transport distance has been considered 0Km. This assumption encompasses two considerations.
Firstly, the transport distance and the impacts of the transportation itself, between the site where the
asphalt layer was milled and the asphalt mixing plant, was already considered at the end of life stage
of the previous life cycle of the asphalt pavements. Secondly, the RA after being produced through
milling was transported and stored inside the very same mixing plant, where the production of the
asphalt mixtures took place, setting thus the transport distance 0 km. Finally, in Table 2, the energy
and fuel requirements for the production of 1tonne of each mixture can be seen. Finally, considering
the utilization of RA, according to the EAPA’s guidance document for preparing PCR and EPD for
asphalt mixtures [34], the energy requirements for the screening and processing of 1tonne of RA was
assumed as 47 MJ/t.

Table 2. Energy and fuel requirements for the production of the asphalt mixtures [46–49].

Mixture 0% RA 30% RA 60% RA 90% RA

Electricity [MJ/t] 23 17.02 11.3 8.9
Diesel [Kg/t] 7.8 7.1 6.6 6.2

Heating Oil [Kg/t] 7.3 5.4 4.38 3.86
Natural Gas [Kg/t] 0.95 0.81 0.67 0.54

4.2. Quantifying the Environmental Impacts of the Asphalt Mixtures through Life Cycle Assessment

4.2.1. Goal and Scope

After the definition of the asphalt mixtures used in the case study, the LCA exercise was undertaken.
As mentioned in Section 3, the LCA was conducted following the ISO 14040 and 14044. The software
and databases utilized were Gabi ts, by Thinkstep—a Sphera company—and Gabi Professional and
Ecoinvent 3, respectively. The data for the completion of the LCA was secondary data, acquired
by EPDs, PCRs and reputable literature sources [46–49]. The goal of the study is to quantify the
environmental impacts of the predefined asphalt mixtures following a “cradle-to-gate” approach,
to normalize and weight them, for use in the quantification of the ESCi. The impact assessment
methodology utilized was the ReCiPe 2008 (H), along with its EndPoint Normalization [Europe,
including biogenic carbon (person equivalents)], and EndPoint Weighting [(H/H) including biogenic
carbon (person equivalents)] methodologies [50].

4.2.2. System Boundaries and Declared Unit

The system boundaries of the product systems under study were defined as the production of the
asphalt mixtures, namely Product Stage A1–A3. This stage includes the extraction of raw materials,
their transport to the asphalt mixing plant and the production of the final asphalt mixtures. The system
boundaries’ definition was conducted according to the EAPA and NAPA guidelines, and the EN
15804 specifications [34,35,51]. A more detailed representation of the system boundaries can be seen
in Figure 3.
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Finally, since the adopted approach is “cradle-to-gate”, the declared unit defined for the LCA
exercise, according to EAPA and NAPA guidelines and the EN 15804 specifications [34,35,51], is 1tonne
of produced asphalt mixture.

4.2.3. Normalized and Weighted Results of the LCA

Having defined the case study and acquired all the required data, the LCA exercise was conducted,
along with the normalization and weighting of the final outcomes of the impact category indicators.
The results are summarized in Table 3. As mentioned before, the methodologies utilized for the
normalization and weighting were:

• ReCiPe2008 (H): EndPoint Normalization [Europe, including biogenic carbon (person equivalents)];
• ReCiPe2008 (H): EndPoint Weighting [(H/H) including biogenic carbon (person equivalents)].

Table 3. Normalized and weighted results of the LCA exercise.

Mixture LCAT

0% RA 18.10
30% RA 12.90
60% RA 9.32
90% RA 5.71

It is worth mentioning, for transparency reasons, that the normalization and weighting factors can be
found in the official document describing the ReCiPe 2008 life cycle impact assessment methodology [50].

4.3. Quantifying the Product Level Material Circularity Index of the Asphalt Mixtures

Moving on to quantify the product level Material Circularity Index of the predefined asphalt
mixtures with RA, the methodology proposed by Mantalovas and Di Mino was utilized [10]. It is
a methodology based on the EMF, with the exception that it also incorporates within the Utility factor
[X] of the end-products, the asphalt mixtures in this case, their fatigue and permanent deformation
resistance. In other words, the utility factor, is now calculated through a two-step process. Firstly,
the performance of the asphalt mixtures in terms of fatigue and permanent deformation is defined and
secondly, the utility factor is calculated. At this point, it is worth mentioning that for higher utility of
the asphalt mixtures, it is preferable that for the same value of microstrain, a higher amount of loading
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cycles is achieved regarding the fatigue resistance of the mixtures, while for the permanent deformation
resistance, lower rutting depth is preferred for the same amount of loading cycles. The formulae,
that are used for the calculation of the utility factors’ performances parameters can be found below:

PF =
F

Fav
, (2)

PPD =
1

PD
PDav

, (3)

where F, is the average number of loading cycles before fatigue failure, and Fav is the actual average
lifetime of an industry average asphalt mixture; namely, the asphalt concrete mixture with 0%RA
in this case. Accordingly, PD is the average number of loading cycles before achieving a specific
rutting depth value and PDav is the equivalent number of loading cycles of an industry-average
asphalt mixture before reaching the very same value of rutting depth. The utility factor in this way
can be calculated as the productor of all the quantified performances; In this study, the fatigue and
permanent deformation performances were utilized, as they are two independent characteristics of the
end-products that correspond to different mechanical stresses. The formula quantifying the utility
factor can be seen below:

X =
n∏
[Pi]

i=1

, (4)

It hence, becomes apparent that for the evaluation of the final Material Circularity Index of
the investigated asphalt mixtures, data about their fatigue and permanent deformation resistance
is necessary.

4.3.1. Results Obtained by the Laboratory Testing and Calculation of the Utility Factors

In order to proceed, two experimental campaigns were launched and undertaken. The first one
included the implementation of a permanent deformation resistance test by utilizing a wheel tracking
machine (WTM) [52], while the second one was the identification of the fatigue resistance of the asphalt
mixtures by means of Four-point bending test on prismatic asphalt specimens [53]. Table 4 presents
the results obtained by the completion of the aforementioned tests in terms of the number of loading
cycles when 0.5 µε of deformation was reached for fatigue, and depth of rutting (mm) after 20.000
loading cycles for permanent deformation. Moreover, the final values of the utility factors [X] can be
seen in Table 4, as well.

Table 4. Results obtained for the fatigue and permanent deformation resistance for the asphalt mixtures
under study.

Mixture 0% RA 30% RA 60% RA 90% RA

Number of loading cycles at 0.5 µε [Nf] 4461 3641 5527 1198
Rutting depth at 20.000 loading cycles [mm] 5.2 6.7 3.1 2.7

Utility Factor [X] 1 0.63 2.08 0.52

4.3.2. Final Calculation of the Material Circularity Index of the Asphalt Mixtures (MCIMRA)

Having obtained the corresponding utility factors for every asphalt mixture, the next step is to
calculate the Material Circularity Indices of the asphalt mixtures. To do so, the described methodology
has been utilized. The required data for the quantification has been acquired and summarized in
Table 5, where the inputs and outputs of the final Material Circularity Index can be found.
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Table 5. Inputs and outputs of the Material Circularity Index quantification.

MCIMRA of the Investigated Asphalt Mixtures with RA 0%RA 30%RA 60%RA 90%RA

DEFINITION SYMBOL VALUE
Mass of Virgin Feedstock used V (Kg) 1000.00 700.00 400.00 100.00

Fraction of feedstock derived from recycled sources PRA 0.00 0.30 0.60 0.90
Mass of the finished product GMRA (Kg) 1000.00 1000.00 1000.00 1000.00

Fraction of the mass of the product collected for
recycling at the End-of-Life FRA = ∆U 0.00

Amount of waste going to landfill or energy recovery WEoL (Kg) 1000.00 700.00 400.00 100.00
Quantity of waste generated in the recycling process WT (Kg) 0.00 0.00 0.00 0.00
Quantity of waste generated to produce any recycled

content used as feedstock WP (Kg) 0.00 6.12 12.24 18.37

Efficiency of recycling process as treatment ET 98%
Efficiency of the recycling process as production EP 100%

Overall amount of unrecoverable waste W (Kg) 1000.00 703.06 406.12 109.18
Linear flow index (LFI) LFI 1.00 0.70 0.40 0.10

Utility factor X 1.00 0.63 2.08 0.52

Utility factor built as a function of the utility factor X
of the asphalt mixtures F[X] 0.90 1.43 0.43 1.73

Product Level Material Circularity Index MCIMRA 0.1 0.1 0.83 0.82

4.4. Assessing the Environmental Sustainability and Circularity Indicator (ESCi)

The final step of the methodology is the quantification of the Environmental Sustainability and
Circularity Indicator. As described in Section 4.3, the required inputs for this quantification are the
normalized and weighted results of the LCA exercise (LCAT) per mixture, and the MCIMRA with the
integrated fatigue and permanent deformation performances, also per mixture. The latter has been
calculated and presented in Section 4.2.3 and the former in Section 4.3.2. The calculation has been
performed according to the formula (1), as defined in Section 3.3. The final values of the ESCi can be
seen in Table 6 below.

Table 6. Final results of the ESCi quantification.

Mixture ESCi

0% RA 7.38
30% RA 10.01
60% RA 68.42
90% RA 73.08

It can be clearly seen that the higher the percentage of reclaimed asphalt into the asphalt mixtures,
the higher the value of the ESCi. However, a higher rate of increase in the value of the described
indicator can be observed between the alternatives with 30% RA and 60% RA than between the cases of
0% RA and 30% RA and 60% RA and 90% RA, respectively. This is something strongly corelated with
the fatigue and permanent deformation performances of the asphalt mixtures, and with the increasing
reclaimed asphalt percentages utilized in the mixtures. The higher the RA% incorporated into an asphalt
mixture, the higher the energy demands for its screening and processing since an increased amount of
RA is now in need to undergo these processes.

Discussion of the Obtained Results

In addition, Figure 4 depicts the summarized results for the LCAT, MCIMRA, and ESCi, versus the
RA% incorporated into the asphalt mixtures. For the specific case study, the higher the percentage of
the incorporated RA in the asphalt mixtures, the higher their combined environmental sustainability
and circularity, as end-products. This is something to be expected. Significantly fewer virgin materials
are introduced into the product system, less energy is required for the heating and mixing of the
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aggregates and the bitumen for the production of the asphalt mixtures, and fewer materials have to
be transported to the asphalt mixing plant from distant location. All these parameters are assisting
towards reducing the damage to humans, ecosystems and resource availability in this way. Moreover,
decreasing the utilization of virgin raw materials seems to have direct effects on the environmental
performance of the asphalt mixtures. In other words, increasing the RA% within the asphalt mixtures,
their aggregated environmental impacts to human health, ecosystems and resource availability are
consistently decreasing. It is also noteworthy that the developed indicator is capable of emphasizing
the most environmentally-friendly alternative since it can provide an enhanced discriminating criterion.
This criterion is the ratio between the maximum and minimum values per alternative and indicator
quantified. In other words, for the LCAT, the aforementioned ratio accounts for 18.10/5.71 = 3.17,
for the MCIMRA is 0.83/0.1 = 8.3, and finally, for the ESCi the value is 73.08/7.38 = 9.9, indicating
an even more rigorous discriminative aspect between the most environmentally-friendly and circular
alternative, than only considering the environmental impacts and the Material Circularity Index of the
asphalt mixtures separately.
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Figure 4. Summarized results for the LCAT, MCIMRA, and ESCi values per mixture (0%, 30%, 60%,
and 90%).

However, the same trend is not exhibited for the MCIMRA of the asphalt mixtures, if investigated
individually. From Figure 4, it can be seen that the MCIMRA of the mixture with 0%RA is the same
with the MCIMRA of the 30%RA mixture. In addition, it is noteworthy that the Material Circularity
Index of the 60%RA mixture is higher than the corresponding MCIMRA of the asphalt mixture with
90%RA. A key parameter that led to these results is the technical performance of the mixtures.
The environmental benefits acquired by the inclusion of RA within the 30%RA and 90%RA mixtures,
are partially jeopardized by their poorer performance in terms of fatigue and permanent deformation.
In detail, for the same achieved deformation (0.5 µε), the mixture with 60%RA had to undergo 5527
loading cycles, while for the mixture with 90%RA, 1198 loading cycles were required, indicating
the superiority in terms of fatigue resistance of the former. This also indicates the key role that the
technical performance of an asphalt mixture plays for its circularity. Regarding the investigated RA
values, the percentage of 30% is considered, in current technical practices, as a threshold not to be
exceeded, especially if the final bituminous mixture is designed for the wearing course of an asphalt
pavement. However, several studies confirm the adequacy of the mechanical performance of mixtures
with higher percentages RA [29,54–57]. It is therefore essential, for the RA content threshold, to be
revised and updated upwards, so that the impacts of the asphalt mixture production on ecosystems,
humans and resources, can actually be reduced. Hence, although the actual recycling practice of
re-incorporating RA into asphalt mixtures is environmentally sustainable, it cannot be characterized
circular in every case and under any circumstances. This proves that, as aforementioned, it is important
that the sustainability implications of a CE-related action must be thoroughly investigated case by case.
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5. Summary and Conclusions

Paving the path towards more sustainable and circular operational patterns within the road
engineering industry and its satellite clusters, frameworks such as the Life Cycle Sustainability
Assessment, Life Cycle Assessment, Life Cycle Cost Analysis, and Multi-Criteria Decision Analysis,
seem to be gaining strength and establishing their influence on decision-making processes in a steadily
increasing rate. However, so far, during the implementation of these frameworks, individually
or in parallel, a significant element for these assessments seems to be missing; the Circularity
Assessment [58–60]. This study, thus, attempts to provide a stepping stone towards the merging of two
assessments; Sustainability and Circularity. To do so, a composite indicator expressed as a relationship
between the aggregated, by means of normalization and weighting, environmental impacts of the
“cradle-to-gate” life cycle stage of asphalt mixtures and their product level Material Circularity Index,
was developed. It can be characterized as a weighting method, capable of weighting the aggregated
environmental impacts of an asphalt mixture with RA, using as a weighting factor its own circularity.
In this way, when different alternatives are considered, the utilization of the indicator, can provide
national road authorities and involved stakeholders a ranking of their alternatives in terms of combined
environmental sustainability and circularity. In this way, the road engineering industry can progress
towards more accurate environmental assessment of their circular practices and their operational
patterns in general.

A case study has been defined and undertaken in order for the functionality and usefulness
of the indicator to be presented. Four asphalt mixtures with 0%, 30%, 60%, and 90% Reclaimed
Asphalt, respectively, have been assessed in terms of their Environmental Sustainability and Circularity
Indicator. It became apparent that the mixture with 90%RA exhibits the highest ESCi, along with the
lower environmental impacts and the second highest Material Circularity Index. While the RA% that is
incorporated into the asphalt mixtures is increasing, the values of the ESCi indicator are increasing as
well, proving that the most circular and environmentally sustainable alternative, for the context of this
study is the one with 90%RA. Having developed the ESCi indicator and utilized it into the described,
pragmatic case study the following conclusions can be drown from it:

• For the specific case study, the asphalt mixture with 90%RA presents the highest value of ESCi

and thus, represents the most environmentally sustainable and circular alternative among all the
investigated ones.

• Higher RA% in some cases are able to alter the mechanical performances of the asphalt mixtures
but they tend to reduce the cradle-to-gate environmental impacts of the asphalt mixtures.

• The circularity of the asphalt mixtures with RA is highly dependent upon the fatigue and permanent
deformation resistances of the asphalt mixtures and thus, directly related to the RA% incorporated
in them.

• The utilization of the ESCi indicator is able to weight the cradle-to-gate environmental impacts of
an asphalt mixture through its circularity and thus, provide a more appropriate ranking factor
than considering the mixture’s environmental impacts or level of circularity individually.

Road authorities, public or private, along with the involved stakeholders and actors could utilize
the developed indicator in the stages of design, construction and maintenance to better discriminate
and promote asphalt mixture alternatives that can be environmentally beneficial while exhibiting
high levels of circularity and adequate mechanical performance [29,54–57]. The results that can be
obtained through its utilization can help them identify the most environmentally sustainable option
that simultaneously exhibits the most desirable levels of circularity. A more sustainable and circular
decision-making approach, which is also data and evidence-based can be adopted in this way; and
the riddance of the currently dominating linear operating patterns can be achieved in a controlled
way, promoting the desirable preservation or even enhancement of ecosystems, societies and human
health. Responsible governmental bodies along with their corresponding national road authorities
and pavement engineers should move towards the implementation of sustainability and circularity
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assessment methodologies and support the update of technical standards and specification, in order
to promote the utilization of increased percentages of recycled and innovative materials that are
affiliated with lower environmental impacts, higher circularity indices and equivalently accepted
mechanical performances.

This process, which is aligned with the global attempts of safeguarding natural resources,
the environment and the human health, seems to be strictly dependent upon the will of national road
authorities to implement policies aimed at revising and updating technical standards and specifications.
This could be achieved through the inclusion of innovative and/or circular materials, after having
evaluated both the technical and economic compliance, as well as the environmental profitability
of their production and utilization processes, which is something that the developed indicator is
taking under consideration and can ultimately project. In this direction, the research revolving around
innovative tools, methodologies and decision-making support criteria, such as the ESCi, is set with the
aim to establish the choices made by the national road authorities and the relevant actors as scientifically
valid and publicly transparent. This can support a controlled and transparent transition from the
currently linear approaches, to scientifically-sound, circular and environmentally sustainable ones.

The extensive application of the decision-making tool to other products and materials belonging
to the civil construction market, or in any case to other product markets, appears absolutely adequate
when the type of circular approach is of a closed loop type; namely, when the original product, materials
or components are integrated back into the manufacturing process or processes in which they were
generated, and manufactured into new, similar, or equal value and performance products.

However, even circular processes of products that go through different sectors and/or markets,
the developed decision-making tool can still be utilized via sensitivity analyses of the ESCi indicator,
since the LCAT and MCIMRA parameters vary respectively, by giving prominence to the one considered
strategically most relevant in a case-by-case perspective.
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57. Bańkowski, W. Evaluation of Fatigue Life of Asphalt Concrete Mixtures with Reclaimed Asphalt Pavement.
Appl. Sci. 2018, 8, 469. [CrossRef]

58. Niero, M.; Kalbar, P.P. Coupling material circularity indicators and life cycle based indicators: A proposal to
advance the assessment of circular economy strategies at the product level. Resour. Conserv. Recycl. 2019,
140, 305–312. [CrossRef]

59. Corona, B.; Shen, L.; Reike, D.; Carreón, J.R.; Worrell, E. Towards sustainable development through the
circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl.
2019, 151, 104498. [CrossRef]

60. Haupt, M.; Hellweg, S. Measuring the environmental sustainability of a circular economy. Environ. Sustain. Indic.
2019, 1–2, 100005. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.resconrec.2013.12.004
http://dx.doi.org/10.1201/b17219
http://dx.doi.org/10.3390/app8030469
http://dx.doi.org/10.1016/j.resconrec.2018.10.002
http://dx.doi.org/10.1016/j.resconrec.2019.104498
http://dx.doi.org/10.1016/j.indic.2019.100005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Scope and Objectives 
	Methods 
	Life Cycle Assessment of Asphalt Mixtures with Reclaimed Asphalt 
	Product Level Material Circularity Index of Asphalt Mixtures with Reclaimed Asphalt (MCIMRA) 
	Development of the Environmental Sustainability and Circularity Assessment Indicator (ESCi) 

	Case Study and Results 
	Definition of the Case Study 
	Quantifying the Environmental Impacts of the Asphalt Mixtures through Life Cycle Assessment 
	Goal and Scope 
	System Boundaries and Declared Unit 
	Normalized and Weighted Results of the LCA 

	Quantifying the Product Level Material Circularity Index of the Asphalt Mixtures 
	Results Obtained by the Laboratory Testing and Calculation of the Utility Factors 
	Final Calculation of the Material Circularity Index of the Asphalt Mixtures (MCIMRA) 

	Assessing the Environmental Sustainability and Circularity Indicator (ESCi) 

	Summary and Conclusions 
	References

