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Abstract: Identification of traffic crash hot spots is of great importance for improving roadway safety
and maintaining the transportation system’s sustainability. Traditionally, police crash reports (PCR)
have been used as the primary source of crash data in safety studies. However, using PCR as the
sole source of information has several drawbacks. For example, some crashes, which do not cause
extensive property damage, are mostly underreported. Underreporting of crashes can significantly
influence the effectiveness of data-driven safety analysis and prevent safety analysts from reaching
statistically meaningful results. Crowdsourced traffic incident data such as Waze have great potential
to complement traditional safety analysis by providing user-captured crash and traffic incident
data. However, using these data sources also has some challenges. One of the major problems
is data redundancy because many people may report the same event. In this paper, the authors
explore the potential of using crowdsourced Waze incident reports (WIRs) to identify high-risk
road segments. The researchers first propose a new methodology to eliminate redundant WIRs.
Then, the researchers use WIRs and PCRs from an I-35 corridor in North Texas to conduct the safety
analysis. Results demonstrated that WIRs and PCRs are spatially correlated; however, their temporal
distributions are significantly different. WIRs have broader coverage, with 60.24 percent of road
segments in the study site receiving more WIRs than PCRs. Moreover, by combining WIRs with
PCRs, more high-risk road segments can be identified (14 miles) than the results generated from
PCRs (8 miles).

Keywords: crowdsourced data; Waze; freeway safety; crash hot spots; redundancy elimination

1. Introduction

How dangerous can traffic crashes be in our life? As one of the biggest public health concerns,
traffic crashes cause nearly 1.3 million fatalities worldwide every year [1]. In 2016, there were more
than 7 million police-reported traffic crashes in the U.S., leading to 34,439 deaths and 2.17 million traffic
injuries [2]. Meanwhile, roadway crashes are estimated to cost the economy as much as 277 billion
dollars every year [2]. Prior studies have demonstrated that traffic crashes are not randomly distributed
along with roadway network. Crash frequency and severity may increase on some specific road
segments (i.e., hot spots) due to various roadway, roadside, and operational characteristics of these
locations. Therefore, effectively identifying crash hot spots has become essential for improving road
safety and maintaining the transportation system’s sustainability, which requires immediate attention.

Police crash report (PCR) is the most-used data source in the existing roadway safety studies.
The police-reportable crashes are characterized as the crash which occurs on a public roadway and
results in a fatality, injury, or property damage exceeding certain thresholds dollar value. For example,
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in Texas, this threshold is USD 1000. Therefore, most of the near-crashes or traffic incidents are left
unreported, which may significantly limit the effectiveness of using PCRs for identifying hot spots.
Moreover, these officially recorded crashes can have a several-month time lag before they become
public. Although using traffic cameras and sensors can help obtain near real-time traffic incident data,
it is not suitable for monitoring traffic conditions of the whole roadway network because of the high
cost of monitoring traffic cameras. To date, road safety assessment using traffic incident data remains a
challenging research question.

In recent years, safety researchers and transportation agencies have considered leveraging
crowdsourced data in roadway safety analysis. With the help of smartphones, a massive volume of
traffic-related information can be contributed by the public, which offers us an excellent opportunity
to understand the occurrence of crashes [3–6]. Waze, as a leading crowdsourcing platform,
collects enormous volumes of timely traffic information, which has proven tremendously helpful
to the traffic engineers concerned with safety, operations, and planning [7]. Although Waze cannot
capture all traffic incidents; it provides a new set of safety information with a much wider spatial
coverage than existing official crash datasets (e.g., PCRs). By integrating PCRs with the crowdsourced
Waze incident reports (WIRs), safety analysts are more likely to identify the high-risk hot spots more
effectively. However, the relevant study is missing. Meanwhile, using crowdsourced data has some
challenges. Different users may report on the same traffic event, which causes severe data redundancy.
Therefore, effectively reducing data redundancy is crucial for utilizing Waze data, which needs to be
further explored.

This paper aims to investigate the potential of using the crowdsourced WIRs to better access
traffic risks on freeways. The paper attempts to address the following research questions:

1. What are the spatiotemporal distribution characteristics of WIRs and PCRs?
2. Can WIRs be used as a surrogate data source when PCRs are unavailable?
3. Can the crash hot spots be better captured by integrating WIRs and PCRs?

To address these questions, the researchers analyzed four weeks WIRs and PCRs obtained from the
I-35 corridor in North Texas. The researchers collected a whole week of data from four different months,
respectively: August, October, November, December of 2016. First, the authors developed a new
method to reduce data redundancy and obtain unique Waze incidents (unique WIRs). The researchers
then matched the unique WIRs with the PCRs and compared their spatial and temporal distributions.
Besides, the researchers estimated predicted crashes through safety performance functions (SPFs)
and crash modification factors (CMFs) to assess whether the WIR data can be used as a reliable
surrogate of these safety measures (i.e., observed crash frequency and predicted crashes) for identifying
high-risk locations.

The remainder of this paper is organized as follows: in Section 2, the researchers conduct the
literature review. Section 3 discusses data and methods, including redundancy elimination and data
integration methods. In Section 4, the researchers present the results of data analysis. The paper ends
with discussions and conclusions, acknowledgments, author contribution, and references.

2. Literature Review

To the best of the authors’ knowledge, the first study using Waze data in road safety analysis was
conducted by Fire et al. [4]. The researchers used WIR to identify high-risk road intersections. Up to
now, however, the Waze-related studies are still at a preliminary stage. Only a few studies have been
published, which are mainly centered around three topics (Table 1): (a) Waze data characterization and
visualization; (b) Waze data quality assessment; and (c) Waze data implementation in prediction models.

2.1. Related Works

Exploring the spatial, temporal distribution of WIRs is an essential step in Waze studies.
Silva et al. [5] analyzed 162,212 geotagged WIRs collected from Twitter, using different statistical tools
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such as word clouds, heatmaps, cumulative distribution functions, etc. This study demonstrated the
highly unequal frequency of Waze users’ participation, both spatially and temporally. More WIRs
are submitted during rush hours in the urban area. Monge-Fallas et al. [8] compared four different
visualization tools for mapping traffic density using Waze. This study shows that Heatmap is
the best among the four tools for visualizing WIRs in terms of usability, efficiency, and ease of
understanding. Some researchers treat the high mount of Waze reports as a reliable indicator of traffic
risks. Perez et al. [9] utilized K-means clustering to map the Waze-active areas. They performed
Expectation Maximization to determine the number of clusters. These reports were further grouped
based on their geolocations, timestamps, and subtypes using K-means. Finally, they identified high-risk
road segments by overlapping these clusters with road networks. A similar study was conducted
by Estrada-S et al. [10]. In this study, the researchers identified heavy traffic zones using Waze
traffic reports.

Table 1. Summary list of relevant literature.

Topics Publication Research Purpose Data

Comparison Between
Waze Data and Other

Data Sources

Goodall and Lee [11] Evaluate the accuracy of crash and
disabled vehicle Waze reports

Traffic camera and
Waze

Amin-Naseri et al. [12]

Compare Waze with other official
and unofficial data sources to

evaluate its reliability
and coverage

Official and
unofficial incident

data sources

Dos Santos [13]
Compare Waze report with the
official incident report and their

spatial distribution

Official
incidents data

Fire et al. [4]
Find the correlation between the
number of Waze reports and the

number of police reports

Police reports
and Waze

Using Waze Data in
Prediction Model

Flynn et al. [14]
Investigate the relationship

between Waze reports and official
crash report

Historical fatal
crash count and

traffic-related
variables.

Parnami et al. [15]
Estimate the time of travel from
point A to point B using prior

Waze data
Waze only

Waze Data
Characterization and

Visualization

Silva et al. [5]
Characterize Waze data (e.g.,

most common report,
user participation pattern, etc.)

Waze only

Monge-Fallas et al. [8]
Visualize the most congested

routes, traffic density, and users’
travel speed using Waze data

Waze only

Estrada-S et al. [10]
Identify heavy traffic zones based

on Waze using the
clustering method

Waze only

Perez et al. [9]
Identify Waze-intense areas and

road segments using a
clustering method

Waze only

Studies have been conducted to compare Waze data with other official traffic datasets to evaluate
its accuracy, response efficiency, and reliability. Goodall and Lee [11] assessed the accuracy of WIRs and
disabled vehicle records using video ground truth. This study utilized traffic camera videos to validate
40 Waze reported crashes. This study has approved that Waze data is a valuable supplementary data
source for monitoring traffic incidents with a low false alarm rate of 5 percent. Thirty-three percent of
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the road incidents were first reported by Waze users, which can help the police department to make a
faster response and potentially save lives. Amin-Naseri et al. [12] evaluated the accuracy and efficiency
of Waze data by comparing it with the other three different traffic data sources. This comparison
suggested that Waze is a potential data source for monitoring traffic incidents with broader coverage
and faster reporting time. Meanwhile, it also states that Waze may not be reliable from midnight to
6 a.m.

Some studies have investigated the relationship between Waze reports and other traffic events
(such as official crash statistics, travel time, etc.). Flynn et al. [14] investigated the relationship between
Waze reports and the PCRs. In this study, the researchers first converted Waze data points to the
aggregated Waze grids. Then, they generated twenty spatial, temporal, and contextual features to
estimate if there is an observed PCR in a specific space-time unit using the Random Forest classifier.
Parnami et al. [15] created a low-cost traffic flow prediction model using Waze estimated time of arrival
(ETA). This study assumed that the ETA obtained from Waze could accurately represent the actual
traffic. Based on this assumption, the researchers used Long-Short-Term-Memory (LSTM) networks to
predict the traffic flow at a 5-min interval based on the previous 60 days of training data.

2.2. Knowledge Gaps and Solutions

Existing studies have proven that Waze is a reliable traffic data source for understanding
traffic risk better. However, how to eliminate the redundant WIRs is still an unanswered question.
The relationship between PCRs, WIRs, and estimated crashes through predictive models remains
underexplored. This study proposes a new procedure to identify and eliminate duplicate WIRs.
It also explores the correlations between WIRs, police-reportable crashes, and the predicted crashes.
Meanwhile, the researchers innovatively conducted monthly hot spot analysis using different data
sources to examine further if WIRs could better capture traffic risks.

3. Data and Methods

Figure 1 illustrates the flow chart of the research methodology used in this paper. The researchers
utilized three data sources, including PCRs, WIRs, and roadway inventory shapefiles. The researchers
first selected freeway crashes from PCRs and WIRs by removing frontage road, ramp exit, and ramp
entrance crashes. Then, the duplicate WIRs were eliminated to identify unique Waze incident events
(unique WIRs). A similar process was performed to match the unique WIRs with PCRs to create a
merged dataset (PCRs + WIRs). Meanwhile, the researchers calculated the predicted crash frequency
using freeway safety performance functions (SPFs) and CMFs. Finally, the researchers created four
safety datasets: WIRs, PCRs, merged dataset, and predicted crashes.

To better explore the potential of WIRs in road safety analysis, three analyses were conducted,
including:

• Spatiotemporal comparison analysis: characterize the spatiotemporal distributions of PCRs and WIRs.
• Correlation analysis: investigate the relationship between PCRs, WIRs, and predicted crashes to

test further if WIRs could be used as a surrogate safety measure when PCRs are unavailable.
• Hot spot analysis:

(1) calculate crash rates for each road segment using PCRs, unique WIRs, merged dataset,
and predicted crashes, respectively;

(2) perform hot spot analysis (Getis-Ord Gi *) using different crash rates to identify high-risk
road segments. This analysis aims to evaluate if WIRs could capture more traffic risks
ignored by the conventional crash datasets (e.g., PCRs).
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Figure 1. Flow chart of research methodology.

3.1. Data Overview

This section explores the data sources and elements used in this paper.

3.1.1. Waze Incidents Reports (WIRs) Acquisition and Selection

In 2014, Waze launched a two-way data exchange program—Connected Citizens Program (CCP).
Program partners can receive real-time user-reported traffic data from a customized polygon (Figure 2)
through the CCP data portal. Waze formats the crowdsourced data as an XML/JSON file. Each data
file has a “traffic alerts” section, which contains user-reported traffic events. Four main types of
traffic events are specified, including accident, jam, weather hazard, and road closure. In this study,
WIRs refer to the Waze traffic accident alerts.
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Figure 2. Study site and Waze reports acquisition polygon.

Waze generates a reliability score (0–10) for each reported traffic alert to indicate how reliable the
report is. Because the current CCP does not support historical Waze data retrieval, the researchers
carefully selected four weeks’ Waze data files from a 109 miles-long corridor on Interstate 35 (I-35) in
North Texas (Figure 2); 2767 WIRs were collected from four weeks during August, October, November,
December of 2016—one full week for each month, no holidays within the selected weeks. To extract the
highly reliable WIRs, a selection procedure was implemented to filter out the unrelated and unreliable
WIRs based on two criteria:

• Criteria 1: reliability score > 5 AND street name = I-35
• Criteria 2: reliability score > 5 AND road type = Freeways AND distance to I-35 < 60 m (~200 feet).

If a WIR could satisfy any criteria, it would be counted as a reliable WIR. Through this procedure,
1807 highly reliable WIRs were selected and then mapped to the nearest road segments identified from
the roadway inventory shapefiles.

3.1.2. Police Crash Reports (PCRs) Acquisition and Selection

PCRs were collected from the Texas Department of Transportation (TxDOT) Crash Records
Information System (CRIS) [16]. Data for crashes deemed “TxDOT reportable” are characterized as
the crash which occurs on a public roadway and results in a fatality, injury, or a minimum of $1000 in
damage. It contains information collected in Texas Peace Officer’s Crash Report (CR-3), interpreted
data based on CR-3 information, system-generated data based on CR-3 information, and roadway
attribute data from Texas Inventory.

First, the researchers selected the crashes, which were reported during the same period of WIRs
and within 60 m (~200 ft) of I-35. This buffer was selected based on the roadbed width of the freeway.
A selection procedure was then applied based on the attributes of PCRs to eliminate unrelated crash
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reports (e.g., frontage road or ramp crashes). After filtering, 177 freeway crashes were identified,
which occurred in the study site during the four-week study period:

• Criteria: roadway part (on which crash occurred) = main/proper lane AND roadway system =

Interstate AND whether a crash occurred at an intersection and ramp = No.

3.1.3. Roadway Characteristics

The researchers obtained roadway design elements and traffic volumes (annual average daily
traffic (AADT)) from TxDOT’s Roadway Inventory shapefiles [17]. The corridor stretches for 109.956
miles and consists of 294 segments. Descriptive statistics of roadway characteristics are detailed in
Table 2.

Table 2. Descriptive statistics of road inventory data in the study site.

Roadway Design Elements Maximum Minimum Mean Std. Dev.

Length (in miles) 4.136 0.001 0.374 0.530

Annual average daily traffic (AADT) 132,225 56,176 73,685.068 14,747.346

Lane Width (in feet) 20 11 12.238 1.135

Inside Shoulder Width (in feet) 32 0 13.745 5.699

Outside Shoulder Width (in feet) 44 0 20.065 4.460

% of Trucks in AADT 30.3 1.2 25.260 4.089

Median Width (in feet) 50 3 28.432 9.076

Typical Segment Types
(Number of Segments)

82 Urban 6-lane Urban 4-lane 58

108 Rural 6-lane Rural 4-lane 46

3.2. Data Processing and Integration

This section explores the data processing and integration methods used in this paper.

3.2.1. WIRs Redundancy Elimination and Matching with PCRs

Since Waze users voluntarily contribute WIRs, different users may report the same incident,
which generates a massive volume of redundant WIRs. Meanwhile, studies have proven that Waze can
report on crashes from 20 min earlier to several hours later than PCRs with up to several miles positioning
difference [12]. Following the recommended matching thresholds in Amin-Naseri et al. [12]—2.5-mile
radius (spatial unit) and two hours of time lag (temporal unit)—the researchers tested different
combinations of spatial and temporal thresholds for merging duplicate WIRs and matching them with
PCRs:

• Spatial threshold range: from 0–3500 m (~2.5 miles) with 250 m (~0.15 miles) increment
• Temporal threshold range: from −20 (minutes earlier than PCRs)–120 (minutes later than PCRs)

with a 10-min increment

The researchers hypothesize that the number of matched WIRs should experience a significant
increase when the increasing thresholds reach their optimal values. Hence, a t-test was adopted to
identify the significant increase to aid in determining the optimal thresholds. Please note that all the
WIRs and PCRs were pre-processed through the selection procedure, as mentioned above, to make
sure they report on the traffic information that had occurred on I-35 during the selected study period.

Unique WIRs: The duplicate WIRs can be further identified and grouped using the selected
spatial and temporal thresholds, which refers to different traffic incidents. To merge the duplicate
WIRs, the researchers proposed a weighting method to recalculate the location of each unique traffic
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incident based on the geolocations and reliability scores of the duplicate WIRs using Equations (1) and
(2), as shown below:

x =

∑n
i=1 xiwi∑n

i=1 wi
, (1a)

y =

∑n
i=1 yiwi∑n

i=1 wi
, (1b)

where x, y are the recalculated latitude and longitude of the unique incident, i is the i-th duplicate
WIRs, n is the number of duplicate WIRs reporting on the same incident, wi is the weight signed to the
i-th WIR using Equation (2), which depends on the generated reliability score for the i-th WIR (ri):

wi =
ri∑n

i=1 ri
(2)

Merged Dataset: After generating the unique WIRs, the same thresholds were utilized to match
WIRs with PCRs. The matched WIRs were treated as redundant reports and removed. The rest of the
WIRs were combined with PCRs to form a new merged dataset, which covers both officially reported
crashes and crowdsourced traffic incidents.

3.2.2. Predictive Models for Crash Frequency Estimation

To better evaluate the ability of WIRs for representing traffic risks, this study also compared
WIRs with the predicted crashes calculated through the Highway Safety Manual’s (HSM) predictive
methods [18]. According to this method, the predicted crashes are calculated as Equation (3):

Npredicted = NSPFx × (CMF1x ×CMF2x × · · ·CMFnx) ×Cx (3)

where Npredicted is the predicted crash frequency for a study site x, NSPFx is the predicted crash frequency
based on a given base condition using SPF for study site x, CMFnx is the n-th CMF, and Cx is the
calibration factor for the jurisdiction of the study site x.

In this study, the researchers used four SPFs developed by Bonnesson and Pratt [19] to estimate the
base condition highway crashes on four facility types in Texas: urban four-lane freeways, rural four-lane
freeways, urban six-lane freeways, and rural six-lane freeways. The researchers then used five CMFs
to estimate the predicted crashes: lane width, outside shoulder width, inside shoulder width,
median width (no barrier), and truck presence. Refer to [19] for a detailed explanation of how to
calculate SPFs and CMFs. As mentioned above, this study focuses on freeway crashes. Therefore,
all the frontage and ramp entrance and exit SPFs and CMFs were excluded.

3.3. Data Analysis Methods

This study conducted three types of data analyses to evaluate the performance of using WIRs
in the highway safety analysis. The researchers first performed spatiotemporal comparison analysis
between PCRs and unique WIRs to assess the coverage of WIRs. The researchers then investigated
the relationship between PCRs, unique WIRs, and predicted crashes to explore further if WIRs could
be used as a surrogate data source when PCRs are unavailable. Last, high-risk road segments were
identified by performing hot spot analysis (Getis-Ord Gi *) on the crash rates of road segments.
In this study, four crash rates were calculated for each road segment based on different data sources,
including PCRs, unique WIRs, merged dataset, and predicted crashes.

3.3.1. Crash Rate Calculation

Crash risk is commonly defined as “the number of crashes compared to the level of exposure,”
which can better represent the likelihood of crash occurrence for a road segment [20]. In this study,
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the crash rate was calculated to indicate the “Risk-Level” of road segments. Equation (4) was adapted
from [20] with:

R =
C× 100, 000, 000

T ×V × L
(4)

where R represents the crash rate of a road segment defined as “crashes per 100 million vehicle-miles
of driving”; C is the number of crashes occurred along a road segment; T depicts time span (number of
days); V is Average Annual Daily Traffic (AADT) volumes; L is road segment length in miles.

In this study, four data sources, including PCRs, unique WIRs, WIR-PCR, and predicted crashes,
were used to calculate different crash rates for each road segment.

3.3.2. Hot Spot Analysis (Getis-Ord Gi *)

The Getis-Ord Gi* statistic has been widely adopted to identify the significant spatial clusters of
high values (hot spots) and low values (cold spots) [21,22]. It examines each sample within the context
of its neighboring samples. The Gi * statistic is calculated using Equations (5)–(7) [22]:

G∗i =

∑n
j=1 wi, jx j −X

∑n
j=1 wi, j

S

√ [
n
∑n

j=1 w2
i, j−

(∑n
j=1 wi, j

)2
]

n−1

, (5)

where,

X =

∑n
j=1 x j

n
, (6)

S =

√∑n
j=1 x2

j

n
−

(
X
)2

(7)

n represents the number of samples, x j is the value of j-th sample, and wi, j indicates the spatial weight
between two samples (i, j).

Gi * statistic generates a z-score and p-value for each feature. The statistically significant positive
z-scores indicate hot spots—clusters of high values; the negative z-scores refers to cold spots—clusters
of low values. In this study, Gi * statistic was performed to identify hot spots of high-risk road
segments—statistically significant clusters of high crash rates. By comparing the hot spots generated
from different data sources, the researchers could further examine whether the WIRs could better
represent traffic risks.

4. Results

This section covers the redundancy elimination result of WIRs, the merged dataset by matching
WIRs with PCRs. It also details the results of three analyses, including spatiotemporal comparison
analysis, correlation analysis, and hot spot analysis.

4.1. Result for WIRs Redundancy Elimination and Matching with PCRs

The researcher used the “true” incident, i.e., the PCR, as the starting point and tested different
combinations of spatial and temporal thresholds to (a) remove the redundant WIRs that correspond to
the same PCR; and (b) match unique WIRs with the PCRs. The researchers hypothesize that when
spatial and temporal “distances” from the true incident (i.e., PCR) to the surrogate incident (i.e., WIR)
reach their optimal value, the number of matched WIRs should experience a significant increase since
more redundant WIRs can be captured. After the optimal threshold is attained, the number of matched
WIRs should not be significantly different than the optimal number of matched WIRs.

Figure 3 illustrates the number of WIRs matched with PCRs when using each combination of
spatial and temporal thresholds. As can be observed, regardless of the time interval, the number of
unique WIRs increases consistently until the distance from the true incident (i.e., PCR) reaches 2250 m
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(~1.4 miles). After this distance, the number of WIRs matched with the PCR become steady. A new
jump is observed at 2500 m, although it does not seem to be very significant. It is possible that this
“second” jump in the number of unique WIRs matching with the PCR refers to a secondary event that
was related to the primary event. However, this hypothesis cannot be verified because, as indicated
earlier, near-crashes and traffic incidents are not reported by police. Hence, the researchers selected the
2250 (or 1.4 miles) as the spatial threshold for identifying the redundant WIRs.
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To determine the best temporal threshold, the researchers used a t-test to check the significant
difference in the number of matched WIRs for different time intervals. A t-test is a widely utilized
statistical test to compare two data groups, which can determine if they are statistically different.
Studies have found that Waze can report a crash from 20 min earlier to several hours later than the
police-reported crash time [12]. Therefore, the researchers tested different temporal intervals to match
WIRs with PCRs. These temporal intervals have the same start-timestamp (−20 min earlier than PCRs)
and a different end-timestamp. The temporal thresholds t in Figure 3 represent the end-timestamps
for each temporal matching interval. For example, t = 10 represents a 30-min temporal matching
interval—from 20 min earlier to 10 min later than PCR occurred. The researchers tested different
temporal thresholds ranging from −10 min (i.e., 10 min earlier than PCRs) to 120 min (i.e., two hours
after the PCR) in 10-min increments.

Figure 3 shows that the number of WIRs matched with a PCR remains the same when the
temporal threshold increases from −10 to 10; hence, they are used as a baseline dataset (BD) to
compare to the number of matched WIRs reported at higher time intervals. This dataset is denoted
as BD = [NWIR,−10, NWIR,0, NWIR,10], where NWIR,t refers to the number of WIRs matched with the
PCR with a temporal matching interval, t = −10 (from 20 min earlier to ten minutes earlier), t = 0
(from the 20 min earlier to the same time as the PCR) and t = 10 (from the 20 min earlier to 10
min later than the PCR). The comparison datasets (CDr) were then generated by adding 10-min
intervals to the baseline dataset and compared with BD using a t-test to identify the significant
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difference between the number of baseline and comparison WIRs. For example, CD30 refers to:
[NWIR,−10, NWIR,0, NWIR,10, NWIR,20, NWIR,30]).

Table 3 summarizes the results of the t-test, including t-statistic (aka t-value), the p-value for one-
and two-tailed tests, and the t Critical value for one- and two-tailed tests. Among these statistics,
the p-value is the most important to determine whether two groups are statistically different. In general,
we use a two-tailed t-test to evaluate the difference between two groups and use a one-tailed t-test
to assess if one group’s mean value is higher or lower than the other group. Therefore, to identify
if a significant difference exists between BD and CDr, we checked the p-value of two-tailed t-tests.
The result shows that the t-test between BD and CD70 yields a statistically significant p-value (<0.05).
It indicates, when choosing 70-min as the end-timestamp, the number of matched WIRs was observed
to be significantly different than the previous results, implying that the temporal threshold for matching
WIRS and PCRs should be 90 min (from the 20 min before to 70 min later than the PCR).

Table 3. t-test results between base dataset and comparison datasets.

Goodness of Fit Statistics CD20 CD30 CD40 CD50 CD60 CD70

t-statistic −1 −1.63299 −2.23607 −1.98248 −2.2088 −2.6295

p-value one-tail 0.195501 0.088904 0.037793 0.047349 0.031454 0.015101

t Critical one-tail 2.353363 2.131847 2.015048 1.94318 1.894579 1.859548

p-value two-tail 0.391002 0.177808 0.075587 0.094698 0.062909 0.030201

t Critical two-tail 3.182446 2.776445 2.570582 2.446912 2.364624 2.306004

As the results of these analyses, the researchers determined the optimal spatial and temporal
thresholds for identifying the redundant WIRs as:

• Spatial threshold: in a 2250-m radius.
• Temporal thresholds: 90 min (−20 to 70 min).

By applying these thresholds, 1807 WIRs were finally consolidated into 381 unique WIRs.
The location for each unique WIRs was recalculated using the proposed weighting method
(Equations (1) and (2)).

A similar process was conducted to match unique WIRs with PCRs. In this study, only 13 out of
177 PCRs (7.34%) were matched with the unique WIRs (13 out of 381). These results align with prior
studies showing that 7 to 13.4 percent of reported crashes can be matched with the Waze reports [12,13].

Finally, the researchers created a merged database by combining PCRs with un-matched unique
WIRs. This dataset contains 545 traffic incidents and crashes.

4.2. Spatiotemporal Comparison Analysis

The spatiotemporal distribution of PCRs and unique WIRs are plotted in Figure 4. Figure 4a,b
represent the counts of PCRs and unique WIRs for each road segment. These two figures show a similar
spatial data pattern, which implies that crash-intense road segments can potentially be captured using
WIRs. Figure 4c shows the differences between PCRs and WIRs. Among 109.96 miles of roadway
segments in this study, 66.24 miles of road segments experienced more WIRs than PCRs, which means
that WIRs have broader spatial coverage than PCRs.

The temporal distribution of WIRs and PCRs are depicted in Figure 4d,e. These figures
show that PCRs tend to occur during the daytime, while WIRs were more intensively reported
at nighttime. However, the previous studies state that Waze is less reported during the midnight
period, which conflicts with the researchers’ finding (11). This finding implies that the temporal pattern
of WIRs may vary in different study areas.
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Figure 4f shows the hourly comparison result, which indicates that more PCRs are recorded than
WIRs from 8:00 to 14:00. From 18:00 to 5:00, more Waze reports incidents observed than officially
reported crashes.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 18 
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4.3. Correlation Analysis

This study investigated the relationship between PCRs, unique WIRs, and the estimated crashes
through predictive models to statistically test if WIRs could be used as a surrogate data source or



Sustainability 2020, 12, 10127 13 of 18

safety measures in the absence of crash data. The correlation between these three datasets is detailed
in Figure 5. This figure illustrates that PCRs are highly correlated with WIRs (0.63) than with predicted
crashes (0.57). It also suggests that WIRs can better represent the predicted safety risk than PCRs
(0.70 vs. 0.57).
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The researchers also developed the Ordinary Least Square (OLS) regression model to investigate
the relationship between the three safety measures: PCR, WIR, and predicted crashes. Two regression
models were constructed. One uses unique WIRs alone as an independent variable (Equation (8));
another uses both WIRs and predicted crashes as independent variables (Equation (9)). The estimation
results are shown in Table 4 and have the following functional forms:

NPCR = 0.144 + 0.354×NWIR (8)

NPCR = 0.030 + 0.255×NWIR + 0.123×NPredicted (9)

where NPCR is the calculated number of PCRs for a road segment, NWIR is the number of unique WIRs,
and NPredicted is the predicted number of crashes using SPFs and CMFs.

Table 4. Linear regression results for PCRs.

Model Parameters
Model 1 Model 2

Estimate (St. D.) Estimate (St. D.)

Intercept 0.144 (0.069) 0.030 (0.072)
Unique WIRs 0.354 *** (0.025) 0.255 *** (0.035)

Predicted Crashes 0.123 *** (0.031)
R-squared 0.402 0.434

Adjusted R-squared 0.400 0.430
No. observations 294

Standard errors are included in parenthesis. *** represents significance at 99% level based on p-value.

The regression results indicate that the number of unique WIRs is a significant predictor for
estimating crashes reported on each road segment. When taking both unique WIRs and predicted
crashes as predictors, the model’s performance can be slightly improved with R-squared increased
from 0.4 to 0.43.
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4.4. Hot Spot Analysis

This study also assessed the performance of WIRs for identifying high-risk road segments.
The researchers first calculated crash rates for each road segment using four different data sources,
including PCRs, unique WIRs, merged dataset, and predicted crashes. Then, Getis-Ord Gi * statistics
were conducted based on different crash rates to identify hot spots—high-valued road segments
surrounded by high-valued neighboring segments. Figure 6 illustrates the sample result of detected hot
spots, which were generated using one-week unique WIRs collected from December 2016. To maximally
capture potential risky locations, segments with a confidence level above 90 percent were identified as
hot spots, visualized as red lines in Figure 6.
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Figure 6. Sample result of detected hot spots.

This study compared hot spots detected from different data sources in different months to
investigate if hot spots vary from month to month. The researchers also examined the monthly results
with the hot spots detected from four-month datasets to identify constant hot spots. This study defines
constant hot spots as a segment or its neighboring segments (within ± 1 mile) that (1) are determined
as hot spots in more than two different months, and (2) also need to be identified as hot spots in the
four-month dataset.

Table 5 details the results of hotspot detection using PCR, WIR, merged dataset, and predicted
crashes. The numbers listed in this table represent the integer part of distance from origin (DFO) for the
detected high-risk road segments, making it easier to locate the identified hot spots. If any portion of a
one-mile-segment was recognized as a hot spot in this study, the researchers would count the entire
one-mile-segment as a high-risk road segment. Constant hot spots are highlighted with underscores.
The matched segments are marked with bold text.
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This table shows that the hot spots may vary in different months; however, there are still some
constant hot spots that may be considered true high-risk segments. By combing PCRs with WIRs
(merged dataset), 14 segments (refer to 14 miles) were identified as hot spots from the four-month
dataset, which is longer than the segments identified from PCRs (8 miles), WIRs (13 miles), and predicted
crashes (5 miles). By comparing the hot spots detected from different datasets, we can notice that most
of hot spots detected from PCRs (6/8 = 75%), WIRs (10/13 = 77%), and predicted crashes (5/5 = 100%)
could be matched with the results of the merged dataset. It implies that combining PCRs and WIRs
can capture more potentially risky sites.

Table 5. Hotspot detection and comparison results.

Datasets August October November December Four-month

PCRs

266, 278, 318,
323, 334, 337,
341, 350, 352,
354, 355, 357,

363

266, 276, 298,
299, 303, 306,
308, 310, 317,
327, 351, 356,

358, 368

291, 292, 303,
306, 308, 318,
333, 334, 343,
351, 353, 358,

363, 367

266, 288, 303,
306, 317, 332,

334, 342

266, 298, 303,
317, 334, 342,

358, 363

WIRs 294, 318, 319,
356, 363, 364

298, 299, 303,
305, 307, 308,
310, 315, 319,
344, 350, 356,
357, 366, 368

291, 303, 315,
318, 336, 344,
357, 363, 368

291, 299, 303,
305, 306, 308,
310, 318, 327,
332, 350, 359

284, 294, 303,
307, 315, 317,
319, 344, 356,
357, 363, 364,

368

Merged dataset
(WIR+PCR)

264, 266, 294,
318, 319, 337,
352, 354, 355,
356, 363, 364,

366, 367

248, 298, 299,
303, 307, 308,
310, 315, 317,
319, 336, 351,
356, 357, 358,

366, 368

291, 292, 303,
315, 317, 318,
334, 344, 358,

363, 368

266, 291, 305,
308, 327, 332,
342, 334, 350,

359,

284, 294, 298,
303, 315, 317,
334, 336, 356,
357, 358, 363,

364, 368

Predicted
Crashes (2016) 317, 363, 293, 317, 385

• Numbers represent distance from origins (DFOs) for road segments.
• Underscore represents constant hot spots.
• Bold text indicates hot spots matched with merged dataset hot spots.

5. Discussion

As an emerging data source, Waze shows excellent potential to capture a broad range of unreported
traffic incidents. However, current Waze-related studies are still at a preliminary stage. How to
better leverage Waze into road safety analysis is still an unanswered research question. This study
provides new findings helping to answer the following three essential but underexplored Waze-related
research questions.

Question 1: What are the spatiotemporal distribution characteristics of WIRs and PCRs?

Through the spatiotemporal comparison of PCRs and WIRs, the researchers found these two
data sources show a very similar spatial distribution. However, the temporal comparison shows a
significant difference between them. In this study, PCRs were reported during the daytime, while WIRs
were more intensively reported during nighttime. It is also worth noting that 60.24 percent of the road
segments in the study site received more WIRs than PCRs; 27.1 percent received the same amount of
WIRs and PCRs. It implies that unreported traffic incidents more intensively occurred on most of the
road segments. These traffic incidents should be considered in road safety studies.

Question 2: Can WIRs be used as a surrogate data source when PCRs are unavailable?
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By matching WIRs with PCRs, the researchers found that only 7.34 percent of the PCRs can be
paired with WIRs, which aligns with prior studies—13.4 percent [12] and 7 percent [13]. Therefore,
it can be concluded that WIRs and PCRs report on different traffic risks. Correlation analysis shows
that PCRs are highly correlated with WIRs (0.63) than with predicted crashes (0.57). It also indicates
that WIRs can better represent the predicted traffic risk than PCRs (0.70 vs. 0.57). The regression
models suggest that both WIRs and predicted crashes are significant predictors for estimating PCRs.
However, using WIRs alone may not be capable enough since the model performance is relatively
unsatisfying with an R-squared of 0.4. Meanwhile, the similar spatial distributions of WIRs and
PRCs suggest that Waze data might be able to identify crash-intense road segments when PCRs
are unavailable. This finding has very significant implications for highway safety researchers and
practitioners. It indicates that WIRs have the potential to be used as surrogate safety measure in
the absence of crash data (e.g., when evaluating the safety effectiveness of new safety treatments).
However, further research is required in order to confirm this finding.

Question 3: Can the crash hot spots be better captured by integrating WIRs and PCRs?

By comparing the hot spots generated from different months, the researchers found the detected
high-risk road segments may vary in different months. However, it is worth noting that some hot
spots can be persistent in different months, which are constant high-risk segments and should be
given more attention. This study has found that, by combining WIRs with PCRs, more high-risk
road segments can be identified (14 miles) comparing to the results generated from PCRs (8 miles),
unique WIRs (13 miles), and predicted crashes (5 miles). Most of the hot spots detected from PCRs
(75%), unique WIRs (77%), and predicted crashes (100%) could be identified from the merged data.
Therefore, it can be concluded that integrating WIRs and PCRs can better capture traffic risks and
discover more unidentified high-risk road segments.

6. Conclusions

This study is among the first to systemically evaluate Waze incident reports (WIRs) for capturing
unreported near-crashes and traffic incidents. The researchers first proposed a new procedure to
eliminate duplicate WIRs to extract unique WIRs. Meanwhile, these unique WIRs were further
matched with police crash reports (PCRs) to form a new merged dataset, which covers both officially
reported crashes and crowdsourced incidents. This study also calculated the crash frequency of road
segments based on the road inventory shapefile using the HSM predictive methods. Three analyses
were conducted to assess the effectiveness of WIRs in road safety analysis comprehensively. The main
findings are summarized as follows:

• PCRs and WIRs show a very similar spatial distribution; however, their temporal distribution can
be significantly different.

• PCRs are highly correlated with WIRs, suggesting that WIRs can be a strong predictor in crash
prediction models.

• By combining PCRs and WIRs, more high-risk road segments can be identified, which suggests
that both official crash records and crowdsourced traffic incidents need to be considered in future
safety analysis.

However, there are still some gaps that were not adequately addressed in this study. Although the
findings are promising, the researchers used Waze data only from an interstate corridor, which is
generally assumed to experience more Waze reports. This gap may also affect some of the findings;
for example, the temporal and spatial threshold for consolidating the WIRs and matching them
with PCRs may not be applicable to other facility types. Meanwhile, new strategies for integrating
crowdsourced incidents with observed crashes into safety hotspot analysis need to be further explored
(e.g., assigning different weights to incidents and crashes). Future research will focus on these areas.
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