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Abstract: Due to rapid development of industries around the world, more and more consumption
of fossil fuels was unavoidable, resulting in serious environmental problems. The many pollutant
emissions—a major contributor to global warming and weather pattern change—have been at the
center of concern. In order to solve this issue, research and development of electric vehicles and
energy storage systems made great progress and successfully introduced products in the market.
Nevertheless, accurate measurement of the state of charge (SOC) and state of health (SOH) of the
Li-ion battery, the most popular electric energy storage device, has not yet been fully understood
due to the nature of battery aging. In this study, ideas to estimate the capacity and ultimately SOC
and SOH of Li-ion batteries are discussed. With these ideas, we expect not only to accommodate the
issues with battery aging but also to implement an algorithm for an on-board battery management
system. The key idea is to chase and monitor internal resistance continuously in a fast and reliable
manner in real time. With further investigation of the key idea, we also fully expect to come up with
a reliable SOC and SOH measurement scheme in the near future.

Keywords: Li-ion battery; battery capacity; state of charge (SOC); state of health (SOH); aging; battery
management system (BMS)

1. Introduction

The rapid development of technology and industrialization has triggered heavy use of fossil
fuels and has resulted in serious environmental problems, including pollutant emissions and global
warming [1–3]. Thus, the research and development of eco-friendly energy utilization technology
has been rapidly progressing [4,5]. Of the many industrial areas, including power generation,
manufacturing, housing, and transportation, the transportation sector has been identified as one of the
major responsible parties for pollutant emissions and global warming [6]. Therefore, research and
development in electric vehicles (EVs) has been accelerating [7]. Among the many EV-related research
projects, energy storage devices (i.e., batteries) have attracted major attention since batteries play
important roles not only in EVs but also in mobile devices, personal transportation, energy storage
systems (ESS) for renewable energy generation, and more. Naturally, research on batteries has been
accelerating as well [7–9]. In addition, a battery management system (BMS), which is used for the
efficient operation and management of batteries, is also considered as an important system in various
applications requiring high energy storage capacity, including electric vehicles and energy storage
systems [10–12].

With the main focus on EV applications, a forecast of future EV sales is shown in Figure 1, based on
data from EV Outlook and announced by BloombergNEF [13]. With this increase in EV sales, it is
natural to expect that the number of EVs retired from service will increase in a similar manner with a
time delay of 10 or more years. With the recent development of the Li-ion battery, especially for the
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case of EVs, battery life is actually quite long as long as a battery is used properly. So, short battery life
is the main issue. The main focus of the current research is to come up with a new methodology to
diagnose battery capacity, typically denoted as Qmax, when a battery is returned for second use after
an EV retires. For example, conventional diagnostic methods take quite a long time—up to 10 h or
even more. However, the newly proposed methodology would complete the test within 30 min or
less. With this fast diagnostic capability, the battery reuse process will make sense in terms of being a
profitable business activity, and as a result, a battery resource can be reused as part of a self-sustaining
business model. Without fast diagnostic techniques, the second use of batteries can only be discussed
but cannot be realized. Furthermore, only with this updated battery capacity can state of charge
(SOC) and state of health (SOH) be estimated accurately as a battery ages more and more. Therefore,
a newly proposed method for the fast measurement of battery capacity is the main contribution of the
current research.

Figure 1. Global long-term passenger vehicle sales by drivetrain [13].

2. Methodology Development

A newly proposed idea for the fast estimation of battery capacity was developed by adopting the
internal resistance tracking method. After the establishment of the initial idea, an equivalent circuit
model of a specific Li-ion battery was established based on a Shepherd model that would mimic open
circuit voltage (OCV) characteristic behaviors very well [14]. The main reason for constructing the
battery model was to produce numerous simulation data for the successful implementation of the
new methodology. With the established model, multiple simulations were carried out to produce
quantitative data that clearly showed the increase in internal resistance and the decrease in battery
capacity as the battery aged. With the help of simulation data, the newly proposed approach was
refined, and after the successful implementation of the new methodology, real battery experiments
were conducted to prove the concept of fast measurement of battery capacity. In the following sections,
conventional methods and the newly proposed method are explained.

2.1. Conventional Methods for SOC Measurement

Typical SOC measurement techniques include a voltage-based estimation method, a coulomb
counting estimation method, and an internal resistance tracking method [15–23]. Since the first and the
second methods are quite commonly used in the field even with the lack of consideration of a battery
aging effect, they are not detailed in this paper. However, the third technique is explained in detail as it
is the basis for the newly proposed method.

The internal resistance tracking method consists of using battery capacity estimation,
the voltage-based method, and the coulomb counting method together to track internal resistance and
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eventually to calculate the SOC and SOH of the battery, considering the aging effect [23]. As shown in
Figure 2, a discharging process is illustrated to explain the basic idea. After the initial discharging
process of any shape (from 0 s to 2000 s), the battery goes through the first relaxation period.
After reasonable relaxation, the OCV at that time is measured and denoted as OCV1. Then, the SOC of
the battery is obtained using the voltage-based method and denoted as SOC1. After that, a second
discharging process is carried out. During the second discharge, the amount of discharged energy
is measured with the coulomb counting method and denoted as ∆Q. Then, the battery goes through
a second relaxation period for the measurement of OCV and is denoted as OCV2, resulting in the
estimation of SOC using the voltage-based method and is marked as SOC2, eventually.

Figure 2. Illustration for the internal resistance tracking method.

With the successful measurement of SOC1 and SOC2, along with ∆Q, the battery capacity, denoted
as Qmax, can be estimated by plugging values into Equation (1), which is derived from the definition of
state of charge [23].

Qmax =
∆Q

(SOC1− SOC2)
(1)

With the result from Equation (1), Qmax can be compared to the initial quantity at the beginning of
life (BOL). As the battery experiences aging, Qmax decreases as a result [20,21]. An effective metric of
the SOH can be established quickly, such as Qmax (now)/Qmax (BOL). The only issue with this concept
is a rather long relaxation period, which may take about an hour or more for stable OCV measurement.

Internal resistance, which is another important battery characteristic, can be estimated as the
battery ages based on the voltage drop between the OCV and the instantaneously measured voltage,
denoted as Vinst. Instantaneous voltage during the discharge process can be modeled by Equation (2),
as shown below, where T is for temperature, Iinst is for instantaneously measured current, and R is
for resistance.

Vinst = OCV(T, SOC) − IinstR(T, SOC, Aging) (2)

Therefore, voltage drop, ∆V, which is equal to OCV(T,SOC) − Vinst, can be measured and saved in
real time. At the same time, a series of estimated internal resistance values can be calculated simply by
Equation (3).

R(T, SOC, Aging)inst =
∆Vinst

Iinst
(3)

During this process, SOC values are obtained based on the voltage-based method, which is valid
with Qmax (BOL). However, in the internal resistance tracking method, Qmax (now) is used to adjust the
SOC value, accounting for aging effect, and therefore the SOC value can be estimated more accurately.
Along with the tracked resistance, the updated Qmax value plays an important role in determining the
remaining usable energy as it reflects the true status of the battery, namely, the aged resistance and the
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aged battery capacity at that moment. Additionally, with the continuously updated battery capacity
Qmax (now), SOH can be represented as Qmax (now)/Qmax (BOL) since the capacity decreases as the
battery ages. The only difficulty with this method is the long battery relaxation time needed to obtain
Qmax (now).

Regarding conventional SOH estimation techniques, the most popular choice among researchers
is electrochemical impedance spectroscopy (EIS), which measures the impedance of the battery by
injecting a small amount of alternate current (AC) into the battery over a wide range of frequencies,
typically from 0.1 Hz to 1000 Hz [24,25]. However, none of these methods can be implemented in
on-board devices for real-time measurements because EIS requires an off-line setup for the expensive
EIS measurement system, and the existing internal resistance tracking method requires a long relaxation
time for satisfactory voltage stabilization.

2.2. Newly Proposed Internal Resistance Tracking Method

In Equation (1), many researchers paid close attention to obtaining both SOC1 and SOC2 separately.
For this matter, it usually takes a long relaxation time to obtain stable SOC1 and SOC2 independently.
However, in the current research, a new approach is introduced to overcome this shortcoming.
In principle, the difference of SOC1 and SOC2 was directly obtained rather quickly and without long
relaxation time periods. As shown earlier in Figure 2, with accurate OCV readings, Qmax can be
estimated quite accurately from Equation (1). However, as illustrated in Figure 3, so-called accurate
OCV readings can be obtained only after a long relaxation time period, as noted by yellow arrow marks,
and then the corresponding SOC1 and SOC2 can be estimated from the SOC–OCV curve. After that,
Qmax can be calculated from Equation (1). In the illustration provided in Figure 3, OCV1 readings after
3500 s and OCV2 readings after 3500 s are shown, and the corresponding SOC1 and SOC2 after 3500 s
are noted. As mentioned earlier, with this conventional internal resistance tracking method, it is almost
impossible to assess Qmax for an on-board BMS system due to the long relaxation time.

Figure 3. Illustration for the newly proposed internal resistance tracking method.

In the newly proposed approach, the following concept is introduced. Since the important value for
successful estimation of Qmax is the difference between SOC1 and SOC2, namely SOC1–SOC2, not the
absolute values of SOC1 and SOC2, new measurement points are taken. The estimation of SOC1–SOC2
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from the respective OCV values are obtained after a reasonably short time instead of waiting for a
long relaxation time. In Figure 3, it is noted in black arrows and, more specifically in this case, the
SOC1–SOC2 value is estimated after only 120 s. As a proof of concept for the proposed approach,
simulated battery data from an equivalent circuit model were heavily used during the establishment of
the new methodology. After the satisfactory results from the initial algorithm development, extensive
experimental data were collected to further refine the new methodology.

3. Battery Simulation Based on the Shepherd Model

An equivalent circuit model for the simulation of lithium-ion battery behavior was established
based on the Shepherd model [14]. One of the popular cylindrical types of lithium-ion battery,
a Samsung 18650-26F, Samsung SDI, Seoul, Korea, was selected for the simulation since the actual
battery was readily available for experimental analysis. The specifications of the target battery are
provided in Table 1 and the capacity and discharge voltage of the Samsung 18650-26F were used to
complete the Shepherd model as shown in Figure 4 [26].

Table 1. Lithium-ion battery specifications.

Nominal Capacity 2600 mAh

Minimum capacity 2550 mAh
Nominal voltage 3.7 V

Discharge cut-off voltage 2.75 V
Charging voltage 4.2 V

Calculated internal resistance 0.09 Ω

Max charge and discharge current Charge 2600 mA
Discharge 5200 mA

Operating temperature Charge 0~45 ◦C
Discharge −20~60 ◦C

Figure 4. Capacity and discharge voltage curve of Samsung ICR18650-26F.

During the implementation of the internal resistance tracking method, simulation data from the
Shepherd model were heavily used instead of using the experimental data. The battery model was
developed in the Matlab Simulink environment, as briefly shown in Figure 5.

The necessary parameters in the Shepherd battery model were obtained through the capacity
and discharge voltage curve [26]. In case of internal resistance, it was assumed in the model that it
increased rather linearly in each cycle of 0, 25, 50, 75, and 100, and, consequently, the internal resistance
in the model increased about 1.2 times when reaching 100 cycles.
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Figure 5. Equivalent circuit model based on the Shepherd model.

4. Implementation of the Internal Resistance Tracking Algorithm with Simulated Data

As shown in Figure 6, the battery capacity, SOC, and SOH estimation algorithm based on the novel
internal resistance tracking method was implemented in the Matlab Simulink environment. For the
algorithm’s implementation, simulated data from the Shepherd model were used for convenience.

Figure 6. Implementation of the new internal resistance tracking algorithm.

The simulations were conducted multiple times based on the battery capacity of 2600 mAh,
assuming an environmental temperature of 25 ◦C. Preliminary analysis based on the simulation data
showed that about 500 s are needed to obtain well-relaxed OCV measurement data after the completion
of discharging. Therefore, just to be on the safe side, 600 s of relaxation time was assigned to the current
profile for cycle tests. As shown in Figure 7a, the current profile consists of a 2 C-rate discharge for
790 s, a relaxation time for 600 s, a 2 C-rate discharge for 650 s, another relaxation time for 600 s, and a
final 2 C-rate charge for 1440 s. Cycles were repeated to complete 100 cycles of the simulation.

Various simulation results are plotted in Figure 7a–d, provided above. In the case of the voltage
curve, due to the increase in the internal resistance, the voltage drop just before the end of the discharge
increased with time. In the SOC curve, as the Qmax decreased, the residual SOC decreased, despite the
same amount of consumed electricity. The simulation results for the estimation of the internal resistance
over cycles are plotted in Figure 8 for Cycles 0, 25, 50, 75, and 100, respectively. During the discharge,
the internal resistance changes were compensated accordingly, and the increase in the internal resistance
was noticed as it continuously changed.
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Figure 7. Current profile and various simulation results.

Figure 8. Resistance–SOC curve (simulation result).

In addition, the discharge voltage curves are plotted in Figure 9 for Cycles 0, 25, 50, 75, and 100
based on the internal resistance estimation during discharge in real time.

Figure 9. Discharge voltage curve for 1 C-rate (2.6 A) (simulation result).

Based on the data shown in Figure 9, the estimated time to reach the compensated end of discharge
voltage (CEDV), that is, the end of discharge voltage compensated with the corresponding internal
resistance, could be obtained during discharge in real time considering the internal resistance data
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respectively for each aging state. As the internal resistance increased, the time to reach the cut-off

voltage decreased, and the Qmax was also calculated accordingly. The initial 1 C-rate Qmax is 9178 Wh,
which is smaller than the total available energy (9360 Wh) because Li-ion batteries may discharge to
lower voltages than the application-specific cut-off voltage. Most of the time, the cut-off voltage is set
to a certain level to enforce the limitation of discharge for battery safety and a stable cycle lifespan.
Due to this voltage limitation, the actual usable time of the lithium-ion battery varies depending on
application-specific electric current consumption.

As summarized in Table 2, the initial available capacity was 9178 Wh. After 100 cycles, the available
energy decreased down to 8988 Wh, resulting in an estimated SOH of 97.9%, which is down by 2.1%
from the initial state. With the simulated data on the battery discharging behavior from the Shepherd
model, the internal resistance tracking algorithm clearly showed the applicability of the internal
resistance estimation method, with the one limitation of a rather long relaxation time, which is about
600 s in the current simulation model but could even be longer in real-life battery applications.

Table 2. Calculated time to compensated end of discharge voltage (CEDV), battery capacity (Qmax),
and state of health (SOH).

Cycles Cycle 0 Cycle 25 Cycle 50 Cycle 75 Cycle 100

Time to CEDV 3530 s 3504 s 3485 s 3469 s 3457 s
Qmax 9178 Wh 9110 Wh 9061 Wh 9019 Wh 8988 Wh
SOH 100% 99.25% 98.72% 98.26% 97.92%

5. Implementation of the Novel Internal Resistance Tracking Algorithm with Experimental Data

Multiple battery discharge experiments were conducted with an ICR18650-26F Li-ion battery from
Samsung SDI to confirm the practical applicability of the newly suggested internal resistance tracking
method. In the current investigation, battery charge and discharge experiments were conducted using
National Instrument data acquisition devices, an electric load, and a power supply. Current, voltage,
and temperature data were collected every second through a PC.

For a better understanding of voltage relaxation, Figures 10 and 11 were prepared. As Figure 10
clearly shows, the relaxation voltage curves behave quite distinctively from each other as the SOC
levels—where the discharge stopped at—are rather widely apart (SOC 90%~SOC 0% at every 10%).
In contrast to the curves in Figure 10, Figure 11 shows that the relaxation voltage curves exhibit similar
patterns to each other as the SOC levels—where the discharge stopped at—are more closely together
(SOC 99%~SOC 92% at every 1%).

Figure 10. Relaxation voltage behavior for SOC 90%~SOC 0% at every SOC 10% step.
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Figure 11. Relaxation voltage behavior for SOC 99%~SOC 92% at every SOC 1% step.

With these valuable observations, the novel approach for the fast assessment of Qmax was
investigated with actual battery data. The main focus of the analysis was to find out how quickly Qmax

could be evaluated for different situations.
As explained in Section 2.2, the Qmax values were estimated with experimentally obtained

relaxation voltage curves, where the SOC levels were different from each other by an SOC of 1%.
The estimated Qmax values were analyzed, and the findings were quite surprising. The estimated
Qmax values at each SOC level quickly converged and stabilized while the time periods for the
converged values were slightly different from each other. Nonetheless, for all cases, the time periods
for the convergence were obviously decreased by far compared with those from the conventional
internal resistance tracking method. Time periods for the convergence within 1% accuracy of the fully
converged Qmax, which were obtained after 3600 s of relaxation time, are calculated and tabulated in
Table 3. As listed in Table 3, asymptotically converged Qmax values were obtained in less than 400 s.
Considering the fact that the accuracy of SOC measurement at a level of 5% is typically accepted in
practical applications, the results of converged Qmax values of 1% accuracy within 400 s are excellent.

Table 3. Time to measure Qmax within 1% accuracy of asymptotically converged Qmax.

SOC Levels 99~98% 98~97% 97~96% 96~95% 95~94% 94~93% 93~92%

Time for Qmax within
1.00% accuracy of
converged Qmax

114 s 359 s 247 s 152 s 79 s 139 s 315 s

Time for Qmax within
0.50% accuracy of
converged Qmax

164 s 464 s 394 s 202 s 95 s 196 s 375 s

Time for Qmax within
0.25% accuracy of
converged Qmax

228 s 543 s 549 s 289 s 108 s 268 s 425 s

Time for Qmax within
0.10% accuracy of
converged Qmax

364 s 614 s 691 s 501 s 120 s 606 s 472 s

6. Conclusions

In this paper, we proposed a novel internal resistance tracking method and demonstrated its
successful implementation with experimental data. With this rapid assessment method for battery
capacity, resulting in the estimation of SOC and SOH, it is expected that the algorithm can be
implemented for real-time measurement in on-board systems. Furthermore, with this newly proposed
algorithm, a rapid and viable diagnostic tool for the evaluation of the energy storage capacity of battery
packs in retired EVs is fully expected to be developed in the near future. In the meantime, the following
remarks are a summarization.

(1) The successful implementation of the newly proposed algorithm was illustrated for efficient
use. Based on an investigation with experimental battery data, battery capacity could be measured
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within a few minutes instead of 2 h or more, which is typically required by the conventional
measurement technique.

(2) While only the simulated data were used to develop the algorithm for the estimation of battery
capacity, SOC and SOH based on the newly proposed internal resistance tracking algorithm and
experimentally obtained battery data successfully illustrated the applicability of the new algorithm.

(3) In an effort to understand the behavior of voltage curves during the relaxation period,
multiple experiments and observations were repeated. Interestingly enough, voltage recovery patterns
during the relaxation period showed some distinctive features at different SOC levels. However, a clear
similarity was noticed such that the voltage recovery patterns were very close to each other as long as
they started at the same SOC, regardless of discharge rate. This observation is quite important to move
onto the next level of enhancement of the newly proposed algorithm introduced in this paper.
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