
sustainability

Article

An Alternative Statistical Model for Predicting
Salinity Variations in Estuaries

Ronghui Ye 1,2,3, Jun Kong 1,*, Chengji Shen 1, Jinming Zhang 1 and Weisheng Zhang 4

1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,
Nanjing 210098, China; ronghuiye@foxmail.com (R.Y.); c.shen@hhu.edu.cn (C.S.);
zhangjinming01@hhu.edu.cn (J.Z.)

2 Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission, Guangzhou 510611, China
3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
4 Key Laboratory of Coastal Disaster and Defense, Ministry of Education, Hohai University,

Nanjing 210098, China; weisheng_zhang@163.com
* Correspondence: kongjun999@126.com

Received: 25 November 2020; Accepted: 10 December 2020; Published: 21 December 2020 ����������
�������

Abstract: Accurate salinity prediction can support the decision-making of water resources
management to mitigate the threat of insufficient freshwater supply in densely populated estuaries.
Statistical methods are low-cost and less time-consuming compared with numerical models and
physical models for predicting estuarine salinity variations. This study proposes an alternative
statistical model that can more accurately predict the salinity series in estuaries. The model incorporates
an autoregressive model to characterize the memory effect of salinity and includes the changes in
salinity driven by river discharge and tides. Furthermore, the Gamma distribution function was
introduced to correct the hysteresis effects of river discharge, tides and salinity. Based on fixed
corrections of long-term effects, dynamic corrections of short-term effects were added to weaken
the hysteresis effects. Real-world model application to the Pearl River Estuary obtained satisfactory
agreement between predicted and measured salinity peaks, indicating the accuracy of salinity
forecasting. Cross-validation and weekly salinity prediction under small, medium and large river
discharges were also conducted to further test the reliability of the model. The statistical model
provides a good reference for predicting salinity variations in estuaries.

Keywords: groundwater monitoring; saltwater intrusion; autoregressive model; Gamma distribution
function; Pearl River Estuary

1. Introduction

Saltwater intrusion (SI) has posed a great threat to the freshwater supply for domestic,
agricultural and industrial demands in densely populated estuaries. Better understanding of SI
in estuaries is fundamental for properly managing water resources and ensuring freshwater supply [1].

SI involves complex saltwater–freshwater mixing, and the process is influenced by various factors,
mainly including river discharge, tides, wind and sea-level rise (SLR). Many studies have confirmed a
negative correlation between river discharge and the intensity of SI [2–4]. The salt transport associated
with SI under different tidal mixing schemes may differ greatly in terms of timing [1]. Specifically,
saltwater mainly intrudes landward during spring tides in well-mixed estuaries [5–7] and during
neap tides in partially mixed estuaries [4,6,8]. The wind is also an important factor affecting SI,
controlling estuarine circulation and stratification [9–12]. Traditionally, the wind is thought to promote
vertical mixing [13,14]. Based on field observations at the York River, [15] discovered that the upstream
wind can weaken salinity stratification, while the downstream wind might strengthen (lowintensity)
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or weaken (highintensity) such stratification. SLR arising from global warming further aggravates the
intensity of SI [16]. The nonlinear interactions between the above-mentioned factors make it difficult
to accurately predict SI, thereby impeding the development and implementation of effective measures
for water resources management.

To solve the problem above, researchers have proposed different methods to investigate and
forecast SI in estuaries, such as laboratory experiments, analytical models and numerical simulations.
Physical flume experiments were conducted to analyze the responses of turbulent mixing intensity and
spatial salinity distribution to different topographies [17] and changes in SI length driven by different
tidal ranges [18]. Results showed that there is a critical tidal range corresponding to the minimum
SI length. If the tidal range is smaller than the critical value, the increase in tidal range results in a
rapid decrease in SI length, while SI length slowly increases with the increase in tidal range if it is
above the critical value [1]. One-dimensional (1D) analytical models have been derived to predict
SI length [19–21], and various numerical simulations have been carried out to analyze SI intensity
using estuarine oceanic hydrodynamic models based on structured or unstructured grids [22–24].
A high-precision TVD2 scheme was proposed to solve the advection term for the material transport
equation, thereby improving the accuracy of salinity transport simulation [25]. The accuracy of
salinity prediction using machine learning methods can be improved by optimizing various neural
network methods [26–28]. Based on the relationship between the material and the salinity in the water,
the remote sensing inversion method was established to forecast salinity [7,29]. Twentyyears of data
collected in the Caloosahatchee River Estuary were used to calibrate and validate a statistical regression
model [30]. A statistical model was developed to predict the salinity in the upper South Branch of the
Yangtze River Estuary [31]. This model only requires two variables: runoff at Datong station and lunar
calendar date.

Although the studies mentioned above promoted accurate salinity forecasting in estuaries,
those research methods are costly and time-consuming. More importantly, existing studies have
mainly focused on the short-term prediction of salinity and SI length [20–22,27], whereas studies
targeting mid- to long-term prediction are rare [26,30,31]. Furthermore, the memory effects of river
discharge, tidal range and salinity have also been ignored. Numerical models are among the most
widely used methods, but the construction of models for estuaries is complex. The influence of
boundary factors needs to be included in the simulation of hydrodynamics and salinity. However,
changes to estuarine topography caused by human activities make it difficult for the model to satisfy the
accuracy criterion of SI simulation. In comparison, statistical methods generalizing the characteristics of
geomorphological evolution and mutual nonlinear effects among multiple dynamic factors have lower
costs and are less time-consuming. Statistical methods can also realize the prediction of salinity changes
in specific locations. A mid- to long-term salinity forecasting model can be constructed by analyzing
the relationship between main driving forces (river discharge and tidal range) and SI intensity.

2. Study Area and Data Source

2.1. Study Area

Pearl River Estuary (PRE) (Figure 1), as the third largest river in China, is one of the most densely
populated estuaries in the world. The river networks of the PRE cover approximately 9750 km2,
with a total length of more than 1600 km and a coastline extending over 450 km from east to west [32].
There are eight outlets of the Pearl River delta. The North River and the East River mainly flow into the
Lingding Bay through four east outlets (Humen, Jiaomen, Hongqimen and Hengmen), while the West
River mainly runs into the South China Sea and Huangmao Bay through four west outlets (Modaomen,
Jitimen, Hutiaomen and Yamen). Such vast river networks lead to rather complicated hydrodynamics
and salinity variations of the PRE.
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allows seawater from the outer sea to move upstream, thereby intensifying SI. There are many water 
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station and Guangchang pumping station), making it the main source of drinking water for 
Zhongshan, Zhuhai and Macao. However, in recent years, the reclamation projects at the entrance 
and the sand extraction in the upstream region have led toa deepening of the riverbed. As a result, 
the tides have been enhanced and the SI has been intensified, greatly threatening the upstream 
freshwater supply andcausing water from these intakes not to meet the standard of drinking water 
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were collected at Sanzao station (Figure 1). Surface salinity at three stations was selected for 
validating the statistical model proposed in this study (model development provided in the next 
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Figure 1. Location and geological map of the study area showing the locations of sampling sites.

Modaomen Channel, located in the lower reaches of the West River, was selected as the study area.
The annual runoff of Modaomen Channel accounts for 26.6% of the total runoff of the PRE, making it
the most important discharge channel. Meanwhile, the runoff distribution of Modaomen Channel
is quite uneven in a year, with 75.7% of therunoff occurring during the flood season (from April to
September) and 24.3% of the runoff occurringduring the dry season (from October to March). The tidal
signal of Modaomen Estuary is micro (mean annual tidal range of 0.85 m) and irregular semidiurnal
(average flood and ebb tidal durations are 5.37 h and 7.25 h, respectively) [Ye et al., 2017]. During the
flood season, the intense runoff inhibits SI, while during the dry season, the reduced runoff allows
seawater from the outer sea to move upstream, thereby intensifying SI. There are many water intakes
along the Modaomen Channel (e.g., Zhuzhoutou pumping station, Pinggang pumping station and
Guangchang pumping station), making it the main source of drinking water for Zhongshan, Zhuhai and
Macao. However, in recent years, the reclamation projects at the entrance and the sand extraction in the
upstream region have led toa deepening of the riverbed. As a result, the tides have been enhanced and
the SI has been intensified, greatly threatening the upstream freshwater supply andcausing water from
these intakes not to meet the standard of drinking water (the standard in China defined the salinity of
drinking water should bebelow0.5). At thePinggang pumping station, as an example, the total duration
of substandard water quality was 1612 h during 2005–2006, but this increased to 2117 hin 2011–2012.

2.2. Data Source

This study considered runoff and tide, the relative strength between which affects the intensity
of SI. The river discharge was measured at Wuzhou station and Shijiao station, while water level
data were collected at Sanzao station (Figure 1). Surface salinity at three stations was selected for
validating the statistical model proposed in this study (model development provided in the next
section), including Pinggang pumping station, Lianshiwan station and Guangchang pumping station.
This paper focused on dry seasons, during which SI is more intense and salinity change is more variable,
thereby better testing the ability of the model to accurately predict salinity variations. All the data were
measured hourly from 2007 to 2008 and from 2011 to 2013 during dry seasons. Daily average river
discharge/salinity data were obtained by averaging the hourly river discharge/salinity data, and the
daily maximum tidal range was derived from hourly water level data. Unless specified, the river
discharge, tidal range and salinity hereinafter refer to the processed values. These time-series data
provide a valuable resource to validate the statistical model proposed for salinity prediction.
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3. Model Development

3.1. Relationship between Salinity and River Discharge

Among all the factors controlling SI, runoff is a critical one. The comparison in Figure 2a shows
that, despite the similar variation pattern, river discharge at Wuzhou station is generally larger than
that at Shijiao station. From the comparison of time-series salinity in Pinggang, Lianshiwan and
Guangchang pumping stations (Figure 2b), it is clear that salinity gradually increases from the upper
to the lower reaches of the Pearl River.
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Figure 2. Dataof (a) daily average river discharge measured at Wuzhou station and Shijiao station
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To characterize the memory effects of river discharge on salinity, we introduced the Gamma
distribution function, which has been widely used in hydrology [33–35] and is given as follows:

ωt−i = Gamma(α, β, i) = βα
1

Γ(α)
(i)α−1 exp(−βi) (1)

where t is the present day, t − i is the i day(s) before the present day, ωt−i is the gamma coefficient of
the previous day t − i, α is the shape factor and β is the scale factor. The daily average river discharge
of the previous 3 days at Wuzhou and Shijiao stations can be weighted according to Equation (2) below.
To simplify the analysis, we put together the weighed river discharges at the two stations:

Q̃t =

∑3
i=1 ωt−iQt−i∑3

i=1 ωt−i
(2)

where Qt−i is the daily average river discharge of the previous day t − i and Q̃t is the weighed daily
average river discharge.

The exponential decay function has been widely applied to characterize the relationship between
river discharge and salinity [30,31,36]. However, regression analysis in Figure 3 shows small coefficients
of determination (R2) for the three stations, indicating that it is insufficient to simply consider the memory
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effects of river discharge on salinity. Moreover, when the station is closer to the estuary, the effect of river
discharge becomes weaker, as manifested by R2 being reduced from 0.3586 to 0.2684 (Figure 3).
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(a) Pinggang, (b) Lianshiwan and (c) Guangchang. Lines are the best-fit regression lines.

3.2. Relationship between Salinity and Tidal Range

Apart from river discharge, tidal range also greatly affects salinity distribution in estuaries [31,37].
As mentioned above, saltwater intrudes landward mainly during spring tides for well-mixed estuaries
and during neap tides for partially mixed estuaries. Considering that the PRE is partially mixed,
SI occurs primarily during neap tides. The field data of vertical salinity and velocity in the Modaomen
Channel show that tidal current during neap tides is the main driving force of SI, which is the most
intense during the transition periods from neap to spring tides [38,39]. Figure 4 shows a significant
phase difference between the peaks of salinity and tidal range [40]. Since statistical methods cannot
effectively characterize the relationship between tidal range and salinity, we integrated salinity changes
driven by tidal range into the memory effect of salinity.
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3.3. Model Formulation

This study introduced an autoregressive model to account for the hysteresis effect of salinity:

St = F(St−1, St−2, St−3···) (3)

where St is the salinity on day t and St−i is the salinity of the previous day t − i.
We also used the Gamma distribution function to analyze the long-term memory effects of salinity,

based on the following corrections:
ξa =

ωt−1∑3
i=1 ωt−i

ξb =
ωt−2∑3

i=1 ωt−i

ξc =
ωt−3∑3

i=1 ωt−i

(4)

where ξa, ξb and ξc are the correction coefficients of memory effect based on long-time series of salinity,
which reflect the effects of long-term changes in SLR and estuarine topography. The values of α and
β for calculating the Gamma coefficients are 1 and 8.6 for Pinggang pumping station, 1 and 6.2 for
Lianshiwan station and 1 and 4.8 for Guangchang pumping station. With the correction coefficients
determined, the daily average salinity of the previous 3 days at the three stations can be corrected
according to the following formula:

S̃t = ξaSt−1 + ξbSt−2 + ξcSt−3 (5)

where S̃t is the predicted salinity on day t.
Despite the correction, the predicted salinity is still inaccurate and lags behind the measured daily

average salinity (Figure 5). To further improve accuracy, we incorporated the dynamic corrections of
short-term effects into the fixed corrections of long-term effects:

S̃t = ξaSt−1 + ξbSt−2 + ξcSt−3

St−2 = φ1ξaSt−3 + φ2ξbSt−4 + φ3ξcSt−5

St−3 = φ1ξaSt−5 + φ2ξbSt−6 + φ3ξcSt−7

(6)

where φ1, φ2 and φ3 are the correction coefficients of memory effect based on short-time series of
salinity, which explain the effects of short-term changes in tidal range, wind and water diversion in the
upper reaches and other anthropogenic activities. Based on Equation (6), S̃t in Equation (5) can be
rewritten as

St−3 = φ1ξaSt−5 + φ2ξbSt−6 + φ3ξcSt−7 (7)

The comparison in Figure 5 confirms the improved prediction accuracy based on Equation (7).
However, the predicted salinities are higher than the measurements. Given the poor accuracy of
salinity prediction using either river discharge or memory salinity alone, we developed a statistical
model that considers the memory effects of both factors:

St−3 = φ1ξaSt−5 + φ2ξbSt−6 + φ3ξcSt−7 (8)

where St is the predicted salinity on day t and A, B and C are the correction coefficients.
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4. Model Calibration, Application and Further Tests

4.1. Model Calibration

To obtain the values of correction coefficients A, B and C in Equation (8), we calibrated the
statistical model using salinity data collected during October 2007 and February 2008 (values listed in
Table 1). The comparisons in Figures 5 and 6 show slight differences between the measured salinity
variations and predicted values based on Equation (8), indicating that considering the memory salinity
can improve prediction accuracy. It should be noted that the measured maximum salinity values are in
good agreement with the predicted ones due to the correction of the long- and short-term effects that
weakened the hysteresis effects.

Table 1. Coefficients of different locations for model calibration.

Location A B C

Pinggang 2.4429 −0.0013 0.5711
Lianshiwan 3.1579 −0.0006 0.6701
Guangchang 4.8074 −0.0005 0.6349

To further evaluate the performance of the model, we used three statistical parameters: (1) the
coefficient of determination (R2), an indicator of the percent of variation of the measured salinity
explained by the predicted salinity; (2) the root-mean-square error (RMSE), a measure of the deviation of
the predicted salinity from the measured salinity; and (3) the Nash–Sutcliffe efficiency coefficient (NSE),
which indicates how well the plot of observed versus predicted data fits the 1:1 linear regression line.
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The NSE may range between −∞ and 1, with 1 being the optimal value [30]. Mathematical equations
of R2, RMSE and NSE are givenas follows:

R2 =


∑n

i=1

(
Mi −M

)(
Pi − P

)
√∑n

i=1

(
Mi −M

)2
√∑n

i=1

(
Pi − P

)2


2

(9)

RMSE =

√∑n
i=1(Mi − Pi)

2

n
(10)

NSE = 1−

∑n
i=1(Mi − Pi)

2∑n
i=1

(
Mi −M

)2 (11)

where n is the number of data, Mi is the measured salinity, M is the mean of the measured salinity, Pi is
the predicted salinity and P is the mean of the predicted salinity.
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Figure 6. Plots of measured salinity versus simulated salinity at (a) Pinggang, (b) Lianshiwan
(c) Guangchang during the model calibration period. Lines are the best fit 1:1 regression lines.

Table 2 lists the statistical parameters of model calibration for Pinggang, Lianshiwan and
Guangchang pumping stations. Overall, the values of R2, RMSE and NSE show the improved
prediction accuracy of the model. For example, R2 gradually increases to 0.9208 from downstream to
upstream, and the RMSE ranges from 0.4201 at Pinggang pumping station to 1.2363 at Guangchang
pumping station. Tidal dynamics mainly affect the salinity of the upstream river and barely exert
influence on that of the downstream river. Therefore, the hysteresis effect on the salinity of the upstream
river is stronger than that on the salinity of the downstream river.



Sustainability 2020, 12, 10677 9 of 16

Table 2. Summary statistics of model calibration from 2007 to 2008 and model application from 2011
to 2013.

Location n ¯
O (‰) Omin (‰) Omax (‰) R2 RMSE (‰) NSE

Pinggang
Calibration (2007–2008) 130 1.0847 0.0146 5.7379 0.9208 0.4201 0.9207
Application (2011–2012) 176 1.1040 0.0212 5.7767 0.9195 0.5066 0.8750
Application (2012–2013) 154 0.1622 0.0158 2.6646 0.8560 0.1551 0.8377

Lianshiwan
Calibration (2007–2008) 130 3.1935 0.1633 8.8179 0.8823 0.8553 0.8822
Application (2011–2012) 142 2.8297 0.0053 9.2096 0.8904 0.8946 0.8882

Guangchang
Calibration (2007–2008) 130 4.7043 0.3429 9.2829 0.7836 1.2363 0.7876
Application (2011–2012) 176 5.2052 0.0173 15.9654 0.8617 1.4963 0.8503

4.2. Model Application

We applied the calibrated model to predict the salinity measured from September 2011 to February
2012 and from September 2012 to February 2013 at Pinggang, Lianshiwan and Guangchang pumping
stations. Table 2 lists the values of R2, RMSE and NSE. For the three stations, the values of R2 all reach
0.85, indicating a good match between the measured and predicted salinities. The agreement is further
demonstrated by the comparison of salinity measurements and predictions in Figure 7. These results
of real-world model application prove that the statistical model considering the memory effects of
river discharge and salinity is more accurate.
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4.3. Further Tests

4.3.1. Sensitivity Analysis of River Discharge

As a dominant factor affecting SI, runoff can vary greatly under anthropogenic influence. Based on
the Guangchang pumping station, we conducted a sensitivity analysis by increasing and decreasing
the river discharge by 50%, with the other factors remaining unchanged. The model developed in the
previous section was used:

SQ = Aexp
(
BQ̃t

)
(12)

where SQ is the predicted salinity contributed by river discharge.
Figure 8 shows that when river discharge increases by 50%, SQ changes considerably, whereas St

varies slightly. In contrast, with a 50% reduction in river discharge, both SQ and St increase notably.
The comparison indicates that, when river discharge is small, salinity variation at estuaries is more
sensitive to the changes. While under conditions of large river discharge, salinity variation becomes
less sensitive.
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4.3.2. Cross-Validation

Salinity data collected from Pinggang, Lianshiwan and Guangchang stations were used for
cross-validation. Data from September 2011 to February 2012 were used for model calibration,
while data from October 2007 to February 2008 and from September 2012 to February 2013 were
used for model application. Due to the lack of salinity data at Lianshiwan station from 2011 to
2012, the prediction was conducted based on data at Pinggang and Guangchang pumping stations.
The comparison between measured and predicted salinities (Figures 9 and 10) and statistical parameters
(R2, RMSE and NSE) of model calibration and application (Table 2) show that the prediction results are
satisfactory, further demonstrating the improved model performance.
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4.3.3. Analysis of Weekly Prediction

A representative analysis was conducted at the Guangchang pumping station. The reliability
of predicted salinity for the next 7 days was studied under three river discharges: 1400 m3/s (small),
2000 m3/s (medium) and 9000 m3/s (large). Figure 11 shows that salinity prediction for the next
7days in all three cases is relatively accurate. In particular, when river discharge is large enough
(e.g., 9000 m3/s in Figure 11c), it almost completely prevents SI, and the salinity for the next 7 days is
close to 0‰, which can be replicated by the statistical model.
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(a) small, (b) medium and(c) large river discharge at Guangchang station.

4.3.4. Analysis of Short-Term Time-Series

The prediction model in some estuaries where measured data are inadequate can only be
constructed with limited short-term data. In this section, data from October 2007 to December 2007
were used for model calibration while data from January 2008 to February 2008 were used for model
application. The comparison between measured and predicted salinities presented in Figures 12 and 13
and statistical parameters listed in Table 3 show satisfactory prediction. More importantly, the results
show that the statistical model proposed in this study can be applied to predicting salinity variations
at estuaries with not only long-term data but also short-term data.
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Table 3. Summary statistics of model performance for model calibration from October 2007 to December
2007 and model application from January 2008 to February 2008.

Location n ¯
O (‰) Omin (‰) Omax (‰) R2 RMSE (‰) NSE

Pinggang
Calibration (23 October 2007

to 31 December 2007) 70 1.1142 0.0200 5.7379 0.9361 0.3763 0.9361

Application (1 January 2008
to 29 February 2008) 60 1.0502 0.0146 5.0863 0.9025 0.4702 0.9012

Lianshiwan
Calibration (23 October 2007

to 31 December 2007) 70 3.1534 0.2342 8.2496 0.8694 0.8761 0.8694

Application (1 January 2008
to 29 February 2008) 60 3.2403 0.1633 8.8179 0.8593 0.8946 0.8339

Guangchang
Calibration (1 January 2008 to

29 February 2008) 70 5.0674 0.8933 9.2304 0.7235 1.3283 0.7235

Application (1 January 2008
to 29 February 2008) 60 4.2807 0.3429 9.2829 0.8359 1.1329 0.8294

5. Conclusions

This study developed a new statistical model that can accurately predict the salinity variations in
estuaries. This model is based on an autoregressive model and incorporates the Gamma distribution function
to correct the hysteresis effects of salinity. This study also added the dynamic corrections of short-term
effects, based on the fixed corrections of long-term effects, to weaken the hysteresis effects. The model was
tested against salinity data collected at different pumping stations of the PRE. The comparison showed
satisfactory prediction according to the statistical parameters of R2, RMSE and NSE.

The value of river discharge was increased and decreased to study its effects on salinity.
Results showed that when the river discharge decreases by 50%, the increasesin SQ and St are
significantly higher than the decreasesin SQ and St in the case of a 50% increase in river discharge.
Salinity variation is more sensitive to smaller river discharge. In addition, the reliability of salinity
prediction for the next 7days was examined using river discharge of three levels: small (1400 m3/s),
medium (2000 m3/s) and large (9000 m3/s). In all three cases, the model accurately predicted the
salinity variation.

Overall, this study proposed a new model based on comprehensive memory effects of river
discharge and salinity, providing an accurate method of predicting salinity for effective water resources
management. However, hourly changes in salinity cannot be predicted, and there are some limitations.
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