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Abstract: The information level of the urban public transport system is constantly improving, which
promotes the use of smart cards by passengers. The OD (origination–destination) travel time of
passengers reflects the temporal and spatial distribution of passenger flow. It is helpful to improve
the flow efficiency of passengers and the sustainable development of the city. It is an urgent problem
to select appropriate indexes to evaluate OD travel time and analyze the correlation of these indexes.
More than one million OD records are generated by the AFC (Auto Fare Collection) system of Nanjing
metro every day. A complex network method is proposed to evaluate and analyze OD travel time.
Five working days swiping data of Nanjing metro are selected. Firstly, inappropriate data are filtered
through data preprocessing. Then, the OD travel time indexes can be divided into three categories:
time index, complex network index, and composite index. Time index includes use time probability,
passenger flow between stations, average time between stations, and time variance between stations.
The complex network index is based on two models: Space P and ride time, including the minimum
number of rides, and the shortest ride time. Composite indicators include inter site flow efficiency
and network flow efficiency. Based on the complex network model, this research quantitatively
analyzes the Pearson correlation of the indexes of OD travel time. This research can be applied to
other public transport modes in combination with big data of public smart cards. This will improve
the flow efficiency of passengers and optimize the layout of the subway network and urban space.

Keywords: complex network; origination–destination; travel time; correlation; big data

1. Introduction

As the city scale expands, the integrated transportation system will become more and more
complex to meet the travel needs of different residents. With the development of the economy and
the expansion of the population, the subway has been opened in many cities in China to relieve the
increasing traffic pressure. Smart cards have been widely used in the integrated transportation system,
recording the electronic information of passengers’ travel. Smart card data records the station and time
when passengers enter and leave the station, which is called the OD (origination–destination) record.
The smart card big data accumulated by the AFC (Automatic Fare Collection) system provides the
basis for the analysis of urban residents’ travel behavior.
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OD records reflect the destination needs of residents. Kim H proposed an OD estimation model
based on multi-source data, which can identify the travel demand of the destination [1]. Kim K
established a spatiotemporal autoregressive model of air passenger flow from the origin to the
destination in order to better plan and dispatch the operation, and has verified the effectiveness of
the model in predicting air passenger flow [2]. Zhang C used the track data to track the OD mode of
vehicle movement, and proposed a measurement method based on the on ramp flow. Compared with
the traditional method of fixed sensors, it improves the measurement accuracy [3].

Liu L proposed a new spatiotemporal network model to analyze the evolution of taxi demand.
The results show that this method can predict the demand of the taxi destination better [4]. Bachir D
used mobile network data, combined with transportation network geospatial data, tourism survey,
census and tourism card data, to infer the user’s dynamic departure destination [5]. Mungthanya W
proposed a new method to construct a dynamic OD matrix of taxi in space and time by using taxi
trajectory data, and analyzed the demand mode of taxi travel [6].

The OD data of passengers is extracted and distributed to the traffic line, which can analyze
the passenger flow pressure on the traffic line. Javani B proposed an OD based on the algorithm
for static traffic assignment with fixed OD demand, which is tested in Chicago and Philadelphia [7].
Mehrabipour M proposed a multi OD algorithm based on the cell transmission model, which can
optimize the dynamic traffic assignment of the system [8]. Hoang N H proposed a new linear
programming framework, which uses the relationship between UE (user equilibrium) and the system
optimal solution to solve the dynamic traffic assignment problem [9].

OD records can be combined with the passenger’s travel preferences to determine the passenger’s
travel path choice. Wang Y proposed a two-stage algorithm, which uses the traffic flow data of link level
to accurately estimate the OD matrix and improves the traveler’s path selection behavior model [10].
Based on long-term GPS (global positioning system) data, Li D introduced OD attribute and used
utility function to explore the influence of destination attribute on path selection [11]. Ou J proposed a
new framework for estimating dynamic OD flow using machine learning algorithm, and carried out
an evaluation experiment on the real network of Kunshan City [12]. Duan Z proposed a hybrid neural
network prediction model, which can effectively predict the OD traffic of the urban taxi [13].

In order to evaluate OD, it is necessary to set various indexes to evaluate passengers’ behaviors
quantitatively. Yang S used taxi GPS data to estimate OD travel time, which helps to analyze the
route preference of passengers [14]. Margaretic P applied the spatial economic flow model and
characteristic function spatial filtering method to air transportation, and discussed the impact of
departure destination on air passenger flow [15]. Hanseler F S proposed a framework for estimating
pedestrian demand in railway stations, which considers passenger data and various direct and indirect
demand indicators [16].

Nigro M collected all the monitoring travel data of specific areas in Rome of Italy, and analyzed
the travel time and route selection probability of the passenger’s OD, which can improve the temporal
and spatial reliability of the demand matrix [17]. Ma W used the daily traffic data collected over the
years to propose a new theoretical framework, which is used to consider the daily changes caused by
travelers’ independent choice of routes and estimate OD demand, path selection probability, and travel
cost [18]. Dai X proposed a data-driven short-term subway passenger flow prediction framework,
which can be successfully used to describe different subway travel modes [19].

Sensor technology can also be used to locate vehicles and predict traffic flow. Wang J proposed
a Bayesian combination method to predict traffic flow [20]. Zhu S proposed a sensor location
model to determine the optimal deployment strategy for dynamic origination–destination demand
estimation [21]. Zhu N proposed a two-stage stochastic model to estimate the travel time of the
highway corridor [22]. Hobson B W used sensors to estimate occupancy of commercial and institutional
buildings [23].

Passenger’s identity, policy, environment, and other factors will affect passenger’s travel choice.
Moslem S proposed a decision support program that can analyze and build consensus among different
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stakeholders in traffic development issues [24]. Ghorbanzadeh O used an interval level method to
analyze the inconsistency and uncertainty of the public transport user’ response [25]. Duleba S used the
analytic hierarchy method to analyze the significance of stakeholders in Mersin, Turkey [26]. Duleba
S used the analytic hierarchy method combined with real data to test the optimal public transport
service [27]. Moslems used the fuzzy analytic hierarchy method to analyze the sustainable development
of urban traffic in Mersin, Turkey [28]. Jiang X used the improved fuzzy analytic hierarchy process to
analyze the most basic factors affecting the last kilometer distribution [29].

Guo Y used the collected data of residents’ travel preferences to study the impact of domestic
mobility, the household registration system, and family planning policy on passengers’ travel
patterns [30]. Ruan Y analyzed the differences between daily life and pre migration, the difficulties
encountered after migration and the social adaptation pressure of the floating elderly [31]. Guo Y
analyzed the impact of the information provided to potential relocaters on their decision-making
process and travel behavior after relocation [32]. Li Y studied the effects of congestion pricing and
incentive strategies on early travel mode choice of car travelers in Beijing [33].

Based on the moving data of Beijing’s families, Wang D linked the residential building environment
with travel behavior, and considered travel attitude before and after the housing change [34]. Cheng G
investigated the tourism preferences of residents in two underdeveloped small cities, analyzed the
tourism data of different regions, and discussed their commonness [35]. Using the data of passengers’
travel behavior, Guo Y explored the personal and social impact of the ban on motorcycles on the
morning commuting of motorcyclists’ families [36].

The establishment of the complex network model of the subway is an effective way to analyze
the performance of the urban subway network. Feng J proposed a weighted complex network model
based on travel data and the operation schedule of the Beijing metro system to describe the travel
mode of passengers on weekdays and weekends [37]. Saberi M discussed the statistical characteristics
of the urban travel composite weighted network, indicating that the potential dynamic process in
the urban tourism demand network is similar [38]. Zhang J analyzed the network characteristics of
the subway network in three cities of China by using the complex network method, and analyzed its
robustness by means of simulated attack [39]. Wu X established the subway network model of six
cities in the world, analyzed and compared its robustness [40].

Yu W analyzed the evolution of the Nanjing metro network by using the complex network method,
combined with the urban spatial pattern [41]. Wei Y proposed the concept and performance index
of the supernetwork model based on the complex network model, and analyzed the performance
analysis, combined with the Nanjing metro network [42]. Yu W established the supernetwork model of
the Nanjing metro network, and analyzed the changes of the supernetwork performance by using the
simulation attack method [43]. Kanwar K modeled and compared the existing Delhi metro network
and its expansion based on the complex network. The results show that the degree distribution and
degree related parameters of the two networks are almost the same, and the connection situation is
slightly improved [44].

The rapid development of the Nanjing metro network and the universal application of smart
cards provide the basis for the use of big data to analyze passenger behavior. Yang M investigated
commuters using public bicycles to enter the subway, and analyzed personal characteristics and their
experiences before and after going to work [45]. Based on the single line passenger flow data of Nanjing
metro, Li J studied the influence of weather conditions on the passenger flow of Nanjing metro [46].
Zhao D analyzed the transfer situation between metro and public transport by using the data of the
Nanjing bus smart card [47]. Wei Y analyzed the temporal and spatial change rule of passenger flow
based on the data of the Nanjing metro smart card [48]. Wei Y used smart card data to propose the data
filtering process and exception recognition, and classified and explained exceptions [49]. Yu J used the
field data of the Nanjing metro stations to establish an improved social force model and simulate the
efficiency of passengers under different organizational modes [50].
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The existing research involves the OD records of various modes of transportation, and analyzes
the occurrence preference, route selection, and destination demand of passengers. The model of
the urban subway is established by using the complex network method, and the performance of
the subway network is analyzed. Different from other modes of transportation, metro OD data
have clear time records of entry and exit. As an important part of the comprehensive transportation
system in large cities, the travel time of passengers has certain stability and regularity. How to set
the appropriate index to analyze the OD data of the metro is an urgent problem to be solved in traffic
information management.

Previous research includes the use of complex network methods to model the subway network
and analyze its related performance. OD travel time, as an important indicator of passenger travel
quality, is affected by various external factors. Traffic big data has been collected and analyzed in each
subsystem. This provides an idea for this research, which can consider the complex performance index
of the metro network and OD travel time index, and analyze their correlation. The smart card data of
subway passengers will provide an accurate quantitative basis for correlation.

The development of traffic big data technology makes it possible to accurately evaluate and
identify passengers’ travel behavior. In the urban public transportation system, the smart card has
been widely used, especially in the subway and bus system. In addition, GPS is generally used to
locate taxis, shared cars, and shared bicycles, which also provides the possibility to track the movement
of passengers. But these data formats may face the situation of nonstandard format, which makes the
analysis difficult. As an important part of the urban transportation system, the data of passengers’
swiping card is of typical significance. This study uses the swiping card records of subway passengers
to evaluate the influencing factors of passenger travel time, which can lay a research foundation for
refining the influencing factors in the future.

In this research, the card swiping data of the Nanjing metro smart card is used to select the five
working days of passengers’ entry and exit records, establish an index evaluation system for the OD
travel time of passengers, and select appropriate images to express the big data visually. This paper
mainly adopts the complex network method to build the subway network model, and analyzes OD
travel time with other indicators. The OD travel time index can be divided into three categories: time
index, complex network index, and composite index. The Pearson correlation of these indexes of OD
travel time was quantitatively analyzed. This will help to understand the factors affecting the travel
time of passengers, improve the flow efficiency of passengers, and optimize the layout of the subway
network and urban space.

2. Overview of Nanjing Metro and Analysis Process

2.1. Development of Nanjing Metro Lines

Table 1 shows the opening conditions of 7 metro lines in Nanjing at the beginning of 2017,
including line name, opening time, number of stations, and length. From 2005 to 2017, Nanjing metro
opened 7 metro lines in total. The time interval between the opening of line 1 and line 2 is relatively
long. By 2014, line 10, S1, and S8 were opened continuously. Line 1 opened 16 stations in 2005, plus the
South Extension Line opened in 2010, a total of 27 stations. Lines 1, 2, 3, and 4 form the main network
of Nanjing metro. Line 10, S1, and S8 are extensions of the main line. Lines 1, 2, and 3 have a large
number of stations. Except line 10, the length of other lines is more than 30 km. The long distance of
extension line is caused by the large distance between stations.
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Table 1. Opening sequence of Nanjing metro lines.

Opening Sequence Number of Stations Length (km) Opening Year

1 27(16) 38.9 2005
2 26 37.9 2010
10 14 21.6 2014
S1 8 37.3 2014
S8 17 45.2 2014
3 29 44.9 2015
4 18 33.8 2017

Figure 1 shows the route map of Nanjing metro in 2017, with different colors to represent different
routes. This metro line map is from the information released by Nanjing Metro Group Co., Ltd. [48].
The names of subway lines and stations are marked in the figure. From the subway figure, it can be
seen that the main lines are 1, 2, 3, and 4, which run through the main urban area of Nanjing, and
the intersection part constitutes the central area of Nanjing. The ring formed by the intersection of
Line 1 and Line 3 forms the main urban area of Nanjing. The two intersections are the old railway
station Nanjing Station and the new railway station Nanjing South Station, which are also important
transportation hubs. Line 10, S1, and S8 are extension lines, connecting the remote suburbs of Nanjing.
Xinjiekou station, the intersection of line 1 and line 2, is the geographical center and commercial center
of Nanjing.

Figure 1. Nanjing metro line map.

Table 2 shows the running direction, starting point, terminal point, and passing station of Nanjing
metro lines. In the actual subway operation process, the subway is a two-way operation.
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Table 2. Direction and stations of Nanjing metro lines.

Line Code Origination Destination Station Code

1 maigaoqiao zhongguoyaokedaxue [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55]

2 jingtianlu youfangqiao [40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 9, 25,
24, 23, 22, 21, 20, 19, 2, 18, 17]

3 linchang mouzhoudonglu [89, 90, 91, 73, 92, 93, 94, 95, 96, 14, 97, 98, 99, 26, 100, 101,
102, 103, 104, 105, 106, 44, 107, 108, 109, 110, 111, 112, 113]

4 xianlinhu longjiang [128, 127, 126, 125, 124, 123, 34, 122, 121, 120, 119, 118, 117,
98, 11, 116, 115, 114

10 yushanlu andemen [64, 63, 62, 61, 60, 59, 58, 57, 56, 1, 2, 3, 4, 5]
S1 nanjingnanzhan lukoujichang [44, 71, 70, 69, 68, 67, 66, 65]
S8 jinniuhu taishanxincun [88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72]

2.2. Smart Card Big Data of Nanjing Metro

According to the data released by Nanjing Municipal Bureau of Statistics, by the end of 2016,
Nanjing had a permanent population of 8.27 million, including 6.78 million urban residents. The
passenger flow data of Nanjing metro comes from the swiping card data of the passenger’s smart card,
including card number, card type, station, time of entering and leaving the station, etc. The minimum
unit of time data is seconds. More than one million OD records are generated by the AFC (Auto Fare
Collection) system of Nanjing metro every day.

2.3. Correlation Analysis Process

Figure 2 shows the correlation analysis process of OD travel time indexes. Firstly, inappropriate
data are filtered through data preprocessing. Then the OD travel time indexes can be divided into three
categories: time index, complex network index, and composite index. Based on the complex network
model, this research quantitatively analyzes the Pearson correlation of the indexes of OD travel time.

Figure 2. Correlation analysis process.

3. Data Preprocessing

Before analyzing the OD data of Nanjing metro, it is necessary to filter the data [32]. The abnormal
data of OD includes the record of entering the station before yesterday, the record of entering the
station after today, the record of negative use time, the record of more than 300 min, the record within
one minute, and the record of entering and leaving the same station. The entry record before yesterday
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is that the passenger did not leave the station in time at that time, but chose to carry out remedial
treatment afterwards on today.

The records of entering the station after today are usually concentrated in the early morning of the
next day, which is a record error. The record with negative time does not conform to common sense,
which is caused by the wrong record of the machine and equipment. According to the regulations of
Nanjing metro, the maximum detention time of passengers in the metro network is 300 min. After this
time, the smart card is locked and can no longer be used normally. According to the running time
interval of the subway line, plus the time of passengers entering and leaving the station, the record
within one minute is unreasonable. The entry and exit records of the same station are meaningless for
the analysis of OD data.

Table 3 shows the data filtering of OD records in five working days, including the number before
and after filtering every day, and the number filtered in each filtering step. As can be seen from Table 3,
the total number of records ranges from 1.20 million to 1.32 million. The clear data number of each
filtering step is relatively close, which reflects that these abnormal OD are common, so it is necessary
to filter the data for further analysis.

Table 3. Data filtering of OD (origination–destination) records in five working days.

Date Week Whole
Number

Number
After

Filtering

Inbound
Before

Yesterday

Inbound
After
Today

Negative
Use

Time

More
than

300 min
0-1min

Inbound and
Outbound on
Same Stations

2.13 Monday 1,228,131 1,218,423 93 29 15 1240 1886 6445
2.14 Tuesday 1,305,521 1,294,948 176 44 10 1315 2012 7016
2.15 Wednesday 1,240,308 1,229,704 248 25 12 1295 2137 6887
2.16 Thursday 1,201,713 1,192,083 68 28 11 1311 1999 6213
2.17 Friday 1,324,342 1,313,340 72 28 6 1313 2119 7464

4. Evaluation Indexes of OD Travel Time

OD travel time indexes can be divided into three categories: time index, complex network index,
and composite index. Time index includes use time probability, passenger flow between stations,
average time between stations, and time variance between stations. The complex network index is
based on three complex networks, including the minimum number of rides between stations related to
Space P model, and the shortest time between stations related to ride time model. Composite indicators
include flow efficiency between stations and network flow efficiency.

4.1. Time Index

(1). Use Time Probability

Formula 1 shows the calculating method of use time probability:

Pi =
TODi

N∑
i=1

TODi

(1)

where Pi is use time probability, i is the code of OD records, N is the total number of records, TODi is
the OD travel time of i.

Figure 3 shows the use time probability distribution in five days. It can be seen from the figure
that the five-day curves are basically coincident, which shows that the use time probability distribution
curve is relatively stable. The curve shows an obvious peak shape. The peak time is about 26 min, and
the probability is more than 3%. The distribution of time used in 75–300 min is relatively flat, which
shows that the time used is concentrated in 1–75 min, which may be detained in the subway network
for some reason.
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Figure 3. Use time probability distribution in five days.

Figures 4 and 5 show use time probability distribution of the early peak and late peak in five days,
which can be compared with Figure 3. The early peak record selects the complete OD records from
7:00 to 9:00 of every morning. In the evening peak record, the complete OD records of the beginning
and the end in the range of 17:00–19:00 every night are selected. The time is controlled within 120 min.

Figure 4. Use time probability distribution in early peak of five days.

Figure 5. Use time probability distribution in evening peak of five days.

(2). Passenger Flow between Stations
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Passenger flow between stations refers to the traffic between different stations in a day. As of
the beginning of 2017, there are 128 metro stations of Nanjing metro. Figure 6 shows the passenger
flow distribution between stations on February 13. The figure is drawn with Origin software, and
the contour module is used to represent different values with different colors. The distribution of the
remaining four days is similar to this one.

Figure 6. Passenger flow distribution between stations on February 13.

It can be seen from Figure 5 that most of the traffic between stations is concentrated within 100,
and a small part of the traffic is between 200 and 500, and some of the traffic is zero. Line 1, 2, and 3 are
the main lines. The interaction between stations is frequent, and the flow is generally 200–500. Because
the distance between extension lines is far, it is inconvenient to transfer, and the flow is zero. The flow
between the same station of Line 1 and Line 2 is large, reaching 500–2000. The OD station with the
largest flow is from Xingjiekou to Maigaoqiao, which exceeds 8000.

(3). Average Time between Stations

Average time between stations refers to the average OD time between different stations in a day.
Figure 7 shows the average time between stations on February 13. The distribution of the remaining
four days is similar to this one. It can be seen from the figure that the average time between stations is
mainly composed of 0–50 min and 50–100 min. Because of the relationship of zero traffic, there are zero
records between stations. The average time between some stations is 100–150 min, and these records
are mainly concentrated between 80–90 stations on Line 3.

Table 4 shows the five-day OD average time table, including the total number, the average time,
the number of early peak, the average time of early peak, the number of late peak, and the average
time of late peak. It can be seen from Table 4 that the average time of is basically stable at about 28 min,
and the average time of early peak and late peak is kept at about 26 min. The number of early peak
and late peak accounts for about 45% of the total number of days, but the time used is smaller than the
average time of the whole day. This shows that the passenger flow during the peak period is larger,
but the flow speed is faster. This may be the reason why the subway has opened more flights and the
passengers are moving faster.
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Figure 7. Average time between stations on February 13.

Table 4. OD average time in five days.

Date Whole
Number

Average
Time
(min)

Number of
Early Peak

Average Time
of Early Peak

(min)

Number of
Evening

Peak

Average Time
of Evening
Peak (min)

2.13 1,218,423 28.41 275,284 26.62 292,466 26.51
2.14 1,294,948 28.13 270,291 26.26 322,736 26.37
2.15 1,229,704 28.61 271,899 26.93 293,062 26.60
2.16 1,192,083 28.31 265,427 26.28 286,648 26.59
2.17 1,313,340 29.00 268,915 26.58 320,664 27.42

(4). Time Variance between Stations

Time variance between stations indicates the deviation of a group of discrete data of time use
between any two stations from the average time use between stations. This indicator reflects the
difference of OD time of passenger flow between stations, as shown in Formula 2:

Sij2 = 1N − 1[(xij1− xij−)2 + (xij2− xij−)2 + . . .+ (xijk− xij−)2 + . . .+ (xijN − xij−)2] (2)

where Si j
2 is time variance between stations, and i, j are the station code, k is the number of OD records

between stations, N is the total number of inter station records, and
−

xi j =
1
N

N∑
k=1

xk is the average value

of inter station time.
Figure 8 shows time variance between stations on February 13. The distribution of the remaining

four days is similar to this one. It can be seen from the figure that the time variance between stations
mainly consists of two parts: 0–25, 25–50, and some are 50–100. On the whole, the time error is mainly
concentrated in the OD alignment involving the station records of Line 1, 2, and 3, which is mainly due
to the large passenger flow between these stations, resulting in the large time error of passengers.



Sustainability 2020, 12, 1113 11 of 21

Figure 8. Time variance between stations on February 13.

4.2. Complex Network Index

Complex network index of Nanjing metro is closely related to OD time. The station codes are
from the AFC of the Metro Management Department. The above Figure 1 and Table 2 show the
station names and codes corresponding to different lines. When building the complex model of the
Nanjing metro network, this research first uses MATLAB software to build the relationship matrix
between Nanjing metro stations, and then uses the Netdraw module of UCINET software to import
the relationship matrix, so as to draw the topological structure of Space P.

(1). Space P Model and Minimum Number of Rides

Space P model regards subway stations as nodes. If there is a direct subway line between two
stations, they establish a connection. Space P model reflects the transfer relationship between different
metro lines. In order to facilitate analysis, the minimum number of rides between stations is used
instead of the number of transfers. The number of rides between stations on the same metro line is 1.
The number of rides can be presented by the shortest distance. The shortest distance between any
two stations is the number of connections that the shortest path between two stations passes through.
The shortest distance between stations represents the minimum number of rides between stations.
Generally speaking, the more times passengers take the subway on different lines from the origination
to the destination, it means that they need to travel farther and spend more time.

Figure 9 shows the Space P model of Nanjing metro network [39]. It can be clearly seen that the
internal stations of the seven metro lines are closely connected, and there are important transport hubs
between different metro lines, connecting the metro lines together.

Figure 10 shows the distribution of the minimum number of rides between stations. The minimum
number of rides between stations is mainly 1, 2, and 3, which shows that the transfer between stations
of Nanjing metro is relatively convenient. The number 1 is mainly distributed on the diagonal, because
the stations of the same line are generally arranged in order. Because some stations are traffic hubs, the
number of rides between the hubs and other stations is 1. The ride times between Line 1, 2, and 3 are
basically 2, indicating that the transfer between main lines is relatively fast. The number 4 of rides
is mainly concentrated in Line S8, which is too remote and inconvenient to interact with other lines,
resulting in zero passenger flow of OD records.
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Figure 9. Space P model of Nanjing metro.

Figure 10. Distribution of the minimum number of rides between stations.

(2). Ride Time Model and Shortest Ride Time

Ride time means the actual time spent on the metro vehicle, not including inbound time, outbound
time, and waiting time. Using the operation schedule of the train, the time interval between any
adjacent stations is given to the contact value between stations, which constitutes the ride time model.
This is a weighted directed network model. The directionality between stations is related to the
direction of train operation. Figure 11 shows the up time interval of Nanjing metro, corresponding to
the metro station sequence shown in Table 2. Figure 12 shows the down time interval of Nanjing metro.
The time interval is simplified to minutes, which is the difference of departure time of adjacent stations.
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Figure 11. Up time interval of Nanjing metro.

Figure 12. Down time interval of Nanjing Metro.

According to the weighted network model, the shortest ride time between any two stations can be
calculated. Figure 13 shows the shortest ride time distribution between stations. It can be seen from
the figure that the shortest ride time between stations is mainly 0–20, 20–40, 40–60, 60–80. The time
between stations on the diagonal is basically 0–20, because the stations are on the same line. The time
between Line 1, 2, and 3 is less because of the connection of transportation hubs. The time between the
station coded 70–80 and other stations reaches 80–120, because the station on Line S8 is inconvenient to
transfer with other stations and takes a long time.
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Figure 13. Distribution of the shortest ride time between stations.

4.3. Composite Index

Composite index considers synthetically the time index and complex network index.

(1). Flow Efficiency between Stations

The shortest ride time between any two stations is a stable value, which is only related to the train
operation schedule. It is assumed that when passengers choose the route between two stations, the
premise is to use the shortest ride time. Then, the waiting time between stations can be calculated.
The waiting time here includes the time for passengers to enter, leave, and transfer. Here, time data
between stations refers to the average value.

Formula 3 shows how to calculate the waiting time:

Tw = Tt − Tr (3)

where Tw is waiting time, Tt is travel time, and Tr is ride time.
Formula 4 shows the flow efficiency between stations:

E f =
Tr

Tt
(4)

where E f is flow efficiency between stations, Tt is travel time, and Tr is ride time.
Flow efficiency reflects the ratio of ride time to travel time. The higher the flow efficiency is, the

better the network mobility is, and the shorter waiting time the passengers spend. Flow efficiency is
directly proportional to ride time taken on the metro vehicle.

Figure 14 shows the flow efficiency distribution between stations on February 13. The distribution
of the other four days is similar. As can be seen from the figure, the flow efficiency between stations is
mainly composed of yellow, concentrated in 0.6–0.8. The value on the diagonal area is 0–0.2, which
is due to the shorter time between stations on the same line. OD records involving remote routes
show high flow efficiency, which indicates that waiting and transfer times between these stations are
relatively smaller.
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Figure 14. Flow efficiency distribution between stations on February 13.

(2). Network Flow Efficiency

Referring to the calculation method of flow efficiency between stations, network flow efficiency of
Nanjing metro is calculated.

Table 5 shows the five-day network flow efficiency, including the average travel time, travel time
variance, average waiting time, waiting time variance, and network flow efficiency.

Table 5. Network flow efficiency in five days.

Date Whole
Number

Average
Travel Time

(min)

Travel Time
Variance

Average
Waiting

Time (min)

Waiting
Time

Variance

Network
Flow

Efficiency

2.13 1,218,423 28.41 285.41 8.89 59.26 0.6871
2.14 1,294,948 28.13 283.47 9.01 62.03 0.6797
2.15 1,229,704 28.61 290.60 9.12 64.15 0.6812
2.16 1,192,083 28.31 280.05 8.88 56.82 0.6863
2.17 1,313,340 29.00 305.17 9.30 63.60 0.6793

5. Correlation Analysis

Before the correlation analysis of evaluation indexes of OD travel time, OD records with zero
passenger flow must be removed first, otherwise the accuracy of the correlation analysis will be affected.

The purpose of correlation analysis is to understand the correlation between OD travel time
and those factors, and the degree of correlation between them. The metro management department
can promote the flow of passengers and improve the operation efficiency of the subway system by
analyzing the influencing factors.

5.1. Pearson Correlation Model

The Pearson correlation model is generally used to measure the linear correlation between variables.
When both variables are normal continuous variables and the relationship between them is linear, the
Pearson correlation coefficient is used to show the correlation degree between the two variables.
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The calculation formula is shown in Formula 5:

r =
N
∑

xiyi −
∑

xi
∑

yi√
N
∑

x2
i − (
∑

xi)2
√

N
∑

y2
i − (
∑

yi)2
(5)

where r is the correlation coefficient, i is the code of indicator value, xi and yi are the corresponding
indicator values, N is the number of indicator values. In the actual calculation, two series are used
to express different index values, and the correlation coefficient reflects the correlation between the
two series.

The greater the absolute value of the correlation coefficient, the stronger the correlation. The
closer the correlation coefficient is to 1 or −1, the stronger the correlation degree is. The closer the
correlation coefficient is to 0, the weaker the correlation degree is. Generally, the following value ranges
determine the correlation strength of variables: correlation coefficient 0.8–1.0 indicates extremely
strong correlation, 0.6–0.8 indicates strong correlation, 0.4–0.6 indicates moderate correlation, 0.2–0.4
indicates weak correlation, and 0.0–0.2 indicates extremely weak correlation or no correlation.

5.2. Correlation Analysis of Travel Time between Stations

OD travel time of passengers includes inbound time, outbound time, transfer time, and ride time.
The first three time factors can be unified as waiting time. The ride time is linearly related to the
number of ride times. OD travel time is the sum of waiting time and taking time, which is a linear
relationship with these two variables. The paper makes a supplementary explanation.

Table 6 shows the correlation between travel time, travel time variance and travel time, number of
rides, and passenger flow between stations. Since the passenger’s ride time is based on the assumption
of taking the minimum time, it is also necessary to analyze the correlation between ride time and
travel time.

Table 6. Correlation analysis of travel time between stations.

Travel Time Travel Time Variance

Date Ride Time Number of
Rides

Passenger
Flow Ride Time Number of

Rides
Passenger

Flow

2.13 0.9654 0.6374 −0.3147 −0.0196 −0.0034 −0.0234
2.14 0.9657 0.6438 −0.3066 −0.0196 0.0146 −0.0217
2.15 0.9637 0.6437 −0.3220 −0.0182 0.0039 −0.0303
2.16 0.9633 0.6345 −0.3162 −0.0073 0.0128 −0.0278
2.17 0.9665 0.6431 −0.3163 −0.0131 −0.0049 −0.0290

The parameters in the table refer to the relevant data between stations, travel time and the number
of rides refers to the minimum value. It can be seen from the table that travel time is highly related to
ride time, and travel time is strongly related to ride times, which means that the longer the ride time
and the more rides, the longer the whole travel time. Passenger flow is negatively correlated with
travel time. The larger the passenger flow is, the shorter the travel time is. The reason may be that
when the number of passengers’ increases, the subway will be added, the moving speed of passengers
will increase, and the average waiting time will be shorter.

Travel time variance is negatively correlated with travel time and passenger flow. The variance of
travel time and the number of rides are sometimes a negative extremely weak correlation, sometimes a
positive extremely weak correlation. This shows that the travel time variance has certain randomness
and has no obvious correlation with other parameters.
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5.3. Correlation Analysis of Waiting Time between Stations

Table 7 shows the correlation between the waiting time or waiting time variance and the number
of rides, passenger flow. The waiting time is the difference between travel time and ride time. It can be
seen from the table that the waiting time is strongly related to the number of rides. This shows that
the more ride times it takes, the longer it takes to wait for the car, because the transfer of passengers
takes more time. The weak correlation between waiting time and passenger flow is negative. This
shows that the larger the passenger flow, the less waiting time. The reason may be that in the face of
congestion, passengers are quicker. The waiting time variance is weakly correlated with the number of
rides and the passenger flow, which indicates that the waiting time has a greater randomness.

Table 7. Correlation analysis of waiting time between stations.

Waiting Time Waiting Time Variance

Date Number of Rides Passenger Flow Number of Rides Passenger Flow

2.13 0.6386 −0.2630 −0.0034 −0.0234
2.14 0.6573 −0.2566 0.0146 −0.0217
2.15 0.6523 −0.2781 0.0039 −0.0303
2.16 0.6249 −0.2604 0.0128 −0.0278
2.17 0.6517 −0.2690 −0.0049 −0.0290

5.4. Correlation Analysis of Flow Efficiency between Stations

Table 8 shows the correlation between the flow efficiency between stations and ride time, number
of rides and passenger flow. The flow efficiency is positively correlated with ride time, which indicates
that the longer the ride time is, the higher the flow efficiency is. This is because the ride time taken
by metro has increased for the entire journey. The flow efficiency is weakly related to the number of
passengers and the passenger flow, which has certain randomness.

Table 8. Correlation analysis of flow efficiency between stations.

Flow Efficiency

Date Ride Time Number of Rides Passenger Flow

2.13 0.6481 0.0752 −0.1007
2.14 0.6460 0.0714 −0.1096
2.15 0.6442 0.0695 −0.0873
2.16 0.6484 0.0716 −0.1013
2.17 0.6472 0.0774 −0.1115

6. Conclusions

From 2005 to 2017, Nanjing metro opened 7 metro lines in total. Lines 1, 2, 3, and 4 form
the backbone network of Nanjing metro, with 128 stations in total. Nanjing metro’s AFC system
accumulates the big data of passengers’ entering and leaving the station. These data can be used to
analyze the temporal and spatial distribution of OD. However, to evaluate OD, we need to further
establish systematic indexes and analyze the correlation of indexes.

Before analyzing the correlation, we select five working days of data to filter out the unreasonable
data. OD time index can be divided into three categories: time, complex network, and composite
index. The time index includes use time probability, passenger flow between stations, average use
time between stations, and use time variance between stations. Space P and ride time models are
constructed by the complex network method. The complex network index is based on three complex
network models, including the minimum number of rides between stations related to Space P, and the
shortest ride time between stations related to the ride time network model. Composite index includes
flow efficiency between stations and network flow efficiency.
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This research shows a five-day use time probability distribution. Taking February 13 as a
representative, the distribution chart of time indexes is shown. The interaction between the main line
stations is frequent and the traffic is large. The records of early peak and late peak account for about
45% of the total number of days. The average time between stations is mostly within 100 min. The
main line has a large passenger flow between stations, which results in a relatively large time variance
of passengers. The flow efficiency reflects the ratio of ride time to travel time. The higher the flow
efficiency is, the better the network mobility is, and the shorter waiting time the passengers spend.

The Pearson correlation model is used to measure the linear correlation between the variables of
the matrix, which is divided into positive correlation and negative correlation. The greater the absolute
value of the correlation coefficient, the stronger the correlation.

Travel time is strongly related to ride time, and travel time is strongly related to ride times. This
means that the longer the ride time and the more rides you take, the longer the travel time. The travel
time variance has certain randomness, and has no obvious correlation with other indexes.

There is a strong correlation between waiting time and the number of rides. The weak correlation
between waiting time and passenger flow is negative. The waiting time variance is weakly correlated
with the number of rides and the passenger flow, which indicates that the waiting time has a
greater randomness.

The flow efficiency is positively correlated with ride time, which indicates that the longer the ride
time is, the higher the flow efficiency is. The flow efficiency is weakly related to the number of rides
and the passenger flow, which has certain randomness.

Previous research considered the use of the complex network to model the subway network,
analyzed various factors affecting OD travel time, and also used traffic big data as the basis for analysis.
In this research, these methods are applied synthetically to analyze the influencing factors of OD
travel time and the relationship between them. There is still some limitation in this research. Some
abnormal travel records need to be further identified and filtered. Passenger’s travel route selection is
based on the assumption of the shortest path, which needs to be combined with mobile signaling and
other means for more accurate identification. Different stations, different weather, and different time
periods have great influence on the travel time of passengers, which needs to be further analyzed in
combination with previous research.

Based on the big data of the Nanjing metro smart card, this study uses the complex network
method to construct and analyze the OD travel time index. These indexes consider the connection
between the starting point and the terminal point of passengers, and can be used for quantitative
evaluation of the connection between the subway station and the network. This method can be
extended to the bus system and public bicycle system. Future research can further increase the length
of the observation date, select subway data from different cities, carefully distinguish the influencing
factors of passenger travel time, and analyze their correlation, so as to control variables and improve
the operation efficiency and management level of the transportation system.
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