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Abstract: Soil and water conservation practices (SWCPs) are widely used to control soil and water
loss. Quantifying the effect of SWCPs and climate change on soil and water erosion is important for
regional environmental management. In this study, the Soil Conservation Service Curve Number
(SCS-CN) and the Modified Universal Soil Loss Equation (MUSLE) were employed to investigate
the patterns of surface runoff and soil erosion with different SWCPs in the hilly region on the Loess
Plateau of China. The impact of climate change under RCP4.5 and RCP8.5 emission scenarios was
considered from 2020 to 2050. Surface runoff grew with the increased rainfall and rainfall erosivity,
while soil erosion presented large variations between years due to uneven distribution of rainfall and
rainfall erosivity under two scenarios. Different SWCPs significantly reduced surface soil and water
loss. Compared with bare slopes, the reduction rates were 15–40% for surface runoff and 35–67% for
soil erosion under RCP4.5 and RCP8.5 emission scenarios, respectively. The combination of shrub
and horizontal terracing was recommended due to its low water cost for sediment control among
seven SWCPs.

Keywords: soil and water conservation practices; soil erosion; surface runoff; water cost for sediment
control; MUSLE; SCS-CN; climate change

1. Introduction

Soil erosion is a global problem of land degradation which may adversely influence natural
and human-affected ecosystems [1]. Around 25–40 billion tons of surface soil and 10 million hm2 of
farmland worldwide are eroded annually due to soil erosion, causing a direct economic loss of nearly
$400 billion USD [2–4]. In particular, approximately five billion tons of topsoil and 67 thousand hm2 of
cultivated land are lost each year in China as a result of soil erosion [5]. The Loess Plateau is one of
the most important agricultural regions in China, with serious soil erosion [6]. The Grain-to-Green
project implemented since 1999 aimed to improve soil conservation in this region. The soil erosion in
the Loess Plateau, however, was still higher than 3600 t km−2 yr−1, exceeding the negligible erosion
rate of 1000 t km−2 yr−1 [7]. The use of fertilizers in the farmlands with soils prone to erosion risk may
affect groundwater and surface water quality. For example, the dissolved reactive phosphorus from
fertilizers will transport with surface runoff from farmlands, accelerating eutrophication in receiving
water bodies [8]. The release of heavy metals such as Zn, Cr, Cd, Hg, and Pb from soil erosion may
also pose a risk for human health [9].
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Soil erosion can be affected by some key factors such as climate change, land use, and anthropogenic
activities [10–12]. The high-intensity rainfall events have important effects on soil erosion [13]. The
mean surface temperature as well as the intensity and frequency of extreme rainfall events will increase
during the twenty-first century in the Loess Plateau [14]. Due to climate change, global soil erosion
in the next century is expected to increase by approximately 25–50% [15]. Moreover, soil and water
erosion may be influenced by other factors (e.g., soil water content and vegetation cover), which will
also be affected by climate change. Field monitoring is easily conducted at small scales (e.g., patches,
hillslopes and plots), but it is a challenge to implement over large areas (e.g., watershed and region)
considering the required labor and cost [16]. Therefore, evaluations are required to estimate soil erosion
at a large scale (e.g., the Loess Plateau) for decision making and regional management considering the
future climate change [17]. The Universal Soil Loss Equation (USLE) and its modifications are widely
used empirical models for water erosion prediction because they can be applied at large scales with
various inputs to consider the future climatic uncertainties [18,19].

Soil and water conservation practices (SWCPs) are one of the most effective measures for erosion
control. It can also help adapt to climate change and improve rural development [20]. Over the
past 60 years, various SWCPs, including terraces, natural restoration, afforestation, and engineering
construction (e.g., check-dams), have been applied in more than 30% of the Loess Plateau [21]. These
practices can significantly reduce soil and water loss and improve environmental quality [22–24]. For
example, the use of a permeable reactive barrier filled with materials such as activated carbon and
leonardite can intercept the contaminant transport and even transform the contaminant into low or
non-toxic substances [25,26]. Liu et al. [27] summarized 53 types of SWCPs used in China. These
SWCPs can significantly reduce soil erosion and runoff, but the efficiency of these SWCPs was also
affected by the topography, soil characteristics, climatic regime, etc. [28]. Meanwhile, the regional
water scarcity in the Yellow River Basin and the conflict between the upper and downstream of the
Yellow River in water usage are serious problems. The average runoff may decrease with the increase
of vegetation evapotranspiration due to the application of SWCPs [29]. With the growing water scarcity
and increasing competition among water users, more efficient water use has increased in importance
for sustainable water management and environmental decision-making [30–32]. Therefore, this study
aims to develop an approach for the evaluation of SWCPs under future climate scenarios. Improved
assessment of SWCPs will be achieved through the use of water cost which can help analyze the balance
of soil conservation and runoff reduction, and the incorporation of climate change into soil erosion
prediction, which can help understand the performance of SWCPs in a changing environment. Specific
goals include evaluating the impact of climate change on soil erosion and surface runoff in a watershed
and assessing the water cost for sediment control of seven SWCPs under the future climate scenarios.
Climate change, surface runoff, and soil erosion simulated by a coupled rainfall-runoff-erosion model
will be investigated to select appropriate SWCPs for the hilly regions on the Loess Plateau. This
study regarding the effect of climate change and SWCPs on soil and water loss can be used to support
watershed management.

2. Methodology

2.1. Erosion Measurement

The experimental plots locate at the Dongshan watershed (38◦02′20′′–38◦03′48′′ N,
111◦46′48′′–111◦48′15′′ E) of Shanxi Province in China, which is in the southeast of Loess Plateau. This
area has a typical semi-arid continental monsoon climate and a fragile ecological environment, with a
mean annual rainfall of 500 mm (420–540 mm), and a mean air temperature of 9.5 ◦C (8.80 to 10.2 ◦C).
The rainfall is seasonally unsteady, with intensive and short-duration events during the rainy season
(June–September), accounting for 75–90% of total annual rainfall [33]. The average effective evaporation
is about 2160 mm per year, nearly 5 times more than rainfall [34]. Soils in this region are mainly
loose and porous loess, containing 64–73% silt and 17–20% clay, which are vulnerable to erosive



Sustainability 2020, 12, 934 3 of 18

activities (e.g., raindrop, runoff, gravity, freeze-thaw, and wind) [33,35]. The watershed, with area
around 433 hm2 and elevation from 1135 to 1775 m above sea level, has been affected by human
disturbances (e.g., urbanization, deforestation, and mining) and climate change. The reduction of
vegetation cover in this region resulted in a gradual increase in soil erosion, flooding and sediment
yield. The water-induced erosion models can be modified based on erosion measurements since the
soil erosion on the Loess Plateau mainly comes from steep, sparsely vegetated, and highly erosive
loess slopes with intensive rainfall and water flow [18,21].

Based on the major SWCPs in the Loess Plateau, eight standard experimental plots with the
dimension of 5 m in width and 20 m in length each were built to study the impact of SWCPs on
soil and water erosion. They were A (Sea-buckthorn + horizontal terracing), B (grass + horizontal
terracing), C (forest/Chinese Pine + fish-scale pitting), D (bare slope), E (forest/Arborvitae + fish-scale
pitting), F (forest/Arborvitae + horizontal terracing), G (forest/Apricot + horizontal terracing), and H
(forest/Chinese Pine + horizontal terracing). The basic characteristics of these plots are shown in Table 1.
These experimental plots were located on the upper and middle positions of the natural semi-shady
slope, with a slope of 18◦. The soil type at this site was cinnamon soil and the soil thickness was 130 cm.
Each plot was bordered with a 35-cm-wide cement wall. A drainage ditch on the upper part and
1.2 m-wide isolation zones on both sides of each plot were designed to prevent the raindrop splashing
from the surrounding areas. The lowest part of each plot was built with an outlet (30 × 30 cm) linked
to the trough, water pipe, and a cement reservoir (2 × 1.5 × 2 m).

Table 1. Basic characteristics of eight experimental plots.

SWCPs 1 A B C D E F G H

Land use shrub grass forest bare forest forest forest forest
Vegetation cover (%) 71 61.7 38.5 10 28.5 24.6 16.6 50.5

P-factor 0.027 0.050 0.203 1.000 0.203 0.181 0.188 0.181
Erosive events 42 34 25 44 38 40 37 39
Duration (min) 977 1078 1195 1017 1054 1059 1050 1053

Intensity (mm h−1) 2.3 2.4 2.6 2.3 2.3 2.4 2.3 2.3
Rainfall (P, mm) 26.3 29.8 34.8 27.8 29.1 29.6 28.3 29.0

Surface runoff (mm) 1.2 1.0 1.4 1.7 1.4 1.2 1.1 1.1
Soil erosion (t hm−2 yr−1) 7.66 8.10 20.33 29.22 18.42 16.16 19.18 11.41

1 SWCPs: A (Sea-buckthorn + horizontal terracing); B (grass + horizontal terracing); C (forest/Chinese Pine
+ fish-scale pitting); D (bare slope); E (forest/Arborvitae + fish-scale pitting); F (forest/Arborvitae + horizontal
terracing); G (forest/Apricot + horizontal terracing); H (forest/Chinese Pine + horizontal terracing).

The reduction rates of surface runoff ( fQ, %) and soil erosion ( fA, %) of different SWCPs were
calculated as follows [36]:

fQ =
Q0 −Qi

Q0
, (1)

fA =
A0 −Ai

A0
, (2)

where Q0 and A0 are surface runoff (mm) and soil erosion (t hm−2 yr−1) of the reference plot
(D, natural and bare slope), respectively; Qi and Ai are surface runoff (mm) and soil erosion
(t hm−2 yr−1) of experimental plots with different SWCPs (e.g., grass, fish-scale pitting, horizontal
terracing), respectively.

Surface runoff and soil erosion on the slopes can be reduced by SWCPs at the same time, but the
reduction effects vary in water and soil erosion among different practices. Water cost for sediment
control was proposed by Wang et al. [37] to compare the differences in the decrease of runoff when
reducing the same amount of sediment among different practices. It can be calculated by the ratio
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of reduced runoff and soil erosion (Rrs, mm (t hm−2 yr−1)−1), which is defined as the ratio of the
water-reduced runoff to the reduced soil erosion by SWCPs. The formula was as follows:

Rrs =
Qd
Ad

, (3)

where Qd and Ad are the reduced surface runoff (mm) and soil erosion (t hm−2 yr−1) of each SWCP,
respectively. The SWCPs with a small Rrs have smaller impact on runoff when reducing the same
amount of soil erosion.

2.2. Rainfall-Runoff-Erosion Model

2.2.1. Regional Climate Model

In this study, climate simulations conducted by regional climate models (RCMs) were used to
dynamically downscale climate predictions of global climate models (GCMs) [38]. The RCM system
(RegCM4.5) with the hydrostatic core was used in this study, coupled with the Community Land
Model (CLM4.5). The microphysics scheme and Emanuel scheme were applied as the moisture scheme
and cumulus convective scheme, respectively. This parameterization scheme combination showed
satisfying performance in previous studies. For example, Gao et al. [39] found the combination of the
Emanuel scheme and CLM3.5 could better simulate the precipitation over China than other scheme
combinations. Aerosol processes and atmosphere-ocean coupling, however, were not considered in
this study. Besides RCM and scheme options, GCM, scenario, and boundary conditions may cause
uncertainties [14]. Ideally, more reliable and consistent climate projections can be produced through
a multi-model ensemble [40]. RCM precipitation post-processed by nonparametric transformations
could reduce biases and produce reliable estimates of local-scale climate [41]. However, due to the high
requirement of computational resources, it is difficult to address all sources of uncertainty and bias.
Thus, RegCM and the abovementioned schemes were selected in this study. The area described in the
RegCM4.5 is a region of 110 by 135 grid points with a resolution of 50 km centered at E111◦46′ and
N38◦3′. To predict the future climate, two Representative Concentration Pathways (RCPs) published
by the Inter-governmental Panel on Climate Change (IPCC) were selected to drive the simulation
with the highest (RCP8.5: 8.5W/m2 by 2100) and moderate (RCP4.5: 4.5W/m2 by 2100) scenarios. The
simulations were conducted between 1981 and 2005, with the assumption of accelerated development
in the initial five years and exceeding the baseline after 1986. The future climate simulations were run
from 2006 to 2050, and the analysis was conducted with the results from 2020 to 2050. The values of
monthly rainfall on a 0.5◦ grid were available for the hilly Loess Plateau between 2001 and 2050. In
this study, climate change scenarios were generated using downscaled average monthly rainfall inputs
during 1986–2005. All scenarios were run for 30 years, and rainfall changed during the entire period of
2020–2050. The simulations were presented as annual and monthly averages. The simulated rainfall
will provide input to the following models.

2.2.2. SCS-CN Model

The Soil Conservation Service curve number (SCS-CN) is an empirical rainfall-runoff model
with assumptions and a few inputs to estimate runoff caused by a rainfall event. It is based on the
principle of the water balance and two basic assumptions—the proportion of actual runoff to potential
maximum runoff is equivalent to the ratio of infiltration to potential maximum interception, and the
initial abstraction corresponds to the potential maximum interception. This method was presented as
follows [39]:

Q =

 (P−λS)2

P−λS+S P > λS
0 P < λS

, (4)

S = 254×
(100

CN
− 1

)
, (5)



Sustainability 2020, 12, 934 5 of 18

where P is rainfall (mm); Q is surface runoff (mm); λ is the initial abstraction rate, which is assumed
to be 0.2 in the SCS-CN method. Various values of initial abstraction rate ranging from 0.0 to 0.3
were reported in previous studies, and it was more reasonable for λ varying between 0.00–0.05 [42,43].
Combined with the sensitivity analysis conducted in the Loess Plateau by Wang [44], λ = 0.00 was
selected for this study. S is the maximum retention (mm), which is directly linked to the curve number
(CN). CN is a dimensionless variable, which can be determined by two methods: (1) using the CN
value-based lookup table based on soil type and land use provided by SCS and (2) calculating the CN
value according to the measured data of the experimental plots based on the backward formula from
SCS-CN equation (λ = 0.00) as follows:

CN =
100

P
254 × (

P
Q − 1) + 1

. (6)

2.2.3. MULSE Model

The USLE model was widely applied to predict soil erosion by water forces on the Loess Plateau
and it has six important aspects including rainfall erosivity (R), soil erodibility (K), slope length
(L), slope gradient (S), crop management (C), and erosion control practice (P) [45]. USLE has some
modifications and revisions, mainly including the revised USLE (RUSLE), Chinese Soil Loss Equation
(CSLE), and the modified USLE (MUSLE) [19,46,47]. Li et al. [18] compared 11 commonly used soil
erosion models on the Loess Plateau and found that empirical models produced sound and quick
predictions of soil erosion and sediment yield. On the Loess Plateau, soil erosion was dominated by
heavy and intensive rains while low-rainfall events were less important for it. Thus, considering the
direct impact of surface runoff on soil erosion, the rainfall-runoff erosivity index (QRR), reflecting the
erosive force under the combined rainfall and runoff, was introduced into the MUSLE model for Loess
Plateau [39]. The runoff-erosion model was formulated as follows:

A = a(QRR)b
×K × LS×C× P, (7)

where A is soil erosion (t hm−2 yr−1) on a storm basis; R represents rainfall erosivity factor
(MJ mm hm−2 h−1 yr−1); QR is the runoff coefficient (%), which is the ratio of future runoff and
rainfall predicted by the SCS-CN model and the RegCM4 model, respectively; K is the soil erodibility
factor (t hm2 h hm−2 MJ−1 mm−1); L is the slope length factor; S stands for the slope factor; C is the
dimensionless vegetation cover factor; and P refers to a dimensionless erosion control practice factor.
Recommended values for empirical coefficients a and b in this model on the Loess Plateau were 1.723
and 1.548, respectively [39]. The measured data from experimental plots were used to determine the
application conditions and model variables for MUSLE.

Rainfall erosivity factor (R) is one of the crucial factors in the MULSE model and it has a direct
link with the potential of soil erosion caused by rainfall [48]. Some algorithms of rainfall erosivity have
been studied, primarily including classical algorithms and simple algorithms. Wu et al. [49] reviewed
23 R-factor algorithms and their application scope from 1958 to 2006. The study found that the two
simple algorithms—the Wischmeier model and the half-month model—performed better for the hilly
Loess Plateau. Although the half-month model was of higher accuracy and more appropriate to be
used in the hilly areas, input data for the Wischmeier model were more easily available [49,50]. Thus,
monthly rainfall (Pi) and annual rainfall (P) were used to estimate the R factor with the Wischmeier
model in this study [45]:

R = 17.02×
12∑

i=1

1.735× 10(1.5log(
P2

i
P )−0.08188), (8)

where R is the annual rainfall erosivity factor (MJ mm hm−2 h−1 yr−1); Pi is the average monthly rainfall
of i-th month from January to December (mm); P is the annual rainfall (mm).
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Soil erodibility factor (K) is the key parameter to assess the soil susceptibility to erosion, reflecting
the soil vulnerability to raindrop splash and runoff flow. The widely used K estimators so far include
USLE, the Revised Universal Soil Loss Equation (RUSLE), the Erosion Productivity Impact Calculator
(EPIC), and the Geometric Mean Diameter based (Dg) model [51]. These models were developed
according to American soil-erosion databases, so they might be ineffective for other regions, e.g., the
Loess Plateau. Therefore, Zhang et al. [51] combined several methods for K factor estimation based on
the data from the Second Nation Soil Survey (China) and provided the optimally estimated K factor
(Kopt) combining the revised Knomo, Kepic, and KDg methods. The new estimator performed well in their
study and was adopted in the present study as follows:

Kopt = −0.01044 + 1.7530
3

[
(−0.03336 + 0.7449 Knomo) +

(
−0.01383 + 0.5158 Kepic

)
+

(
−0.00911 + 0.5507 KDg

)]
, (9)

Knomo = 0.1317× 2.1×10−4(12−SOM)M1.14+3.25(S−2)+2.5(P−3)
100 , M = SIL× (SAN + SIL), (10)

Kepic = 0.1317×
[
0.2 + 0.3 exp

(
−0.0256SAN

(
1− SIL

100

))](
SIL

CLA+SIL

)0.3
(
1.0− 0.25SOM

SOM+exp(3.72−2.95SOM)

)
(
1.0− 0.7SN1

SN1+exp(−5.51+22.9SN1)

)
, SN1 = 1− SAN

100 ,
(11)

KDg = 7.594

0.0017 + 0.0494 exp

−0.5
(

log(Dg) + 1.675
0.6986

)2
, (12)

where SAN, SIL, and CLA are the fraction of sand (Dg = 0.05-0.1 mm, %), silt (Dg = 0.002-0.05 mm,
%) and clay (Dg < 0.002 mm, %) in the US Soil Texture System, respectively; SOM is the soil organic
matter (%); S is the soil-texture code used in soil classification; P is the profile-permeability class; Dg is
the geometric mean diameter (mm).

Topographical factors, including slope length factor (L) and slope gradient factor (S), are the
factors that directly affect soil erosion. In the original erosion model, slope length is regarded as the
horizontal distance from the origin of runoff to the end where soil begins to deposit or runoff starts to
concentrate in the defined channel with decreased slope gradient [52]. Rainfall redistribution due to
interception and evaporation of vegetation canopies can preserve and reduce surface runoff, so the
surface runoff is affected by the specific area and land-use changes along the flow paths [50]. Some
calculating methods for the L-factor have been applied in different models at different scales and
scopes [18,50,53]. Qin et al. [50] reviewed four L-factor calculating methods which were currently
widely used for USLE and RUSLE in many countries and proposed a new method to calculate the
L-factor, considering the comprehensive effect of upslope vegetation coverage and topography on the
downslope surface runoff and soil erosion. However, soil erosion increased linearly with the rise of
slope length in a uniform slope with limited length [45]. The formulas for L-factor and S-factor were
primarily based on experimental data from natural runoff plots with different slope lengths and slope
gradients, respectively, which were as follows [50,54]:

L =
(
λ

22.13

)m
, m =


0.5 θ > 5◦

0.4 3◦ < θ ≤ 5◦

0.3 1◦ < θ ≤ 3◦

0.2 θ ≤ 1◦

, (13)

S =


21.9 sin(θ/180) − 0.96 θ ≥ 10◦

16.8 sin(θ/180) − 0.5 5◦ ≤ θ < 10◦

10.8 sin(θ/180) + 0.03 θ < 5◦
, (14)

where λ and θ are the horizontal slope length (m) and the slope gradient (◦), respectively; m is a
dimensionless empirical coefficient depending on the slope gradient.

Cover management factor (C) refers to the ratio of soil erosion from a slope with and without cover
management [45]. This factor can reflect the importance of land cover, crops and crop management
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on soil erosion [45,55]. C-factor is closely relevant to vegetation cover which is one sensitive factor
influencing soil erosion. Therefore, an equation describing the relationship between C-factor and
vegetation coverage based on the observations on runoff plots under natural and simulated rainfall
was introduced, which was expressed as follows [55]:

C =


1 f = 0

0.6508− 0.3436lg f 0 < f ≤ 78.3%

0 f > 78.3%

, (15)

where f is the vegetation coverage (%).
Erosion control practice factor (P) is the ratio between soil erosion in a slope with and without one

or more specific control practices [45]. These practices will probably change the flow path, direction,
and amount of surface runoff, resulting in the reduction of soil erosion [56]. SWCPs in China could be
classified into the following three major categories: biological, engineering, and tillage practices [27,47].
By far, contour farming and no-tillage were the most widely applied practices among different tillage
options; horizontal terracing was the most frequently used engineering practice; and hedgerow or
shrub planting was the most usually tested biological practice [27,28]. The efficacy of 15 most frequently
tested SWCPs on reducing soil and water erosion was assessed and used to estimate the P-factor [28].
If there is no significant control practice, the P factor is regarded as 1. Based on the above results, the
values of the P-factor are listed in Table 1.

2.3. Calibration and Validation

The calibration and validation method was based on the differences between measured and
modelled values. The Nash-Sutcliffe efficiency (NSE) and Root Mean Square Error (RMSE) were
adopted to assess the performance of SCN-CN and MUSLE as follows [57]:

RMSE =

√√
1
n

n∑
i=1

(Oi − Pi)
2, (16)

NSE = 1−

∑n
i=1(Oi − Pi)

2∑n
i=1

(
Oi −O

)2 , (17)

where Oi is the i-th observed value; Pi is the i-th predicted value; O is the average value of the entire
observations. RMSE is always positive, and a lower value close to zero means a good fit for the
data [58]. NSE ranges from negative infinity to one and the value closer to one denotes a higher model
accuracy. NSE > 0.4 is required for this study as the model performance evaluation standard.

3. Results and Discussion

3.1. CN and K in the Rainfall-Runoff-Erosion Model

Runoff occurs when rainfall is greater than soil absorption or infiltration. Rainfall resulting in
surface runoff and soil erosion is called erosive rainfall [59]. The observed rainfall and surface runoff

of 44 erosive rainfall events between 2014 and 2017 were used as reference data to calculate the CN
of the experimental plots with different SWCPs from January to December (Table 2). The CN values
averaged 26.6 among eight plots, varying from 19.2 in plots with Chinese Pine and fish-scale pitting
to 38.8 in bare slope. They were generally higher in summers or rainy seasons (May–October) with
intensive and frequent rainfalls. These results were consistent with those in some previous studies.
Soulis et al. [60] applied the SCS-CN method to analyze the direct runoff generation mechanism in
a Mediterranean experimental watershed in Greece and found a strong correlation between the CN
values obtained from measured runoff and the rainfall depth. The proposed two-CN system well
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described the CN-rainfall variation observed in natural watersheds, which could be attributed to the
spatial variability of soils and land cover in the watershed [61]. Xiao et al. [62] found CN values had
large differences, ranging from 15 in rangeland to 100 in bare rock land, for various land uses in the
Liudaogou watershed, which was also within the hilly region of the Loess Plateau. The bare slope with
large CN value indicated bare slope had more surface runoff and less infiltration [63]. Wang [44] also
reported CN values in the Loess Plateau, varying between 8.81 (λ = 0.00) and 75.27 (λ = 0.20), which
was closely related to the selected initial abstraction rate. The model with λ = 0.00 had the smallest
CN value and the largest potential maximum interception (S) in the watershed because this revision
ignored the initial abstraction before runoff and the antecedent soil moisture content.

Table 2. Curve number (CN) value of experimental plots with different soil and water conservation
practices (SWCPs) from January to December.

SWCPs A B C D E F G H

1 26.8 21.9 15.7 38.3 16.1 7.5 22.9 29.3
2 26.8 21.9 15.7 38.3 16.1 7.5 22.9 29.3
3 26.8 21.9 15.7 38.3 16.1 7.5 22.9 29.3
4 26.8 21.9 15.7 38.3 16.1 7.5 22.9 29.3
5 26.8 21.9 15.7 38.3 16.1 7.5 22.9 29.3
6 39.0 29.1 10.6 28.9 23.5 24.2 22.2 13.3
7 22.2 19.8 22.3 30.8 26.7 25.2 17.4 22.3
8 26.8 20.3 23.2 28.6 22.8 18.3 23.6 23.9
9 35.4 17.9 34.4 31.6 20.4 20.5 23.5 25.7

10 26.8 29.4 20.6 51.2 38.7 38.8 45.1 41.8
11 26.8 29.4 20.6 51.2 38.7 38.8 45.1 41.8
12 26.8 29.4 20.6 51.2 38.7 38.8 45.1 41.8

Average 28.9 23.7 19.2 38.8 24.2 20.2 28.0 29.8

Table 3 shows the values of soil erodibility factor (Kopt, t hm2 h hm−2 MJ−1 mm−1) of experimental
plots with different SWCPs, varying between 0.001 in plot B and 0.012 in Plot E. In previous studies,
Zhang et al. [64] calculated a set of erodibility values for main soils on the Loess Plateau based on the
data from several field stations and found that the K-factor for loess soils varied from 0.3 to 0.6 in
the American system and from 0.008 to 0.04 in the metric system. Zhang et al. [51] also proposed a
linear combination of the revised Kepic and KDg methods for soil erodibility estimation based on the
data from the Second Nation Soil Survey and the K value of 0.0163 t hm2 h hm−2 MJ−1 mm−1 was
obtained for loessial soils with slope gradient of 9%. Wang et al. [65] reported that previous equations
overestimated most of the K-factor and the KDg, and Knomo could be the only reliable method to be
applied directly to the Loess Plateau. The mean K values were 0.0321 t hm2 h hm−2 MJ−1 mm−1 in
Chinese water erosion regions and 0.0384 in Shanxi, which were close to the values of KDg (0.0411)
and Knomo (0.0451) but lower than Kepic values of 0.053 t hm2 h hm−2 MJ−1 mm−1 in this study. Soil
characteristics, such as soil texture and SOM, had significant impacts on soil erodibility [51,66]. The
soil in this study area had low SOM with an average of 1.01%, thus, the values of soil erodibility factor
could be overestimated for these plots when Kepic estimator was adopted to estimate K-factor.
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Table 3. Soil erodibility factor (K, t hm2 h hm−2 MJ−1 mm−1) of experimental plots with different SWCPs.

SWCPs A B C D E F G H

SAN (%) 20.4 19.2 24.3 15.3 13.5 17.1 22.1 17.9
SIL (%) 53.7 52.7 52 58.7 65.7 59.1 56.1 58.5

CLA (%) 27.3 20.2 9.1 16.8 17.8 16.9 10.9 18.3
SOM (%) 0.9 0.8 0.65 1.2 1.1 1.16 0.99 1.24
Dg (mm) 0.9 1.1 0.7 0.8 0.7 0.8 0.9 0.8

p 2 3 4 2 2 2 3 2
s 3 3 3 3 3 3 3 3

Knomo 0.040 0.041 0.047 0.043 0.053 0.045 0.047 0.044
Kepic 0.052 0.054 0.054 0.054 0.056 0.053 0.053 0.052
KDg 0.038 0.031 0.048 0.042 0.048 0.042 0.038 0.042
Kopt 0.002 0.001 0.009 0.005 0.012 0.006 0.006 0.005

3.2. Observed and Predicted Soil and Water Erosion

The calibration and validation results for the surface runoff and soil erosion are presented in Table 4.
The minimum RMSE between the observed (Oi) and predicted (Pi) soil erosion was achieved with
the empirical coefficients (a and b) of SWCPs in the range of 1.609–3.409 and 1.150–1.631, respectively.
The modeling performance of MULSE for soil erosion and SCS-CN for the surface runoff was good,
and the NSE values showed a positive efficiency for all experimental plots (NSE > 0.4). The surface
runoff was overestimated for the majority of severe runoff events on all experimental plots, and soil
erosion was underestimated for smaller runoff values and overestimated for heavy erosive events.
Model parameters and input data may lead to uncertainty in the simulation process. Slope gradient,
antecedent soil moisture, and rainfall intensity are crucial factors to predict surface runoff and soil
erosion [67]. In this study, only monthly rainfall was used as climatic input to the model. Rainfall
intensity and rainfall duration greatly influenced the amount of runoff, but they were not included
in this SCS-CN model [68]. The rainfall erosivity calculated using the Wischmeier model based on
monthly rainfall was higher than that calculated using a half-month model based on daily rainfall.
That could be attributed to a certain degree of deviation between high intensity and short duration
rainfall [49], which overestimated the soil erosion especially for heavy erosive events. Consequently,
the MUSLE model may overestimate the total soil erosion from eight experimental plots in this study.
Notably, the gravitational soil erosion was not considered in the MUSLE model of this study because
water-induced erosion was dominating in this area.
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Table 4. Root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) of observed and predicted surface runoff (Q, mm) and soil erosion (A, t hm−2 yr−1) from
experimental plots with different SWCPs.

SWCPs MULSE
Calibration Validation

Q A Q A

a b Observed Predicted RMSE NSE Observed Predicted RMSE NSE Observed Predicted RMSE NSE Observed Predicted RMSE NSE

A 3.109 1.621 1.38 1.35 0.65 0.72 4.28 3.52 5.04 0.54 1.01 1.21 0.66 0.65 9.97 10.75 8.31 0.65
B 3.409 1.631 0.82 0.84 0.28 0.81 2.04 1.55 1.59 0.93 1.14 1.44 0.82 0.58 11.86 12.24 8.39 0.46
C 2.849 1.231 1.33 1.21 0.66 0.58 11.5 8.66 6.6 0.75 1.38 1.94 0.87 0.58 28.48 27.42 8.05 0.88
D 1.681 1.15 1.6 1.76 0.47 0.92 15.9 15.86 19.51 0.53 1.72 2.15 1.11 0.74 38.44 46.43 14.53 0.89
E 1.609 1.233 1.19 1.26 0.65 0.82 6.67 6.83 6.71 0.73 1.54 1.74 0.88 0.76 25.28 24.3 15.44 0.57
F 3.023 1.288 1 1.18 0.49 0.83 7.44 7.54 7.22 0.65 1.34 1.54 0.97 0.67 21.4 26.98 14.56 0.7
G 2.509 1.319 0.96 1.15 0.4 0.74 11.7 7.54 10.73 0.54 1.16 1.42 1.11 0.43 22.34 28.5 19.51 0.43
H 2.559 1.258 1.01 1.15 0.48 0.83 4.68 4.27 4.6 0.72 1.18 1.64 1.12 0.41 15.61 15.15 12.8 0.48

Average 1.18 1.26 0.53 0.81 8.06 7.18 9.71 0.59 1.31 1.62 1.00 0.63 21.55 24.19 14.3 0.72
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3.3. Impact of Climate Change on Soil and Water Erosion

The impact of climate change on soil and water erosion is shown in Figure 1 in terms of the
relative difference in rainfall, rainfall erosivity factor, surface runoff, and soil erosion between the
historical climate (1986–2005) and the two RCP scenarios (RCP4.5 and RCP8.5) during 2020–2050.
Projections by RegCM4 showed that the annual average rainfall for the two scenarios during that
period were 909.6 and 922.6 mm, respectively, with an increase of 16% and 18% compared to historical
climate (785.0 mm), respectively. The result was consistent with the previous studies. Yellow River
Basin would be likely to experience rainfall increase in the projected scenarios [14]. Compared with
historical climate (1950–1999), GCMs projected a 4–18% and 23–37% increase in annual rainfall for
the region during 2010–2039 and 2070–2099, respectively [69]. Rainfall erosivity is influenced by
the amount, intensity, and duration of rainfall. Its temporal distributions have a strong relationship
with the erosive rainfall. Generally, more rainfall can cause larger rainfall erosivity [49]. The annual
averages of the rainfall erosivity for RCP4.5 and RCP8.5 in the years of 2020–2050 were 20,518.72
and 20,606.60 MJ mm hm−2 h−1 yr−1, respectively, with a slight increase of 1% and 7% compared to
historical climate (20,226.18 MJ mm hm−2 h−1 yr−1). These values were higher than those in previous
studies probably because the impact of high intensity and short duration rainfall on the Wischmeier
model was greater than that on the half-month model [49]. Annual surface runoff for RCP4.5 and
RCP8.5 emission scenarios showed a similar average, approximately 141 mm, during the period
2020–2050, which was 28% higher than that of the historical climate. However, annual soil erosion
was projected with the changes in the range of −96% to 235% and −92% to 448% for the two scenarios
compared to the historical climate, respectively. The large variations with years might be due to
the large intra-annual variability of rainfall and rainfall erosivity. For example, the rainfall depth
(around 725 mm) was approximately equal for 2040, 2048, and 2050 under RCP8.5 scenario, but the
rainfall erosivity and soil erosion in 2040 were over twice as much as the others. This was because
heavy rainfalls were more concentrated in rainy seasons and 57%, 40%, and 31% of total rainfall depth
occurred in July and August in 2040, 2048, and 2050, respectively. The surface runoff and soil erosion in
the rainy season (May–October) under future scenarios accounted for nearly 90% and 99% of the total
amount in a year, respectively. This was consistent with the results of Azari et al. [70] that nearly 75% of
the soil erosion occurred in the rainy season because of heavy rainfall. The frequency and intensity of
large storms may increase rainfall erosivity force and cause more surface runoff and soil erosion [69,70].
Water-induced soil erosion mainly resulted from soil particle detachment by the shearing force of
raindrops and overland flow, and the movement and transport by rain splash and runoff [71]. Surface
runoff and soil erosion generally increased with rainfall, but many other factors such as antecedent
rainfall and vegetation coverage also affected them [72]. Antecedent rainfall had a strong impact on the
generation of surface runoff and soil erosion on slopes during rainfall events. Surface runoff and soil
erosion on slopes with large antecedent rainfall may be higher than that without antecedent rainfall
because the antecedent rainfall could recharge and saturate surface fractures which usually reduce
surface runoff. Saturation excess runoff generally occurred when the rainfall intensity was higher
than soil infiltration rates [73]. Therefore, more heavy rainfall and runoff events in the rainy season
will result in more soil and water erosion. However, climate change may contribute to 14.3–31% of
streamflow change in north China [74,75], while human activities, such as land-use change and SWCPs,
would also be an important factor influencing runoff and soil erosion [68,76].

3.4. The Effect of Different SWCPs on Soil and Water Conservaion

Seven SWCPs and a bare slope without any SWCPs were studied using SCS-CN and MULSE
with RCP4.5 and RCP8.5 during 2020–2050 to quantify the effect of different SWCPs on soil and water
erosion under future climate change. The predicted surface runoff and soil erosion of experimental
plots are presented in Figure 2. The results showed the reduction rates of 15–40% for surface runoff and
35–67% for soil erosion under RCP4.5 and RCP8.5 scenarios during 2020–2050, respectively. This means
that SWCPs performed well for the slopes in terms of soil and water conservation. Previous studies
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also reported that more than 90% of the erosion resulted from the bare slopes without vegetation
cover, which was significantly higher than that on the slopes with vegetation cover [7,77]. Compared
with historical climate, under traditional tillage, the WEPP model (Watershed Erosion Prediction
Project) predicted a change of 49–112% and 29–79% for runoff, 31–167% and 2–81% for soil erosion
during 2010–2039 and 2070–2099, respectively [78,79]. However, conservation farming produced low
runoff and soil erosion. Therefore, it could reduce the adverse effect of future climate changes on
agro-ecosystems. Compared to traditional farming under the historical climate, conservation farming
could reduce runoff by −34–71% and 18–38% and decrease soil erosion by 26–77% and 56–68% during
2010–2039 and 2070–2099, respectively [69,78]. Moreover, the reduction rates of soil erosion by different
SWCPs were mostly higher than those of surface runoff because surface runoff was simulated by the
SCS-CN method which was closely related to rainfall. The response of soil erosion was nonlinear
with rainfall and was estimated by MULSE, which was affected by rainfall amount and intensity, the
soil moisture content in the early stage, soil physical properties, SWCPs, land use, and vegetation
coverage [77].
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Figure 1. Relative differences in rainfall (P), rainfall erosivity factor (R), surface runoff (Q), and soil
erosion (A) between the historical climate (1986–2005) and the two RCP scenarios (RCP4.5 and RCP8.5)
during 2020–2050.

The reduction rates of surface runoff and soil erosion varied among experimental plots with
different SWCPs (Figure 2). These SWCPs could reduce surface runoff and soil erosion because
the topography of the watershed could be changed to greatly delay surface runoff, improve rainfall
infiltration, and reduce the runoff discharge. A large proportion of rainfall can be retained by vegetation
and evaporate into the atmosphere, causing a significant decrease in the effective rainfall for runoff

generation [68]. Under the same rainfall conditions, plot A (shrub/Seabuckthorn + horizontal terracing),
B (grass + horizontal terracing), and H (forest/Chinese Pine + horizontal terracing) showed high
reduction rates of soil erosion (about 54, 68, and 67%, respectively), which were due to the high
vegetation cover (50.5–71.0%). It can be seen that plot A showed a lower reduction effect (about 15%) on
surface runoff than other plots, which was probably because a part of retained rainfall by shrubs flew
down the trunks or dropped from leaves to the surface quickly and produced secondary surface runoff

and soil erosion. Previous studies have shown that ecological factors (e.g., tree canopy, shrub and grass
coverage, litter depth, and woody debris) may affect the surface runoff and soil erosion. Specifically, the
size and erosive power of raindrops were influenced by tree canopy. Ground cover, such as short shrub,
grass, woody debris, and litter cover, offered a rough surface that reduced soil particle detachment,
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movement, and transport down the slope [72,80]. Therefore, stemflow and throughfall from tall forest
may cause more secondary soil erosion than short shrubs because of strong erosive power of raindrops
and less ground cover in this study.
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Figure 2. The reduction rates of different SWCPs for two scenarios (RCP4.5 and RCP8.5) during
the period of 2020–2050: (a) surface runoff (fQ, %) under RCP4.5 scenario; (b) surface runoff (fQ, %)
under RCP8.5 scenario; (c) soil erosion (fA, %) under RCP4.5 scenario; (d) soil erosion (fA, %) under
RCP8.5 scenario.

Water costs for sediment control (Rrs, mm (t hm−2 yr−1)-1) of seven SWCPs under two scenarios
(RCP4.5 and RCP8.5) during the period 2020–2050 are presented in Figure 3. The results showed that
Rrs was in the range of 0.35–3.13 and 0.34–1.90 under RCP4.5 and RCP8.5 scenarios during 2020–2050,
respectively. When reducing the soil erosion by similar quantities, plot A with the lowest Rrs, nearly
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0.41 mm (t hm−2 yr−1)−1, had smaller impacts on runoff, while plot C (forest/Chinese Pine + fish-scale
pitting) with the largest Rrs of 1.29 mm (t hm−2 yr−1)−1 reduced larger runoff compared to other SWCPs.
Considering the Rrs of individual SWCPs in the hilly loess region, Yan [81] showed that the Rrs slightly
varied among different SWCPs, with the order: shrub > deciduous broadleaved forest > evergreen
coniferous forest > fish-scale pitting > horizontal terracing > grass. It suggested that the combination of
forest and fish-scale pitting could result in a higher Rrs than a single SWCP, while horizontal terracing
would reduce Rrs when combined with shrub because Rrs simultaneously decreased with the increase
of rainfall, runoff, and soil erosion [82].
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4. Conclusions and Recommendations

SWCPs have obvious effects on reducing soil and water loss. The results of this study showed
that surface runoff and soil erosion were closely related to rainfall depth, rainfall intensity, and rainfall
erosivity. Surface runoff showed a 28% increase compared to historical climate, while soil erosion
presented large variations with years due to uneven distribution of rainfall and rainfall erosivity in
a year. Compared with bare slopes, the reduction rates were 15–40% for surface runoff and 35–67%
for soil erosion under RCP4.5 and RCP8.5 scenarios during 2020–2050, respectively. When reducing
the soil erosion by similar quantities, the combination of shrub and horizontal terracing had smaller
impacts on runoff compared to other SWCPs. Growing vegetation captured eroded sediment from
the upper part of the slopes. Moreover, vegetation growth stabilized the slope, which decreased
gravitational erosion [71]. In the long run, vegetation can help decrease surface runoff and soil erosion
to a safe level through improving soil chemical-physical properties and anti-erodibility [30]. However,



Sustainability 2020, 12, 934 15 of 18

compared to engineering practices, the effect of biological practices on soil erosion conservation might
be postponed because vegetation like trees, shrubs, and grass require a long period to adapt to the
changes in soil features, topography, and local climate [17]. Therefore, the combination of shrub and
horizontal terracing is the desired recommendation for controlling surface runoff and soil erosion
because this combination has smaller impacts on runoff when reducing the soil erosion by similar
quantities. The results of this study can be used to assess soil and water erosion, support small
watershed management, and preserve the ecosystem of erosive areas.
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59. Oğuz, I. Rainfall erosivity in north-central anatolia in turkey. Appl. Ecol. Environ. Res. 2019, 17, 2719–2731.
60. Soulis, K.; Valiantzas, J.; Dercas, N.; Londra, P. Analysis of the runoff generation mechanism for the

investigation of the SCS-CN method applicability to a partial area experimental watershed. Hydrol. Earth
Syst. Sci. Discuss. 2009, 6, 373–400. [CrossRef]

61. Soulis, K.; Valiantzas, J. SCS-CN parameter determination using rainfall-runoff data in heterogeneous
watersheds–the two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [CrossRef]

62. Xiao, B.; Wang, Q.; Fan, J.; Han, F.; Dai, Q. Application of the SCS-CN model to runoff estimation in a small
watershed with high spatial heterogeneity. Pedosphere 2011, 21, 738–749. [CrossRef]

63. Li, C.; Qin, J.; Li, J. Application of computational curve number to precipitation-runoff simulation in a typical
watershed in Chinese Loess Plateau. J. Arid. Land. Resour. Environ. 2008, 22, 67–70. (In Chinese)

64. Zhang, K.; Li, S.; Peng, W.; Yu, B. Erodibility of agricultural soils on the Loess Plateau of China. Soil Till. Res.
2004, 76, 157–165. [CrossRef]

65. Wang, B.; Zheng, F.; Guan, Y. Improved USLE- K factor prediction: A case study on water erosion areas in
China. Int. Soil Water Conserv. Res. 2016, 4, 168–176. [CrossRef]

http://dx.doi.org/10.5194/hess-16-3383-2012
http://dx.doi.org/10.5194/hess-11-1825-2007
http://dx.doi.org/10.1002/hyp.1223
http://dx.doi.org/10.1016/j.jhydrol.2009.09.051
http://dx.doi.org/10.1007/s12665-015-5136-6
http://dx.doi.org/10.1016/j.still.2018.04.004
http://dx.doi.org/10.1029/TR038i006p00889
http://dx.doi.org/10.3808/jei.201700384
http://dx.doi.org/10.1016/j.catena.2014.05.009
http://dx.doi.org/10.1016/j.jhydrol.2010.01.024
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.3808/jei.201700378
http://dx.doi.org/10.5194/hessd-6-373-2009
http://dx.doi.org/10.5194/hess-16-1001-2012
http://dx.doi.org/10.1016/S1002-0160(11)60177-X
http://dx.doi.org/10.1016/j.still.2003.09.007
http://dx.doi.org/10.1016/j.iswcr.2016.08.003


Sustainability 2020, 12, 934 18 of 18

66. Auerswald, K.; Fiener, P.; Martin, W.; Elhaus, D. Use and misuse of the K factor equation in soil erosion
modeling: An alternative equation for determining USLE nomograph soil erodibility values. Catena 2014,
118, 220–225. [CrossRef]

67. Cao, L.; Zhang, K.; Dai, H.; Liang, Y. Modeling interrill erosion on unpaved roads in the Loess Plateau of
China. Land Degrad. Dev. 2015, 26, 825–832. [CrossRef]

68. Guo, Q.; Han, Y.; Yang, Y.; Fu, G.; Li, J. Quantifying the impacts of climate change, coal mining and soil and
water conservation on streamflow in a coal mining concentrated watershed on the Loess Plateau, China.
Water 2019, 11, 1054. [CrossRef]

69. Li, Z.; Liu, W.; Zhang, X.; Zheng, F. Assessing the site-specific impacts of climate change on hydrology, soil
erosion and crop yields in the Loess Plateau of China. Clim. Chang. 2011, 105, 223–242. [CrossRef]

70. Azari, M.; Saghafian, B.; Moradi, H.R.; Faramarzi, M. Effectiveness of soil and water conservation practices
under climate change in the Gorganroud Basin, Iran. CLEAN - Soil Air Water 2017, 45, 1700288. [CrossRef]

71. Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation
at several levels. Catena 2002, 47, 133–149. [CrossRef]

72. Hartanto, H.; Prabhu, R.; Widayat, A.S.; Asdak, C. Factors affecting runoff and soil erosion: plot-level soil
loss monitoring for assessing sustainability of forest management. For. Ecol. Manag. 2003, 180, 361–374.
[CrossRef]

73. Peng, T.; Wang, S. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on
karst slopes in southwest China. Catena 2012, 90, 53–62. [CrossRef]

74. Wang, X.; He, K.; Dong, Z. Effects of climate change and human activities on runoff in the Beichuan River
Basin in the northeastern Tibetan Plateau, China. Catena 2019, 176, 81–93. [CrossRef]

75. Li, Y.; Liu, C.; Yu, W.; Tian, D.; Bai, P. Response of streamflow to environmental changes: A Budyko-type
analysis based on 144 river basins over China. Sci. Total Environ. 2019, 664, 824–833. [CrossRef]

76. Zare, M.; Mohammady, M.; Pradhan, B. Modeling the effect of land use and climate change scenarios on
future soil loss rate in Kasilian watershed of northern Iran. Environ. Earth Sci. 2017, 76, 305. [CrossRef]

77. Zheng, F. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 2006, 16, 420–427.
[CrossRef]

78. Zhang, X.; Liu, W.; Li, Z.; Zheng, F. Simulating site-specific impacts of climate change on soil erosion and
surface hydrology in southern Loess Plateau of China. Catena 2009, 79, 237–242. [CrossRef]

79. Zhang, X.; Liu, W. Simulating potential response of hydrology, soil erosion, and crop productivity to climate
change in Changwu tableland region on the Loess Plateau of China. Agric. For. Meteorol. 2005, 131, 127–142.
[CrossRef]

80. Montenegro, A.D.A.; Abrantes, J.; De Lima, J.; Singh, V.; Santos, T. Impact of mulching on soil and water
dynamics under intermittent simulated rainfall. Catena 2013, 109, 139–149. [CrossRef]

81. Yan, L. Runoff cost for sediment control of soil and water conservation practices at the plot’s scale on the
Loess Plateau. Master’s Thesis, Northwest A&F University, Yangling, China, 2008. (In Chinese)

82. Mo, L. Runoff cost of sediment control of soil and water conservation practices with hydrologic methods
in Beiluo River Basin. Master’s Thesis, Northwest A&F University, Yangling, China, 2008; pp. 15–18.
(In Chinese)

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.catena.2014.01.008
http://dx.doi.org/10.1002/ldr.2253
http://dx.doi.org/10.3390/w11051054
http://dx.doi.org/10.1007/s10584-010-9875-9
http://dx.doi.org/10.1002/clen.201700288
http://dx.doi.org/10.1016/S0341-8162(01)00180-1
http://dx.doi.org/10.1016/S0378-1127(02)00656-4
http://dx.doi.org/10.1016/j.catena.2011.11.001
http://dx.doi.org/10.1016/j.catena.2019.01.001
http://dx.doi.org/10.1016/j.scitotenv.2019.02.011
http://dx.doi.org/10.1007/s12665-017-6626-5
http://dx.doi.org/10.1016/S1002-0160(06)60071-4
http://dx.doi.org/10.1016/j.catena.2009.01.006
http://dx.doi.org/10.1016/j.agrformet.2005.05.005
http://dx.doi.org/10.1016/j.catena.2013.03.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Erosion Measurement 
	Rainfall-Runoff-Erosion Model 
	Regional Climate Model 
	SCS-CN Model 
	MULSE Model 

	Calibration and Validation 

	Results and Discussion 
	CN and K in the Rainfall-Runoff-Erosion Model 
	Observed and Predicted Soil and Water Erosion 
	Impact of Climate Change on Soil and Water Erosion 
	The Effect of Different SWCPs on Soil and Water Conservaion 

	Conclusions and Recommendations 
	References

