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Abstract: The creep deformation of recycled construction and demolition waste (CDW) filler is
an important factor affecting road performance. In this paper, a series of laboratory tests, including
a compaction test, sieving test, California bearing ratio (CBR) test, creep test and unloading test are
conducted on CDW filler. The engineering properties of different ratios of CDW mixture are systematically
analyzed, the CBR value of CDW filler meets the requirements of an embankment. The creep type of
CDW filler under a test load is stable creep, the results of the creep characteristics are analyzed from
a microscopic point of view. The filler with a 7:2:1 ratio (brick slag: concrete: mortar) has the densest
structure, which is dense and less porous, and the deformation is the smallest. Reasonable proportion
control is the key to reducing embankment deformation. The improved Burgers model, which can better
describe the creep characteristics of CDW filler, and the effects of load and ratio on the creep parameters
are analyzed using the equivalent creep compliance. This study is of great significance for the promotion
of CDW and meets the requirements of sustainable development.
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1. Introduction

With the continuous development of urbanization in China, a large amount of construction and
demolition waste (CDW) has been produced during the urbanization process. There were 1.5 billion
tons of CDW generated in 2015, and the output of CDW is increasing every year. CDW not only
occupies a large amount of land resources, but during the process of stacking and landfilling, leachate is
generated due to the erosion of rainwater and the soaking of surface water and groundwater, resulting
in the serious pollution of water resources and a reduction in soil quality [1]. At the same time, behind
the large-scale construction and improvement of infrastructure, there is an unfavorable situation in
which construction materials are in short supply.

Recycled aggregates are obtained by the crushing and screening of CDW, so research into the
behavior of these materials is of great significance. Barbudo et al. [2] analyzed the change in gradation
in recycled aggregates; the compacted mixture becomes dense due to particle breakage, which leads to
an improvement in its resilient modulus and bearing capacity [3–6]. Generally, recycled aggregates are
formed by the crushing of large machinery and, because of the lower density and greater porosity of
various recycled aggregates [7–9], the maximum dry density and strength of the recycled aggregate
is lower than that of the original aggregate [10,11]. At the same time, more and more scholars are
conducting research into the sustainability of construction waste. For instance, using recycled aggregate
produces high-performance concrete and the combination of fly ash, slag and silica fume can make up
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for the adverse effects of recycled aggregates [12–14]. When recycled aggregate is used to produce
recycled asphalt, Subhy et al. [15] and Menegusso et al. [16] have studied the effects of its content
and treatment method on fatigue performance. In addition, recycled aggregates are used for roadbed
fillers, Javier et al. [17] found that the bearing capacity of the recycled aggregates increased with time
in the structural layer, which is inconsistent with the trend of natural aggregates. Vegas et al. [18] and
Yin et al. [19] studied the properties of recycled concrete applied to an embankment and introduced its
permanent deformation characteristics.

The application of CDW materials to embankments has great economic and environmental
benefits, but the composition of recycled CDW material is complex, and its settlement after construction
is difficult to predict and control, therefore, a study into its creep characteristics and mechanisms is
urgently needed. The CDW mixture belongs to coarse-grained materials and the creep deformation
of coarse-grained materials can be divided into stable creep and unstable creep types, according to
the magnitude of stress [20,21]. The rheological curve of coarse-grained materials can be divided into
three stages: linear, decaying rheology, and stability [22]. With the increase in dam height, the particle
breakage of the rockfill in the rock dam increased significantly, and the particle breakage directly
changed the rockfill structure [23,24]. From their triaxial creep shear test, Jiang et al. concluded that
particle motion, rotation, and damage are the main causes of coarse-grained material deformation [25].
In addition to the time-dependent strain under a constant load, changes in the external environment
tend to have a large effect on creep deformation, especially as immersion in water causes the particles
to be lubricated and softened. Ciantia et al. and Zhao et al. [26,27] found that the additional strain
caused by wetting is mainly due to the decrease in contact friction coefficient, and the decrease in bond
strength is only a secondary effect. Deng et al. [28] discovered that, through water–rock interaction,
the microstructure of red-layer soft rock changed its state from dense to loose and porous.

Creep constitutive models are usually established to predict the time-dependent strain of coarse-grained
materials. Creep constitutive models are mainly divided into empirical models, mechanism-based models
and component models. By analyzing the creep test data, the empirical models establish the mathematical
relationship between creep deformation and time. For example, Kuwano et al., Pramthawee et al.,
and Zhou et al. [29–31] have all put forward different empirical creep deformation models to study the
deformation characteristics of rockfill. As a unique method, the mechanism-based constitutive model can
consider the development of cracks and the evolution of damage in rocks [32]. Tang et al. [33] proposed
a damage creep model, which can describe the accelerated creep stage by introducing the concept of damage
acceleration limit. The component models are based on a combination of standard elements, such as the
Hook spring, the Newton dashpot and the Saint-Venant plastic body. Justo and Durand [34] analyzed the
creep settlement deformation of earth-rock dams using the Merchant creep model. By combining the Burgers
model with plastic components, Li et al. [35] proposed a creep constitutive model to describe the creep
properties of layered rocks. The component model can flexibly describe different creep deformations, but the
model parameters are usually constant, and the mechanical parameters of the material tend to change with
time under different initial conditions. Asadzadeh et al. [36,37] constructed a nonlinear viscoelastic-plastic
constitutive model with seven parameters. When analyzing the creep strain of cement-modified expansive
soil, Cheng et al. [38] divided the plastic deformation into linear and nonlinear. Component models with such
certain parameters often have large errors; in order to overcome the shortcomings of the previous models in
modeling creep behavior, it is necessary to construct nonlinear models.

In summary, the research mainly centralizes the compressive strength, shear strength, resilient
modulus, bearing capacity and durability of recycled aggregates. However, limited information in
the literature was derived from the mechanical and creep properties of CDW filler, and studies on
creep deformation were mainly focused on various soils and rocks. Moreover, not many scholars
have emphasized the effect of ratio on creep properties, including loading and unloading deformation
under changes in brick slag content and concrete slag content. The road performance of CDW fillers
with different ratios is different, and the long-term deformation of the road is difficult to control and
predict. In order to explore the creep characteristics and internal mechanism of fillers with different
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ratios, a compaction test, sieving test, California bearing ratio (CBR) test and creep test were performed;
the properties of the total strain, void ratio, instantaneous strain, creep strain and unloading strain
were analyzed in detail, then the creep model that was consistent with the creep characteristics was
proposed, finally, the influencing factors of the creep parameters were discussed. This research can
help us to understand the behaviors of CDW fillers with different ratios and provide design references,
which is conducive to the recycling of CDW and a reduction in environmental pollution.

2. Materials and Methods

2.1. Test Materials

The Xi-Xian North Ring expressway is an important link in the traffic network of Shaanxi Province,
with a total length of 122.613 kilometers. Unlike all previous highways in China, its construction used
CDW as the embankment filler for the first time. Based on this eco-environmental demonstration
project, this research focuses on the differences in the properties of fillers with different proportions
through laboratory tests. When the CDW is sorted and the impurities are removed, concrete slag,
brick slag, and mortar slag can be obtained, then the CDW is crushed into particles of different
sizes (as shown in Figure 1), finally, mixing the three types of recycled aggregates in an appropriate
proportion creates the required CDW embankment filler.
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Figure 1. Brick slag, concrete slag, and mortar slag.

The CDW filler is randomly sampled from the material field for composition analysis; Table 1
lists the results of the composition. Brick slag, concrete slag, and mortar slag account for 35%, 40%
and 15% of the total mass, respectively, the other components are mainly broken brick and impurities;
brick slag, and concrete slag are the main components of recycled CDW filler. Table 2 lists the density
and water absorption of the three types of recycled aggregates. The density of concrete slag is the
largest, and the water absorption of brick slag is the highest. Considering the low content of mortar
slag, this research mainly analyzes the effect of the proportion of concrete slag and brick slag on the
performance of the filler. The concrete slag has high strength and acts as the skeleton, brick slag is
easily broken and fills in the pores between concrete slag. With changes in brick slag and concrete slag
content, the performance of the mixture may show a large difference, and the proportion of brick slag
in the CDW is large—the ratios of the samples used in the following test are set as 4:5:1, 5:4:1, 6:3:1,
and 7:2:1 (brick slag: concrete slag: mortar slag), and pure brick slag is selected as the comparison.
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Table 1. Field mass ratio of recycled construction and demolition waste (CDW) filler.

Sample Brick Slag
(%)

Concrete Slag
(%)

Mortar Slag
(%)

Others
(%)

Sample 1 33 44 14 9
Sample 2 35 45 13 7
Sample 3 34 35 20 11
Sample 4 36 34 20 10

Table 2. Density and water absorption of the recycled aggregates.

Recycled Aggregates Concrete Slag Mortar Slag Brick Slag

Density (g/cm3) 2.57 2.01 1.61
Water absorption (%) 2.4 11.1 21.5

2.2. Compaction Test

According to the Transportation Industry (JTG) E40–2007 [39], the dense-graded mixture is compacted in
three layers. After compaction, the sample has an inner diameter of 15.2 cm, a height of 12 cm, and a volume
of 2177 cm3. Figure 2 shows the relationship between water content and dry density; the optimum moisture
content and maximum dry density of different ratios can be obtained, as shown in Table 3. Brick slag has low
density and a high water absorption—as the content of brick slag increases, the optimum moisture content
increases and maximum dry density decreases.
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Figure 2. Relationship between water content and dry density: (a) test of first group; (b) test of
second group.

Table 3. Optimum moisture content and maximum dry density.

Ratio
Optimum Moisture Content (%) Maximum Dry Density (g/cm3)

First Group Second Group Average First Group Second Group Average

4:5:1 8.7 9.3 9.0 1.69 1.69 1.69
5:4:1 10.8 11.4 11.1 1.66 1.64 1.65
6:3:1 14.6 14.2 14.4 1.58 1.59 1.59
7:2:1 14.8 15.6 15.2 1.57 1.57 1.57

Brick slag 16.6 16.2 16.4 1.45 1.44 1.45
3 The ratio refers to brick slag: concrete slag: mortar slag.
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2.3. Sieving Test

The properties of the CDW filler are very dependent on the ratios, mainly due to problems of
gradation. In addition to the compaction test and CBR test, we also conducted sieving test before and
after compaction. The test results are shown in Table 4. The uniformity coefficient (Cu) reflects the
particle size distribution of the material—if the Cu is too large, it means that the soil may be missing
the intermediate particle size and the gradation is poor. The curvature coefficient (Cc) is an index of the
overall shape of the screening curve, the engineering requirement is that the Cu is greater than five and
the Cc is between one and three. From the screening results, the grading of differently proportioned
samples basically meets the engineering requirements. The concrete slag content of the sample with
a 4:5:1 ratio is high, the concrete slag is not easily broken and acts as a skeleton, so the particle size is
relatively large after compaction and the Cu is small. As the concrete content decreases, the Cu first
increases and then decreases. The particle size of the single brick slag sample is small after compaction.
Note that the Cc of the lower layer is close to three.

Table 4. Screening test results of different proportions after compaction.

Ratio Layer d60 d30 d10 Cu Cc

4:5:1
Upper layer 25.6 11.2 4.0 6.4 1.2
Middle layer 24.6 11.4 2.8 8.8 1.9
Lower layer 23.8 12.3 4.9 4.8 1.3

5:4:1
Upper layer 25.6 10.4 2.1 12.2 2.0
Middle layer 23.0 10.1 2.1 11.0 2.1
Lower layer 23.0 10.9 2.3 10.0 2.2

6:3:1
Upper layer 25.6 10.4 2.1 12.2 2.0
Middle layer 23.0 10.1 2.1 11.0 2.1
Lower layer 23.0 10.9 2.3 10.0 2.2

7:2:1
Upper layer 20.6 10.2 2.1 9.8 2.4
Middle layer 18.1 8.8 2.2 7.8 1.9
Lower layer 19.8 10.2 2.2 8.2 2.2

Brick slag
Upper layer 19.6 10.4 2.2 8.9 2.5
Middle layer 17.2 9.0 2.1 8.2 2.2
Lower layer 18.8 10.4 2.0 9.4 2.9

4 The ratio refers to brick slag: concrete slag: mortar slag.

2.4. CBR Test

A CBR test is used to assess the carrying capacity of CDW mixture, and the detailed CBR test is
carried out based on JTG E40–2007 [39]. The samples with different ratios are compacted in layers,
then the samples are immersed in water for 4 days and four nights. After the swelling capacity of
the samples is measured, the penetration test is carried out to analyze the CBR value. The control
parameters are shown in Equations (1) and (2):

Swelling capacity =
l2−l1

Height of samples
× 100[34] (1)

where l1 is the initial record value of the dial indicator before the samples is immersed, mm; l2 is the
record value after the samples is soaked in water for 4 days, mm.

CBR =
p

7000
× 100[34] (2)

where CBR is bearing ratio when the penetration is 2.5 mm, %; p is the unit pressure, kPa.
The results of the CBR tests are shown in Table 5. Although the strength of the brick slag is small,

the CBR value does not decrease as the brick slag content increases, and the CBR value of the samples with
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a 5:4:1 ratio is the largest and that of the pure brick slag is the smallest. According to JTG F10-2006 [40],
the minimum CBR value of embankment fillers is required (see Table 6). The CBR value of recycled
CDW filler is between 40.24% and 98.85%, which fully meets the requirements of embankment, and the
amount of water swelling is extremely small.

Table 5. Results of the California bearing ratio (CBR) tests.

Ratio Compaction
Work (kJ/m3) Sample Swelling

Capacity (%) Average (%) CBR
(%) Average (%)

4:5:1

2677.2

1 0.0046
0.0049

77.27
79.972 0.0034 84.15

3 0.0067 78.48

5:4:1
1 0.0109

0.0097
96.32

97.612 0.0166 97.71
3 0.0017 98.82

6:3:1
1 0.0083

0.0084
86.48

89.722 0.0085 87.84
3 0.0083 94.83

7:2:1
1 0.0025

0.0022
82.23

80.622 0.0017 80.16
3 0.0025 79.48

Brick slag
1 0.0028

0.0026
40.24

42.632 0.0030 42.03
3 0.0021 45.62

5 The ratio refers to brick slag: concrete slag: mortar slag.

Table 6. Requirements of minimum CBR and maximum particle size for embankment fillers.

Position of Filler Application
(Below the Top of Roadbed)(m)

Minimum CBR (%)
Maximum

Particle (mm)Expressway and First
Class Highway

Second Class
Highway

Third and Fourth
Class Highway

Fill
embankment

Upper roadbed
(0-0.30) 8 6 5 100

Lower roadbed
(0.30-0.80) 5 4 3 100

Upper
embankment

(0.80-1.50)
4 3 3 150

Lower
embankment

(>1.50)
3 2 2 150

Cut
embankment

0-0.30 8 6 5 100
0.30-0.80 5 4 3 100

2.5. Creep Test

In order to study the long-term deformation characteristics of different proportioning fillers,
the creep test is mainly carried out in an unfavorable saturated state, and the compression creep
equipment which can allow samples to be under saturated conditions is designed to guarantee the
test (see Figure 3). The test instrument consists of a steel sheath, a bearing plate, a loading platform,
an anti-inclination device and a dial gauge. The dial gauge can be accurate to 0.001 mm to meet the
accuracy of the test. During the test, the required weight is directly applied to the loading platform.
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In order to simulate the load at the different embankment depths of the project, the test is loaded in
five levels. According to the self-weight of the pavement structure layer, the first level load is calculated
to be 38.59 kPa, the CDW embankment depth is 3.54 m, and the loads of other levels are calculated
according to the weight of the recycled filler, as shown in Table 7.

Table 7. Applied load.

Loading Level Load
(kPa) Simulated Embankment Depth (m)

1 38.59 0.000
2 55.14 0.885
3 71.68 1.770
4 88.22 2.655
5 104.76 3.540

The ratios of samples used in the creep test are 5:4:1, 7:2:1, and single brick slag. According to the
compaction test and CBR test, the maximum dry density of the recycled CDW samples with a 5:4:1 ratio
is similar to the samples with a 4:5:1 ratio, however, the CBR value of samples with a 5:4:1 ratio is larger
than that of samples with a 4:5:1 ratio, so samples with a 5:4:1 ratio is firstly selected. The single brick
slag has the smallest CBR value and dry density, which is selected as the comparison. Finally, a 7:2:1
ratio with less recycled concrete is selected. Because the unfavorable state can better reflect the creep
properties of different proportions, this research mainly centralizes the saturated tests. The saturated
tests are carried out under five load levels, and the natural tests under the first and second load levels are
selected as the criterion; a total of 21 samples are prepared.

The samples are prepared according to the field compactness, which was 95%. Firstly, the compacted
samples are placed in the steel sheath and, if saturated tests are to be performed, water is added to the
steel sheath until the sample is immersed. After 96 hours, it is considered that the sample is in a saturated
state. Finally, the load is applied and the deformation of the sample is recorded, as shown in Figure 4.

Half an hour after loading, the deformation is recorded as instantaneous deformation, record
three times a day within five days after the start of the test, once a day from 5 days to 3 months, once
every 3 days from 3 months to 6 months, once a week after 6 months. For samples under saturated
condition, water must be added to the steel casing periodically to keep samples saturated.
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3. Results

Embankment deformation usually lasts for several years, however, the tests under natural
conditions are carried out for about 60 days. Considering that the creep mechanism of the samples’
under saturated conditions is complex and the time to reach stability is long, we conducted continuous
observations to further understand the creep characteristics, which lasted for about 700 days; then,
the samples were unloaded to analyze the deformation characteristics of the CDW filler. The overall
conceptual framework is shown in Figure 5 below.
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Figure 5. The overall conceptual framework.

3.1. Analysis of Total Strain

The stress–strain curves and unloading curves of the samples under natural conditions and
saturated conditions are plotted on a graph—the top axis represents the test time under saturated
conditions, and the bottom axis represents the test under natural conditions, which can better compare
the regeneration under different conditions, as shown in Figure 6. It can be seen that the creep strain
of the CDW filler under test stress tends to be stable with time, which belongs to stable creep, and
total deformation can be divided into instantaneous deformation and creep deformation. It can be
seen from Figure 6 that under the first level and the second level load, the creep strain under saturated
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conditions is much larger than that under natural conditions. Water has a significant impact on the
deformation of recycled CDW filler.
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Figure 6. Relationship of the total strain and time: (a) 5:4:1 ratio; (b) 7:2:1 ratio; (c) single brick slag.

Figure 7 shows the relationship between total strain and ratio. It can be seen that, under the same
load, the total strain of the samples with a 7:2:1 ratio is the smallest, the total strain of the single brick
slag is the largest, and the strain of the sample with a 5:4:1 ratio is between the two. The strength
of the mortar is low, but the proportion of mortar slag is small, so the effect on deformation is small.
Therefore, the main consideration is the influence of brick slag and concrete slag; the brick slag has
low strength, and the particles will break, compact, rotate, and slide after being loaded. The concrete
has high strength and hardly breaks under the same load, the concrete slag acts as the skeleton in
the mixture. Furthermore, Li et al. used a CT scan to observe the internal microstructure of the
mixture [41,42], the image scanned by CT is a grayscale image, and the black parts indicate the pores
of the sample, as shown in Figure 8. For the recycled aggregate used in this paper, the concrete slag
has a high strength and acts as a skeleton in the mixture, while the brick slag and the mortar slag are
easily broken, and the broken parts fill the gap between the concrete skeletons.
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Figure 8. Internal structure of CDW scanned by CT: (a) porous structure; (b) dense structure.

3.2. Analysis of Void Ratio

The analysis of the void ratio of the samples can help us to further understand and verify the
deformation mechanism of recycled CDW filler. The void ratio of the samples can be obtained by the
following Equations (3)–(5):

e0 =
ρs(1 + 0 .01w0)

ρs
−1 (3)

where e0 is initial void ratio, ρs is particle density, g/cm3, w0 is initial water content (%), ρ0 is initial
density (g/cm3).

si =
∆hi
h0

(4)

where i is time (h), ∆hi is deformation when time is i (mm), h0 is the initial height of the samples (mm).

ei= ei − (1 + ei)×si (5)

where si is unit deformation, ei is void ratio when time is i.
Figure 9 shows the relationship between the time and void ratio of the creep test, the top axis

represents the time under a natural test, and the bottom axis represents the time under a saturated
test. As time goes on, the void ratio of samples gradually decreases, that is, samples gradually become
dense. The void ratio of the saturated samples varies sharply in the earlier period—water not only
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softens the particles, but also reduces the friction between the particles, ultimately promoting the
rearrangement of the particles. In general, as the brick slag content increases, the final void ratio of
samples gradually decreases. The brick slag content of samples with a 5:4:1 ratio is small; brick slag
cannot fill in the concrete skeleton well, and the void ratio is large, but the concrete strength is high,
so skeleton is not easily broken and the void ratio changes are relatively small. Brick slag is sensitive to
changes in load, as the load increases, the brick slag breaks and the sample is compacted.
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Figure 9. Relationship between time and void ratio: (a) 5:4:1 ratio; (b) 7:2:1 ratio; (c) single brick slag.

3.3. Analysis of Instantaneous Strain

When the load is applied to the compacted specimen, the equilibrium state between the particles is
broken and the instantaneous deformation occurs due to the fragmentation, slippage and rearrangement
of the recycled particles. Figure 10 shows the relationship between instantaneous strain and ratio.
Under the same load, the instantaneous strain of the samples under natural conditions is much smaller
than the samples under saturated conditions, as water greatly accelerates the rate of slippage and
the filling of particles, and the instantaneous strains of the two conditions differ greatly. The larger
the load, the greater the instantaneous strain of the sample. The instantaneous strain of the different
ratios is also quite different; under the same load, the instantaneous strain of the samples with a 7:2:1
ratio is almost the smallest, and the single brick slag differs greatly under different conditions and
loads, as brick slag has a low strength and is easily broken, and the deformation is unstable without
the support skeleton. Compared with Figure 6, it can be seen that the instantaneous strain accounts for
65%–95% of the total strain. In order to reduce the settlement of the embankment, the compactness
during construction should be strictly checked.
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Figure 10. Relationship between the instantaneous strain and ratio.

3.4. Analysis of Creep Strain

After the instantaneous strain, the sample enters the stage of creep deformation, which takes
a long time. Referring to the creep stability criterion of other coarse-grained materials [29–31], it is
considered that the creep deformation is stable when the axial strain is not more than 5×10−4 mm for
one hour. After the creep deformation of recycled CDW filler reaches the stable standard, continuous
observation is carried out, and the observation of saturated samples lasted about 700 days.

Through the processing of the data, the relationship between creep strain and time can be obtained,
as shown in Figure 11. It can be seen that the creep strain has a decelerating creep stage and a stable creep
stage. At the beginning, creep develops rapidly, controlled by the slippage rate of particles, the filling
and rearrangement rate of particles gradually slows down, and the deformation rate also slows down.
The creep properties of recycled CDW filler are related to density, material ratio, particle shape, gradation,
load and external environment.

Figure 12 shows the relationship between creep strain and ratio. Under the same load, the creep
strain of the samples with a 7:2:1 ratio is the smallest and the single brick slag is the largest. In the
instantaneous deformation stage, most of the deformation has occurred, and the samples are in a relatively
balanced state; the creep deformation is mainly in the small range of slippage and dislocation of particles.
Based on the original balance, the particles are slightly adjusted. The relative position of the particles in
the sample with a 7:2:1 ratio is stable, the scope of further adjustment is small, and the creep strain is also
the smallest. The strength of brick slag is low, the sample with a 5:4:1 ratio has more pores. Overall,
the creep strain of the recycled CDW sample accounts for about 5%–35% of the total strain, which varies
according to the ratio, load and water environment. For the embankment filled with recycled CDW filler,
the post-construction settlement cannot be ignored.
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Figure 11. Relationship between the creep strain and time: (a) 5:4:1 ratio; (b) 7:2:1 ratio; (c) single
brick slag.
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3.5. Analysis of Unloading Stain

The creep type of CDW filler under atest load belongs to stable creep. The total strain includes
instantaneous strain ε0 and creep strain εc, and instantaneous strain ε0 includes instantaneous elastic
strain ε0e and instantaneous plastic strain ε0p, creep strain εc is composed of viscoelastic strain εce and
viscoplastic strain εcp.

ε = ε0e+ε0p+εce+εce (6)

Through the unloading test, the instantaneous elastic strain, viscoelastic strain, and plastic strain
of the sample can be clearly recorded, and then the instantaneous plastic strain and viscoplastic strain
of the sample can be obtained, as shown in Table 8. It can be found that, under saturation and natural
tests, the instantaneous elastic strain, the instantaneous plastic strain and viscoplastic strain of the same
ratio basically increase with the stress, while viscoelastic strain decreases. Under the load, the fracture
and filling of the particles make the filler form an embedded framework; the deformation is mainly
plastic (irreversible) deformation.
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Table 8. Different types of strain.

Ratio Condition σ (kPa) ε (%) ε0 (%) εc (%) ε0e (%) ε0p (%) εce (%) εcp (%)

5:4:1
Saturated test

38.59 1.686 1.574 0.111 0.060 1.514 0.095 0.016
55.14 1.811 1.644 0.167 0.061 1.583 0.088 0.078
71.68 1.909 1.653 0.256 0.065 1.588 0.079 0.177
88.22 1.979 1.656 0.324 0.067 1.589 0.073 0.251
104.76 2.076 1.697 0.379 0.072 1.624 0.066 0.313

Natural test
38.59 0.168 0.065 0.103 0.012 0.053 0.009 0.094
55.14 0.223 0.090 0.133 0.015 0.075 0.008 0.125

7:2:1
Saturated test

38.59 0.721 0.613 0.108 0.025 0.587 0.025 0.083
55.14 0.794 0.682 0.112 0.028 0.654 0.020 0.091
71.68 0.847 0.728 0.119 0.030 0.698 0.015 0.104
88.22 0.918 0.784 0.134 0.032 0.752 0.012 0.121
104.76 1.061 0.917 0.144 0.035 0.882 0.013 0.131

Natural test
38.59 0.150 0.052 0.098 0.008 0.044 0.006 0.092
55.14 0.192 0.082 0.110 0.008 0.074 0.007 0.102

Brick
slag

Saturated test

38.59 0.878 0.537 0.341 0.027 0.510 0.038 0.304
55.14 0.998 0.691 0.306 0.030 0.661 0.035 0.271
71.68 1.865 1.348 0.517 0.057 1.291 0.034 0.483
88.22 2.259 1.676 0.583 0.066 1.611 0.033 0.550
104.76 2.490 1.876 0.614 0.072 1.804 0.028 0.586

Natural test
38.59 0.257 0.132 0.125 0.011 0.121 0.010 0.115
55.14 0.461 0.201 0.260 0.016 0.185 0.016 0.243

8 The ratio refers to brick slag: concrete slag: mortar slag.

3.6. Creep Model and Parameters

The physical meaning of the component model is relatively clear, the creep type of CDW samples with
different ratios is stable creep, and the deformation caused by the fragmentation, slippage or rearrangement
of the recycled particles is mainly irreversible. The Burgers model produces instantaneous elastic recovery
and viscoelastic recovery after unloading and retains permanent residual strain. According to Sun’s
suggestion, the Burgers model is used to calculate the creep deformation of the CDW embankment
filler [43].

The Burgers model connects Kelvin model and a Maxwell models in a series (i.e., Burgers=(H-N)
||(H||N), where H is the Hook spring and N is the Newton dashpot). Its mechanical model is shown in
Figure 13, the creep and unloading curves are shown in Figure 14 and the creep constitutive equation
is shown in Equation (7):

σ+

(
η1

E1
+
η1 + η2

E2

)
.
σ+

η1η2

E1E2
σ = η1

.
ε+

η1η2

E2
ε (7)

where σ is stress, ε is strain, t is time, E1, E2, η1 and η2 are model parameters.
Solve the differential equation, the Equation (8) is obtained at the σ = σ0:

ε(t) = σ0

[
1

E1
+

1
η1

t+
1

E2

(
1− e−

E2
η2

t
)]

(8)

where σ0 is a certain stress.
Creep compliance is shown in Equation (9):

J(t) =
1

E1
+

1
η1

t+
1

E2

(
1− e−

E2
η2

t
)

(9)

The loading deformation of CDW filler includes four parts: instantaneous elasticity, instantaneous
plasticity, viscoelasticity, and viscoplasticity. In the Burgers model, σ0/E1 represents the instantaneous
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elastic strain after loading and unloading, which can be used to simulate the instantaneous elastic
strain ε0e of the filler. The viscoelastic strain can be completely recovered with time, so the viscoelastic
strain curve and the unloaded elastic recovery curve take the same path, and the viscoelastic strain εce

can be obtained by sorting the elastic recovery curve during unloading, which can be simulated by the
Kelvin body in the Burgers model.
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There are a lot of pores in the CDW sample and, at the moment of load application, the sample
becomes compacted with the crushing of the aggregates; this phenomenon appears as the instantaneous
plastic deformation on a macro scale. The research shows that the instantaneous plastic deformation
is a linear function of the stress level, and it can also be found from Table 7 that the instantaneous
plastic strain increases with the stress. Therefore, an improved Hook model (see Figure 15) that reflects
instantaneous plastic deformation ε0p is used, and its creep equation is shown in Equation (10):

ε0p(t)= σ0/E3 (10)
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For Equation (8), when t→ +∞ , Equation (11) can be obtained:

ε(t) = σ0

[
1

E1
+

1
E2

+
1
η1

t] (11)

The σ0t/η1 increases linearly with time, and it represents plastic deformation in the Burgers model,
which is caused by the fragmentation, slippage and rearrangement of recycled CDW particles. From
the experimental analysis, it can be known that the rate of fragmentation and slippage of CDW particles
changes with the load and the deformation gradually stabilizes with time, which is inconsistent with
the trend of σ0t/η1. In order to characterize the viscoplastic strain εcp, η1 can be considered to be
a nonlinear viscous body related to stress and time (see Equation (12)):

η1(σ, t)= η0σ
atb (12)
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where η0 is the initial viscosity coefficient; a and b are indices of stress and time, respectively.
Take Equation (12) into Equations (7) and (8), then add Equation (10) (i.e., ε0p), the creep equation

of the improved Burgers model can be obtained, and its model is shown in Equation (13) and Figure 16.

ε(t) = σ0

[
1

E1
+

1
E2

(1− e−
E2
η2

t
)

1
E3

+
1

η0σatb−1

]
(13)
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Figure 16. Improved Burgers model.

The creep deformation under saturated conditions is fitted, and the Levenberg- Marquardtleast square
method is used. The fitting results of the improved Burgers model are shown in Figure 17, the fitting
parameters are shown in Table 9. The fitted correlation coefficients (R2) are all greater than 0.9, the fitting
curves are closer to the measured curves in shape and quantity than the Burgers model, and the correlation
coefficient of the modified Burgers model is obviously improved, which shows that the Burgers model
with the non-linear viscous body η1(σ, t) is most suitable for describing the creep characteristics of the
recycled CDW embankment filler.
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Figure 17. Fitting results of the improved Burgers model: (a) 5:4:1 ratio; (b) 7:2:1 ratio; (c) single
brick slag.
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Table 9. Fit parameters of the improved Burgers model.

Ratio σ0
(kPa)

E1
(kPa)

E2
(kPa)

η1
(kPa·h)

E3
(kPa)

η0
(kPa·h) a b R2

5:4:1

38.59 6.42e2 4.35e2 2.10e3 25.48 1.17 2.84 0.72 0.9974
55.14 9.01e2 6.73e2 3.64e3 34.83 1.02 1.93 0.89 0.9780
71.68 1.10e3 9.60e2 4.61e3 45.14 1.00 1.45 0.98 0.9741
88.22 1.33e3 1.27e3 7.24e3 55.52 1.00 1.37 0.97 0.9622
104.76 1.45e3 1.68e3 8.28e3 64.49 1.00 1.25 1.00 0.9264

7:2:1

38.59 1.52e3 4.35e2 2.10e3 65.71 1.03 2.35 0.75 0.9967
55.14 1.98e3 6.73e2 3.64e3 84.27 1.02 1.93 0.86 0.9916
71.68 2.39e3 9.60e2 4.61e3 102.72 1.01 1.83 0.86 0.9994
88.22 2.78e3 1.27e3 7.24e3 117.33 1.01 1.77 0.86 0.9971
104.76 2.99e3 1.68e3 8.72e3 118.77 1.02 1.88 0.78 0.9988

Brick slag

38.59 1.41e3 1.10e3 6.25e3 75.71 1.00 1.48 0.94 0.9499
55.14 1.85e3 1.69e3 1.03e4 83.36 1.00 1.40 0.97 0.9379
71.68 1.25e3 2.23e3 2.46e4 55.54 1.01 1.24 0.97 0.9514
88.22 1.34e3 2.80e3 4.95e4 54.78 1.01 1.24 0.95 0.9739
104.76 1.46e3 4.00e3 6.53e4 58.06 1.00 1.17 0.97 0.7743

9 The ratio refers to brick slag: concrete slag: mortar slag.

3.7. Influencing Factors of Creep Parameters

In order to macroscopically analyze the creep characteristics of the recycled CDW embankment
filler, the creep compliance J(t) of the improved Burgers model is used, as shown in the following
Equation (14). The creep deformation of CDW fillers in saturated state has already reached the stable
standard at 7200 h, selecting t0 as 7200 h and substituting the fitting creep parameters into Equation (14),
the value of equivalent creep compliance J(t0) is obtained, which is a comprehensive indicator of
the creep parameters under different ratios and loads. It can also be known that the larger the J(t0),
the stronger the creep effects of CDW embankment filler under the initial conditions, and the larger the
deformation. The smaller the J(t0), the weaker the creep effects, and the smaller the deformation.

J(t) =
1

E1
+

1
E2

(1− e−
E2
η2

t
)

1
E3

+
1

η0σatb−1
(14)

The load applied in this paper simulates the axial load at the different depths of the embankment.
Figure 18 shows the relationship between the equivalent creep compliance J(t0) and the load. The J(t0)

of the samples with 5:4:1 and 7:2:1 ratios decreases with the load. When the load is large, the rate
of slippage, rotation and fragmentation of the particles increases and the time of the deformation
stabilization decreases. As a result, the creep effects weaken as the load increases, that is, the deeper
the filler is buried, the weaker the creep effects are. Under the same load increment, the J(t0) value of
the sample with a 5:4:1 ratio decreases at nearly the same rate, while that of the sample with a 7:2:1
ratio changes greatly. The content of brick slag in the 7:2:1 ratio sample is higher, and the brick slag
is easily broken when the load is large. Although the deformation of the 7:2:1 ratio sample is small,
the creep effect is greatly affected by the load. The J(t0) value of single brick slag decreases with the
load at the first, but a sudden change occurs when the load is 55 kPa. There is no concrete slag acting
as skeleton, the structure of single brick slag is gradually destroyed with the increase in load, that is,
if the filler is single brick slag, the fillers below the middle of the embankment are destroyed.
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Recycled CDW filler is mainly composed of concrete slag, brick slag and mortar slag, and its ratio
is the main factor affecting creep characteristics. It can be seen, from Figure 19, with the increase in
brick slag content, the J(t0) value firstly decreases and then increases. Concrete slag has a high strength
and acts as the skeleton, but when broken brick slag is used to fill in the concrete skeleton, a porous
structure is formed by the large proportion of concrete slag in the 5:4:1 ratio sample and there are
more pores, so the creep effects are strong. As for the 7:2:1 ratio sample, the broken brick slag is better
filled in the pores to form a dense structure, which results in relatively weak creep effects. Therefore,
a reasonable increase in brick slag content can reduce the creep effects of recycled CDW embankment
filler and reduce the post-construction settlement of the embankment.Sustainability 2020, 12, 1924 19 of 23 
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4. Discussion

In this study, the application of CDW filler in an embankment was systematically tested and
analyzed; at present, there is still little research on the relationship between the ratio of brick slag,
concrete slag and mortar slag and the engineering performance of the filler, so it is necessary to consider
a reasonable sample design and test content to ensure the adequacy of research results. Due to the
fact that brick slag accounts for a large proportion of CDW and has the characteristics of low density,
low strength and high water absorption, we have set the brick slag content of the test samples to 40%, 50%,
60%, 70% and 100%. Firstly, basic tests for compaction, screening and CBR are carried out. Although the
maximum dry density decreases with the brick slag content and the optimum moisture content increases,
the gradation performance (based on Cc and Cu) increases first and then decreases with the brick slag
content, and the CBR value is similar. Including more concrete slag is not necessarily better; instead,
properly increasing the content of brick slag can improve the gradation and strength of the mixture.
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The experimental results are in line with the results of our research on the microscopic aspect [41,42].
Based on the CT scan, we found that when the content of concrete slag is high, the interior of the filler is
porous, and as the content of brick slag increases, the porosity decreases, that is, the mixture changes
from a porous structure to a dense structure.

Furthermore, the long-term deformation test was performed for about 700 days to observe
the compression deformation, and mainly focused on the most unfavorable state of saturation.
The deformation of the recycled CDW filler in the saturated state under a low load is about five to seven
times the deformation in the natural state. Vegas et al., Liu et al., and Brantut et al. indicated that the
compression deformation is mainly due to the fragmentation, slippage or rearrangement of the recycled
particles [23–25]. Water has a significant impact on the deformation of recycled CDW filler, especially
when the brick slag content is large. On the one hand, the increase in moisture leads to softening
and a strength reduction in the recycled particles, and the particles are more easily broken; on the
other hand, the friction coefficient between particles decreases, and the particles are more likely to slip
and rearrange at the same stress level. Eventually, these factors lead to increased deformation [26,27].
Thus, special attention must be paid to the waterproof and drainage design of the embankment when
increasing the brick slag content.

From the perspective of the ratios, the samples with a 7:2:1 ratio had the smallest total strain,
followed by the samples with a 5:4:1 ratio. Due to the high proportion of concrete slag in the 5:4:1
samples, broken brick slag cannot fill in the skeleton formed by concrete slag well, as there are many
pores, the mixture has a porous structure and, when an upper load is applied, the pores are easily
compressed and can cause deformation. In the samples with a 7:2:1 ratio, the broken brick slag slipped
and filled in the skeleton formed by the concrete slag, meaning that the material is dense and has a dense
structure, and that the strain is the smallest. Therefore, the reasonable control of the ratio is an effective
means to reduce the embankment deformation. The total deformation, instantaneous deformation
and creep deformation of the 7:2:1 samples are small and stable, and this ratio has good resistance.
The void ratio of the 5:4:1 samples is large, and the instantaneous deformation is large after the load
is applied, therefore, it accounts for a large proportion of the total deformation. The deformation of
the single brick slag is sensitive to the change in the load, and the instantaneous deformation is small
under the first two load levels; as the load increases further, the instantaneous deformation increases
sharply. Without the support of the concrete skeleton, single brick slag samples are not sufficient to
resist high loads.

For CDW filler, deformation due to the breakage and movement of particles is mainly irreversible.
Through the unloading test, the instantaneous elastic deformation, instantaneous plastic deformation,
viscoelastic deformation, and viscoplastic deformation of the sample can be clearly obtained. To predict
the long-term deformation of CDW filler, based on the Burgers model and the unloading test data,
the deformation amount is calculated from four aspects. Instantaneous elastic deformation, instantaneous
plastic deformation and viscoelastic deformation can be simulated by a Hooke model, a modified Hooke
model, and a Kelvin body. As for viscoplastic deformation, we used a viscosity coefficient related to time
and stress—this method builds a nonlinear creep model by converting the viscosity coefficient or elastic
modulus into a function related to the stress level or time [44,45], and the improved model can greatly
describe the long-term deformation of the CDW mixture. Finally, the effects of stress and ratio on creep
parameters are analyzed based on creep compliance.

Inevitably, the study has some limitations. For example, brick slag, concrete slag and mortar slag
are all obtained from the engineering material field. Secondly, the ratios lead to a sharp increase in the
test workload; considering the difference in the properties of brick slag and concrete slag, the ratios
of the samples used in the compaction test, sieving test and CBR test were set as 4:5:1, 5:4:1, 6:3:1,
7:2:1 and pure brick slag, and the ratios of the creep test were set as 5:4:1, 7:2:1 and pure brick slag.
Moreover, in order to simulate the load at the different embankment depths of the project, the load of
the creep test is designed in five levels, according to the self-weight of the pavement structure layer.
However, the study shows that properly increasing the content of brick slag can improve the gradation,
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strength and creep deformation of the mixture, and it can provide design references for recycled CDW
filler that can be used in embankments. There are some suggestions proposed to provide a reference
for CDW embankments. The strength of concrete is high and the strength of brick slag is low, so, from
the point of view of bearing capacity, the sample with a 5:4:1 ratio is the best. The brick slag is easily
broken, and broken particles play an important role in filling the pores, so it can be known from the
creep test that the deformation of the 7:2:1 ratio is the smallest and that a reasonable increase in brick
slag content can reduce the deformation. For heavy traffic embankments, it is recommended to choose
the filler with a 5:4:1 ratio, however, the compaction of the embankment should be strictly controlled
to reduce post-construction settlements. For embankments with a small traffic volume, the brick slag
content can be appropriately increased.

5. Conclusions

The application of CDW is a challenge in construction and understanding the creep behavior
of CDW filler is of great importance, as this helps to control and predict the settlement of the CDW
embankment. In this paper, a series of laboratory tests and systematic analyses were conducted to
study the recycled CDW embankment filler. The main conclusions were as follows:

As the content of brick slag increases, the optimum moisture content of recycled CDW embankment
filler increases and the maximum dry density decreases. The CBR value of recycled CDW filler is between
40.24% and 98.85%; among them, the 5:4:1 ratio has the highest CBR value. The creep type of CDW
samples under a simulated load is stable creep. The instantaneous deformation accounts for 65%–95% of
total deformation and the creep deformation accounts for about 5%–35%, which varies according to the
ratio and load.

The deformation of recycled CDW embankment filler is mainly due to the fragmentation, slippage
and rearrangement of recycled particles—water greatly accelerates the rate of slippage and the filling
of the particles. Concrete slag has a high strength and acts as the skeleton. The sample with a 7:2:1
ratio has the densest structure and the strain is the smallest. The sample with a 5:4:1 ratio has a porous
structure, which is easily compressed, and single brick slag has the largest strain. The reasonable
control of the filler ratio is an effective means to reduce the deformation of the embankment.

The Burgers model is improved in terms of instantaneous plastic deformation and viscoplastic
deformation, which can better describe the creep characteristics of recycled CDW embankment filler.
The effects of load and ratio on the creep parameters are analyzed using the equivalent creep compliance
J(t0). As the load increases, the creep effects gradually decrease; during the process of increasing the
brick slag content from 50% to 100%, the creep effects are, at first, weakened and are then enhanced.
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