
sustainability

Article

Adsorption of Fluorides in Drinking Water by
Palm Residues

Maria Cristina Collivignarelli 1,2 , Alessandro Abbà 3 , Marco Carnevale Miino 1 ,
Vincenzo Torretta 4 , Elena Cristina Rada 4,* , Francesca Maria Caccamo 1 and
Sabrina Sorlini 3

1 Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 1, 27100 Pavia, Italy;
mcristina.collivignarelli@unipv.it (M.C.C.); marco.carnevalemiino01@universitadipavia.it (M.C.M.);
francescamaria.caccamo01@universitadipavia.it (F.M.C.)

2 Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
3 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via

Branze 43, 25123 Brescia, Italy; alessandro.abba@unibs.it (A.A.); sabrina.sorlini@unibs.it (S.S.)
4 Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy;

vincenzo.torretta@uninsubria.it
* Correspondence: elena.rada@uninsubria.it; Tel.: +39-0332-218782

Received: 9 April 2020; Accepted: 2 May 2020; Published: 7 May 2020
����������
�������

Abstract: Fluorides represent a significant problem in low- and middle-income countries (LMICs).
In fact, this ion is essential for human health but, if taken in excess, it can cause dental and skeletal
fluorosis. In LMICs, the pollution of groundwater from fluorides is of natural origin. Therefore,
if providing alternative sources for drinking water (DW) supply is not possible, the use of specific
processes for the removal of fluorides becomes essential. The adsorption on alternative materials,
such as agro-food residues, can be a valid treatment for the removal of fluorides in the LMIC
considering: (i) their optimal removal yields, (ii) the high availability, and (iii) the low cost. In recent
years, the interest on the use of palm residues (PRs) becomes significant. Optimal pH, temperature,
adsorbent dosage, and possible combination with metals to increase adsorption performances were
deeply investigated. The activated PRs also present two other advantages: (i) very high surface
area, and (ii) very low reduction in uptake capacity when regenerated. However, all tests were
conducted with synthetic waters in laboratory-scale reactors while application on real-scale are absent.
This makes other studies on this type of alternative adsorbent material still necessary.

Keywords: dental fluorosis; fluoride health effects; low-cost defluorination; adsorption; alternative
adsorbent; low-cost adsorbent; agro-food residues; coconut

1. Introduction

Fluorine is used in industrial processes for the manufacturing or production of steel, aluminum,
iron, glass, plastic and in refrigerants such as freon [1–6]. Another common use of fluorine is for the
production of phosphate fertilizers for agricultural use [1,7–9]. For this reason, in the case of biosolids
reuse as soil conditioners, some countries adopted threshold limits to reduce the dispersion of fluorides
in the environment [10].

In water, fluorine is present mainly in the form of fluoride ion due to its high solubility [11].
Given the wide origin of pollutants in wastewater [12–15], the presence of fluorides in surface
water bodies can be primarily ascribed to industrial origin. However, in some surface water and in
groundwater, the main source of pollution of fluorides is related to natural origin [16]. This aspect
varies according to the environmental conditions and the characteristics of the subsoil [17]. In fact,
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the significant presence of fluorine compounds in igneous, granite and sedimentary rocks, determines
a greater enrichment of the water due to leaching phenomena [16,18–20].

Fluoride ion is essential for human health, especially for the preservation of teeth and bones.
However, if taken in excessive doses, it can cause dental and skeletal fluorosis issues [21]. The World
Health Organization (WHO) classified fluorides in water as an inorganic chemical pollutant of natural
origin which, over certain concentrations, is capable of determining a harmful effect on human
health [22].

In drinking water (DW), the fluorine optimal concentration is between 0.5 mg L−1 and
1.5 mg L−1 [23,24], which is the value that WHO recommends not to exceed based on a daily
water consumption rate of 2 L day−1 [22,25]. In fact, fluoride concentration higher than 1.5 mg L−1

causes problems such as: (i) loss of functionality of the teeth, which become fragile and take on a dark
color and (ii) malformation of the skeleton [23,26,27]. Concentrations between 1.5 mg L−1 and 4 mg L−1

generally determine dental fluorosis, with staining of the teeth [25,26], while higher concentrations
(4–10 mg L−1) can also cause skeletal fluorosis with deformations of the bones [23,25,28]. Fluorine
concentrations above 10 mg L−1 can cause damage to the central nervous system following bone
malformations of the spine that damage the spinal cord [23,25].

The intake of fluorine may be due to dermal contact and ingestion due to the presence in food
and beverages (e.g., vegetables and tea) [6,29–31]. However, the presence in DW is the most important
exposure pathway of fluoride [32]. This aspect is particularly dangerous especially in low- and
middle-income countries (LMICs) where alternative supply points could not be easy to find.

According to recent studies, more than 200 million people worldwide consume more than
the recommended amount of fluoride [17,33]. For instance, high fluoride concentrations can be
found in DW, particularly in India, China, Central Africa and South America [22], where LMICs are
located. Only in India, more than 62 million people suffer from dental, skeletal and non-skeletal
fluorosis [20,34,35]. Since the presence of fluorine in groundwater is due to a natural phenomenon,
the absence of alternatives for drawing DW represents a significant problem [17]. In these cases, it is
necessary to use removal treatments, which are effective and appropriate to the context in which they
are to be applied.

Conventional treatments for fluoride removal used in high-income countries (HICs) include:
(i) chemical precipitation [36], (ii) electrochemical processes [37], (iii) adsorption on activated
carbon [38,39] and (iv) membrane processes [11]. However, these processes are difficult to apply in
LMICs, due to the high costs, the complexity of the systems and the need for skilled labour.

Instead, LMICs require fluoride removal treatments that can combine: (i) high fluoride removal
efficiency, (ii) low construction and operating costs, (iii) simplicity of installation and (iv) low
management requirements. In the recent years, adsorption on alternative materials’ agro-food residues,
such as palm residues (PRs), attracted the attention of the research [40–42].

In this paper, a brief bibliographic analysis of the state of the art of the research in this field is
reported. Moreover, recent studies on the application of PRs for fluoride adsorption are reviewed and
future outlooks in this field are discussed.

2. Bibliometric Analysis

The literature search was performed in the Scopus® database by entering “fluoride drinking
water”, “fluorosis drinking water” and “fluoride developing countries” as keywords. The bibliometric
research focuses on papers and books published from 1991 to 2019. Figure 1 shows the trend of the
number of publications. As it can be observed, since 2012–2013, there was an increasing interest in the
scientific community for the study of aspects related to the presence of fluorides in DW: (i) effects on
health, (ii) treatment processes and (iii) situation in the LMICs. In fact, the number of publications
significantly increased.
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Figure 1. Number of publications per year from 1991 to 2019 searching on Scopus®: (A) “fluoride
drinking water”, (B) “fluorosis drinking water” and (C) “fluoride developing countries”.

Using “fluoride alternative adsorption”, “fluoride developing countries adsorption” and “fluoride
low-cost adsorption” as keywords (for considering more specifically the trend in the number of
publications concerning the study of adsorption processes on alternative materials), it can be noted
that the interest of research has definitely grown in the last five years; however, the number of studies
still remains quite limited (Figure 2).
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After the analysis of alternative low-cost materials, a screening of the literature was performed
selecting only papers and books concerning the use of PRs for fluoride adsorption. As Figure 3
shows, research in this field is very recent and the number of publications on Scopus® is very limited.
However, it can be clearly highlighted that the interest in this issue is still growing: over 50% of the
literature production has been published in the last 10 years.Sustainability 2020, 12, x FOR PEER REVIEW 4 of 12 
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3. Adsorption on Palm Residues

3.1. Why Use Palm Residues?

Adsorption is a fairly simple process to manage and its implementation does not present any
system complications [43–46]. The only requirement is the periodic replacement of the adsorbent
material and its possible regeneration [47]. In LMICs, adsorption is well suited to be used, even with
small domestic-scale systems, thus by-passing the problem due to the absence of large centralized
systems [48].

However, the adsorption on conventional materials is suitable for HICs but is not economically
sustainable in LMICs. For this reason, in recent years, the researchers tried to select alternative
adsorbent materials that effectively removed fluorides present in DW [49,50], such as rare earth oxides,
clay soils rich in iron, titanium and aluminum oxides, and bone char [46,51–55]. Several studies have
also focused on the reuse of residues obtained from palm trees [41,56,57].

Palm alternative materials include both the residues directly obtained from the plant (e.g., midribs)
and those related to its fruits (e.g., palm kernel shell and coconut). The main advantage of these residues
is given by the high availability in most LMICs. For example, considering Indonesia, Philippines and
India together, the total production of coconuts exceeds 450,000,000 tons [40,58]. Considering that
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more than 65% of coconut is composed of waste materials (husk and shell) [40], the abundance of this
agro-food residue is incredibly significant.

Furthermore, the reuse of waste materials complies with the concept of circular economy (CE) which
aims to close the product life cycles and eliminate waste with obvious benefits for the environment
and the economy [59–61]. Many international organizations, such as the European Commission,
have recently issued directives in order to promote the reuse and the recycling of waste [62]. Moreover,
adopting a model of sustainable economy can help to achieve sustainable development also in LMICs.
Schroeder et al. (2019) [60] found a strong correlation between CE and Sustainable Development Goals
(SDGs). Indeed, CE practices and related business models can stimulate the achievement of different
SDG objectives such as SDG 6 “Clean Water and Sanitation” and SDG 8 “Decent Work and Economic
Growth” [60].

3.2. Performances on Fluorides

In recent years, the researchers tested many different residues from palm trees. Table 1 shows
several examples of applications depending on the adsorbent material used, the operating conditions
and the surface area and adsorption capacity of the materials. Most studies focused on two materials
specifically: palm kernel shell and coconut residues. In all cases, synthetic waters with a concentration of
influential fluorides between 1 mg L−1 and 20 mg L−1 were used, in order to recreate the real conditions
of DW. The chemical used to prepare the synthetic solutions was sodium fluoride. The adsorption
capacities were different according to the residual used and the operating conditions (Table 1). The pH
of the sample solution is an important parameter influencing the adsorption process [63,64]. In the
acidic pH solution, the total charge on the adsorbent may be positive and as a result, the attraction
of negatively charged fluoride ions with the positive adsorbent surface easily develops [57,65–67].
Bashir et al. [57] employed a pH range of 3 to 9 to study the effect of pH on the removal of fluoride.
A 9% reduction in fluoride removal was observed as the pH increased from 5 to 8. Choong et al. [68]
observed that the adsorption capacity of fluoride decreased from 287.5 to 262.9 mg g−1 as the pH
increased from 4 to 7. Generally, the optimal pH for the adsorption of fluorides on PRs has been in a
range between 3 and 6 (Table 1).

Temperature also exerts an important effect on the adsorption process; as in literature,
the adsorption process is described as exothermic [69–72]. Generally, an increase in temperature
causes a decrease in the adsorption capacity of fluoride on the adsorbent surface, as shown in
the thermodynamic study of the adsorption of fluoride onto palm kernel shells and coconut fibers
conducted by Choong et al. [66], Bhaumik and Mondal [67], and Mondal et al. [73].

Adsorbent dosage seems to have a great influence on adsorption process. Bashir et al. [57] also
analyzed the effect of dosage on fluoride adsorption. This study was conducted with chemically
modified palm kernel shells at pH values of 6 and 7 with a contact time of 120 min. The results
revealed that increases in the doses of the adsorbent up to 0.4 g resulted in the corresponding increase
in fluoride removal. The removal rate decreased slightly as the adsorbent dose was continually
increased beyond 0.4 g [57]. Similar results were obtained by Bhaumik and Mondal [67]. Increasing the
adsorbent dosage, the fluoride uptake increased, and the highest fluoride adsorptions were 80.5–91.5%
for different coconut fiber dusts tested, with initial fluoride concentration of 10 mg L−1 and 0.5 g L−1

adsorbent dosage. Thereafter, the adsorption of fluoride started to decline with an increase in the
concentration of adsorbent and then remained constant [67]. This aspect could be due to the balance
between adsorbate and adsorbent which render the adsorbent incapable of further adsorption [74].
No significant increase in adsorption was observed with higher dosages from 0.5 g L−1 onwards [67].
George and Tembhurkar [75], tested coconut root adsorbent and observed a rapid increase in fluoride
adsorption efficiency up to 8 g L−1 of adsorbent, the dosage corresponding to the maximum removal
of fluoride. The possible reason for the increase in the adsorption of fluorides with higher doses of the
adsorbent could be the presence of more active sites for the increase in surface area on adsorbent [76,77].
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Higher concentrations of fluorides in influential DW stimulated a higher adsorption capacity of
the process, as seen in Table 1. In some cases, to increase adsorption capacity, the residues have been
modified with chemicals. For instance, Choong et al. [68] compared the performances of palm shell
activated carbon powder (PSAC) and magnesium silicate modified PSAC (MPSAC). The study of the
adsorption capacity showed that PSAC and MPSAC overperformed some other reported fluorides’
adsorbents, obtaining values of 116 mg g−1 and 150 mg g−1, respectively [68]. Radhika [78] studied
the efficiency of the adsorption of fluoride ion by activated alumina finely grinded with coconut
shell powder, and highlighted that this solution was effective for removing fluoride with an initial
concentration of 2–20 mg L−1.

The activated carbon produced from PRs generally presented two other main advantages: (i) very
high surface area and (ii) very low reduction in uptake capacity when regenerated. The literature reports
that activated PRs have higher specific surface areas (BET surfaces) than alternative adsorbents, such as
wheat straw (6.5 m2 g−1) [79], tamarind seed (0.99 m2 g−1) [80], pine wood char (2.73 m2 g−1) [81],
powdered biochar of Conocarpus erectus tree (9.88 m2 g−1) [82], and cuttlefish bone (0.07 m2 g−1) [83].
For instance, Talat et al. [84] tested coconut husk activated carbon with a surface area equal to
1448 m2 g−1 and highlighted that the exhausted adsorbent can be efficiently regenerated with a basic
solution of NaOH. Moreover, the regenerated adsorbent showed remarkable uptake capacity with
only a low reduction in adsorption performance up to the three cycles [84].

Table 1. Several examples of PRs applications for the adsorption of fluorides from DW. T = temperature;
n.p. = not provided; 1: residual concentration = 0.8 mg F− L−1.

Type of PRs Surface Area
(m2 g−1)

Fluoride in
(mg F− L−1)

Operative Conditions Adsorption Capacity
(mg F− gPR−1)

References

Palm kernel shell

1099.8 5–125
pH = 7;

T = 25 ◦C;
dosage = 0.2 g L−1

116 Choong et al. [66]

772.1 5–125

+ magnesium silicate;
pH = 7;

T = 25 ◦C;
dosage = 0.2 g L−1

150 Choong et al. [66]

422.5 100

+ La/Mg/Si-loaded;
pH = 7;

T = 25 ◦C;
dosage = 0.2 g L−1

285.7 Choong et al. [68]

21.75 2–12
pH = 3;

T = 25 ◦C;
bed height = 2–10 cm

5.6–27.9 Abu Bakar et al. [56]

1.717 10–50 pH = 3;
contact time = 4 h 1.7 Abu Bakar et al. [63]

n.p. 2.5–15 pH = 6;
contact time = 45 min 2.35 Bashir et al. [57]

Palm midribs 255.1 2–10

pH = 1–3.4;
T = 30–60 ◦C;

dosage = 0.1–1 g L−1

contact time = 15–300 min

n.p. Ajisha et al. [42]

Coconut husk
358 4.4

pH = 2–10;
T = 30–50 ◦C;

dosage = 10 g L−1;
contact time = 3 h

1.3 Araga et al. [41]

1448 10 pH = 5;
dosage = 1.4 g L−1 6.5 Talat et al. [84]
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Table 1. Cont.

Type of PRs Surface Area
(m2 g−1)

Fluoride in
(mg F− L−1)

Operative Conditions Adsorption Capacity
(mg F− gPR−1)

References

Coconut shell

n.p. 2–20
+ alumina;
T = 20 min;

dosage = 20 g L−1
n.p.1 Radhika et al. [78]

2.82 10

+ zirconium;
pH = 2–10;
T = 25 ◦C;

dosage = 10 g L−1

6.4–9.1 Sathish et al. [85]

Coconut fiber

163.2 20

+ zirconium;
pH = 4;

T = 25 ◦C;
Dosage = 20 g L−1;
contact time = 6 h

1.95 Sathish et al. [86]

26.3 6

+ aluminium;
pH = 5;

T = 40 ◦C;
dosage = 0.5 g L−1

3.2 Mondal et al. [73]

285.6
–824.5 1.5–15

pH = 7.6–7.8;
T = 30–60 ◦C;

dosage = 0.05–2 g L−1;
contact time = 20–240 min

12.7–38.5 Bhaumik et al. [67]

Coconut root 312.84 2–25

pH = 7;
T = 50 ◦C;

dosage = 8 g L−1;
contact time = 90 min

2.037 George et al. [75]

3.3. Future Outlooks

From the researches carried out and reported in the scientific literature, the PRs proved to be
suitable for effectively removing fluorides present in DW while maintaining their adsorbent capacity
even after repeated regenerations. At present, it should be noted that all researches were conducted on
laboratory scale systems, and applications on the real scale are absent. Furthermore, all the tests were
carried out with synthetic solutions and not using real DWs. This situation is certainly attributable to
the still limited literature on the subject, that makes other studies on this type of alternative adsorbent
material still necessary.

In the next years, based on the current information and the recent trend of publications, it is
reasonable to expect that the attention on the development of low-cost alternative adsorbent materials
will tend to grow further. The authors suggest investigating the application of these agro-food residues
because in LMICs, it can be a very promising technology for the removal of fluorides and, consequently,
for an improvement in the quality of life of the resident population. While in HICs, it is possible to
apply more advanced treatments (and materials) for the removal of fluorides from DW, in LMICs,
reuse of recycled materials can be an opportunity because: (i) palm residue are produced in large
quantity, (ii) adopting a CE model enhances the promotion of SDGs for a sustainable future, and (iii)
they can substitute conventional adsorbents which are very expensive. Despite the PRs presenting
significant advantages (e.g., high removal efficiencies), they should be carefully studied because several
aspects, such as the best metals to eventually couple them to enhance adsorption process, need to be
better clarified.

4. Conclusions

Fluoride represents a very important problem in LMICs. In recent years, the interest on the use
of PRs becomes significant and represent a valid treatment for the removal of fluorides in the DW
considering: (i) its optimal removal yields, (ii) the high availability and (iii) the low cost. The adsorption
capacities were different according to the residual used and the operating conditions. In the scientific
literature, in some cases, the residues have been modified with chemicals (e.g., alumina, magnesium
silicate and zirconium) in order to increase adsorption capacity. Generally, the optimal pH for the
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adsorption of fluorides on PRs was in a range between 3 and 6. The alternative adsorbent produced
from PRs generally presented two other main advantages: (i) very high specific surface and (ii)
very low reduction in uptake capacity when regenerated. Despite these very interesting results,
the alternative PRs adsorbent for fluoride removal will still have to be carefully studied in order to
be able to compare the results of a significant number of tests on pilot scale plants, and better clarify
some issues such as which are the best metals to eventually couple them to significantly increase their
adsorption performance.
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