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Abstract: Sustainable growth should not only be beneficial to the shipping industry in the future,
but is also an urgent need to respond to resource and environmental crises and strengthen shipping
governance. Maritime traffic in Arctic waters is prone to encounter dangerous ice conditions, and it
is essential to study the mechanism of ice collision risk formation in relation to ice conditions.
Taking the ship-ice collision risk in Arctic waters as the research object, we propose a dynamic
assessment model of ship-ice collision risk under sea ice status dynamic association (SDA) effect.
By constructing the standard paradigm of risk factor dynamic association (DA) effect, taking SDA
as the key association factor. Combing with other risk factors that affect ship-ice collision accidents,
the coupling relationship between risk factors were analyzed. Then, using the Bayesian network
method to build a ship-ice collision accident dynamic risk assessment model and combing with
the ice monitoring data in summer Arctic waters, we screen five ships’ position information on
the trans-Arctic route in August. The risk behavior of ship-ice collision accidents on the selected
route under SDA is analyzed by model simulation. The research reveal that the degree of SDA is
a key related factor for the serious ice condition and the possibility of human error during ship’s
navigation, which significantly affects the ship-ice collision risk. The traffic in Arctic waters requires
extra vigilance of the SDA effect from no ice threat to ice threat, and continuous ice threat. According
to the ship-ice collision risk analysis under the SDA effect and without SDA effect, the difference
in risk reasoning results on the five stations of the selected route are 32.69%, −32.33%, −27.64%,
−10.26%, and −30.13% respectively. The DA effect can optimize ship-ice collision risk inference
problem in Arctic waters.

Keywords: maritime traffic risk; ship-ice collision; Bayesian network; Dempster-Shafer theory; Arctic
waters; dynamic association

1. Introduction

In the past few years, the shipping industry has been introducing necessary measures
to improve safety and environmental performance. For example, 30 years ago, oil leakage
and personal injuries were a very serious problem [1,2]. About 300,000 tons of oil leaked
every year while thousands of human-beings were injured, but today, the number of
leakage incidents per year is only about 5000 tons and 900 people died in ship accidents
worldwide [3]. Affected by the increasingly extreme climate, for example, the storms that
occur in China’s coastal areas have caused great disasters [4], which will inevitably affect
the safety of maritime traffic activities. The number of ship damages, casualties and direct
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economic losses have increased year by year, and the cost of supporting safe operations in
the shipping industry has suddenly increased. The more than 50,000 ships sailing on global
routes consume nearly 500 million tons of fuel per year, and the amount of greenhouse
gases such as carbon dioxide emitted by them is astronomical, causing environmental
pollution to surrounding oceans, ports and cities [5].

However, there are still many major challenges ahead. First, in the face of the current
resource and environmental crisis, neither the traditional passages nor the minor adjust-
ments should be made. Traditions should be overturned and a sustainable future growth
model will be constructed [6]. Second, technology is always the key to the transformation of
human society, and also the main means for the sustainable development of shipping [7,8].
A thorough and long-term solution nowadays requires the use of technological innovation
to achieve transformation and upgrading more than ever. In view of the opening of Arctic
routes, the shipping industry will make full use of Arctic routes for ship transportation
to become an inevitable demand and an essential choice [9]. Not only is it conducive to
the energy-saving and efficient development of shipping, but it also increases the options
for global shipping routes. At the same time, the restrictions on sea ice also have a certain
impact on the safety of ship Arctic navigation. Floating ice at sea has a very prominent
impact on the safety of ship navigation, and easily causes ship-ice collision accidents [10].
In the vast high-latitude waters, the state of floating ice is interrelated, and this association
will form a coupling effect on the navigation risks of Arctic ships during long-distance
voyages [11].

The Arctic route has become a new-period waterway connecting eastern Asia/west
America to Europe, the normalization of the route selection has received more and more
attention, and the maritime traffic in the Arctic waters is becoming more and more com-
mon [12]. For commercial ships, navigation in the Arctic northeast route is close to the
continental shelf, and has a low probability of the ship encountering sea ice during the
voyage, but has a long voyage time relative to the trans-Arctic route. With the melting of
Arctic sea ice [13], it is the future trend to sail near the edge of the ice shelf in the center
Arctic [14,15]. Ships moving towards the central area of the Arctic waters will encounter
continuous changing sea ice condition. Ship-ice collisions will be a serious threaten to the
safety of maritime traffic [16,17]. The dynamic risk of maritime traffic in the Arctic under
ice conditions is currently a more urgent issue.

When conducting risk reasoning of maritime traffic accidents under the influence
of sea ice. Huang simulated the impact of ship-wave-ice interaction on ship-ice collision
accident, and predicted the ice impact that ship may encounter when sailing in Arctic
waters [18]. By proposing a new method of numerical simulation, the damage of sea ice
to propagation was analyzed in [19]. Chai provided a reference for ship structure design
through statistics of the characteristics of on year ice in Arctic waters [20,21]. Such studies
focus on the impact of the interaction between sea ice and ship’s structure, leading to
ship-ice accidents.

In addition, some scholars have analyzed the ship-ice accident risk mechanism to
find the main reason for accidents. When analyzing the risk of maritime traffic in the
Gulf of Finland in winter, Valdez Banda analyzed the causes of sea ice formation and
found the most common ice conditions that affect maritime traffic safety [22]. In view of
the risk of ship ice besetting accident, Montewka believes that sea ice affects the speed
of ship on the one hand, and on the other hand becomes an obstacle on the channel,
leading to ice besetting accidents [23]. Afenyo held the opinion that the failure of sea ice
detection technology and the obstruction of sea ice on the channel will lead to ship-ice
collision accidents, and analyzed the main reasons leading to ship-ice collision accidents in
Arctic waters [24]. When analyzing the collision accident of maritime traffic in the Arctic
ice region, Zhang believes that sea ice would mainly damage the structure of ships [25].
Fu thought that whether a ship ice besetting accident occurs depends on the effectiveness of
a series of technical operations under sea ice conditions, by establishing a ship ice besetting
accident event tree model, the severity of the consequences of ice besetting accident in
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multiple scenarios is analyzed [26]. Goerlandt [27] used the ship maneuvering data and
environmental data, analyzed the safe distance and safe speed between ships and escort
ships in Finnish sea under ice condition. In addition, some scholars analyze the main
causes of collision accident through analyze accident reports [28,29]. It can be seen that ice
conditions have a major impact on ship operation safety, and studies on maritime traffic
safety under the influence of ice condition have been carried out in depth from multiple
perspectives.

In the current analysis of ship-ice accident risk reasoning, relevant scholars pay a lot
of attention to finding key risk factors and their relationship, but, a key issue is overlooked,
maritime traffic in the Arctic waters is a typical dynamic process, the association effects
of risk factor proposed in research [30] should also exist in the study of maritime traffic
risk assessment. Thus, we propose the dynamic association (DA) effect of risk factor.
Focusing on the impact of sea ice on ship Arctic navigation risk, we analyze the ship-ice
collision accident risk under sea ice status dynamic association (SDA), which is of positive
significance for advancing maritime traffic risk research in Arctic waters.

In the field of maritime traffic risk research, the commonly used analysis methods
include fault tree [31,32], event tree [33,34], analytical hierarchy process method [35,36],
and Bayesian analysis methods [37,38]. Among them, Bayesian analysis methods can
effectively combine subjective and objective information and are widely used in ship Arctic
navigation risk analysis. Fu established a Bayesian prediction model to predict and analyze
the risk of ship ice besetting accidents in Arctic waters [39]. BAKSH established a Bayesian
risk assessment model for three types of maritime traffic accidents: collisions, grounding
and founding in Arctic waters [40]. Khan constructed an object-oriented Bayesian network
risk assessment model to analyze the ship-ice collision risk in Arctic waters, and determined
the root cause of the collision accident to support ship operation decision-making [41].
Khan used the dynamic Bayesian analysis method to analyze the main risk factors of
the Arctic ship-ice collision accidents [42]. These studies have proved the advantages of
Bayesian networks in the analysis of evidence information. The risk assessment of ship
navigation under the SDA effect contains a lot of uncertainty analysis. Therefore, it is
suitable to use the mature method of Bayesian analysis to carry out this research.

In the following parts of this study, we plan to establish a ship-ice collision risk
analysis model under the SDA effect. The Bayesian network is used to analyze the dynamic
change of maritime traffic risk in the Arctic waters. Besides, sea ice monitoring data in
the Arctic waters are used to explore the influence of ice conditions on the risk of ship-ice
collisions. In Section 2, we introduce how to perform Bayesian network risk reasoning
under SDA. The obtain of relevant data and the calculate of prior probability distribution
(PPD) and conditional probability distribution (CPD) in Bayesian risk assessment network
are discussed in Section 3. Section 4 discusses the changes that SDA effect brings to ship
Arctic navigation risk analysis. Section 5 provides the conclusions of this research effort.

2. Materials and Methods
2.1. Risk Definition of Maritime Traffic under Status Association

The dynamic association effect of one risk factor refers to that the risk factor’s impact
on maritime traffic risk is not only related to the risk factor’s current state, but also related
to the risk factor’s state in the past time. The DA effect of one risk factor can be expressed
by Equation (1). Under the DA effect, a cumulative effect will occur in the risk factor,
thereby forming a dynamically associated risk factor T. Among them, Sn refers to the n-th
risk factor, Si

n refers to the i-th state of the n-th risk factor, t refers to the occurrences of DA
effects of risk factor Sn, and the number of states of T is it.

T =
m

∑
t=1

(Si
n)t (1)



Sustainability 2021, 13, 147 4 of 17

Risk refers to the occurrence probability of accident [43]. The ship-ice collision in
Arctic waters is caused by a series of risk factors. Under the DA effect of one risk factor,
the maritime traffic risk in Arctic waters can be expressed by Equation (2):

R = P( f (S1, S2, . . . , Sn−1, T)) (2)

Among them, R is the risk value of a risk factor in a ship-ice collision accident, and its
value is equal to the probability of occurrence of the risk factor S is the sub-factor that
affects the risk factor, T represents the DA effect of one risk factor, and f is the coupling
relationship between the risk factor to be assessed and its sub-factors.

2.2. Risk Factors Network Structure on Ship-Ice Collision

The accident causation theory can explain why and how accidents happen [44],
and risk analysis is often based on this. In the causation analysis of ship collision ac-
cidents, part of the research is based on the large number of ship traffic accidents reports
that have occurred [45,46]. In the causation analysis of accidents, ship traffic accident
reports are often a small proportion. It is an effective way to infer the logical relationship
of risk factors through the subjective judgment of experts [47]. And it is often encouraged
by the International Maritime Organization [48].

Combining the analysis of the main causes of maritime traffic accidents in Arctic
waters from 1993 to 2001 in [17], and the risk reasoning of ship-ice collision accidents in
Arctic waters in [24]. We analyzed the risk factors that influence ship-ice collision accidents
based on expert knowledge. Detail information about risk factors is refereed as Table 1.
The risk factors that influence the occurrence of ship-ice collision accidents are divided into
three types: initial events (X), intermediate events (M) and target event (N).

Table 1. Basic factors nodes in risk reasoning network.

No Symbol Description

1 X1 ice condition
2 X2 radar failure
3 X3 environmental obstruction
4 X4 wind speed effect
5 X5 wave height effect
6 X6 process failure
7 X7 navigation function failure
8 X8 electronic chart error
9 X9 the insufficient chart not been updated
10 X11 the inappropriate route selection
11 X12 the fuel measurement system failure
12 X13 engine failure
13 X14 propeller failure
14 M1 serious ice condition
15 M2 human error
16 M3 Restricted visibility
17 M4 operation failure
18 M5 wind and wave effects
19 M6 navigation failure
20 M7 navigation system failure
21 M8 the engine’s fuel supply is contaminated
22 M9 power failure
23 M10 engine shutdown
24 N1 ship-ice collision accident

Refer to the risk factors and relationships of ship-ice collision accident risk assessment
in [22–24], the relationship between the risk factors is logically analyzed. Regarding the
influence of ice condition, it is believed that SDA determines the degree of threat by sea
ice, and the cumulative effect it produces may affect human. Based on this, the logical
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relationship of the risk factors cause ship-ice collision accident in the Arctic waters is
analyzed, and the Bayesian network of ship-ice collision risk assessment for ship Arctic
navigation is constructed, as shown in Figure 1.
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Figure 1. Bayesian network structure of maritime traffic risk in Arctic waters.

In the ship-ice collision accident risk assessment Bayesian network, N represents the
ship-ice collision accident, according to whether the accident occurs, its status is divided
into yes or no. M represents the intermediate process in which N is triggered by X,
and divides its state into increase, constant, or decrease, which means that the probability
of occurrence of M increases, constant, or decreases after X occurs.

2.3. Status Dynamic Association on Ship-Ice Collision

According to the influence of ice condition on the safety of maritime traffic, the influ-
ence of ice condition is expressed by No Adverse Impact (NAI) and Have Adverse Impact
(HAI), respectively. NAI means that the influence of ice condition on the navigation safety
of ship can be ignored, and HAI means the ice encountered by ship will have an impact on
the safety of maritime traffic. With reference to the International Code for Ships Operating
in Polar Waters (polar code) for maritime traffic in the Arctic waters [49], it is assumed that
when the sea ice concentration (SIC) is below 48%, the impact of SIC is NAI, and the SIC
is above 48%, the impact of SIC is HAI. This study assumes that the human’s response to
ice condition during ship’s voyage is only affected by ice conditions for two consecutive
days (the current day and the previous day). Therefore, I = 2, t = 2, the state of SDA can be
expressed by Equation (3). In the set of X, the state of initial events except X1 are divided
into “yes” or “no”, according to whether the event occurs:

Xit
1 = {NAI − NAI, NAI − HAI, HAI − NAI, HAI − HAI} (3)

2.4. Reasoning Method of Node Parameter in Factors Correlation Network
2.4.1. Bayesian Inference Method of Ship-Ice Collision Risk

According to Equation (2), we can know that in ship-ice collision accident, the risk
of a factor is caused by other risk factors. The Bayesian inference process of risk can be
expressed by Equation (4):

P(Sn, parents(Sn)) = ∑ P(Sn|parents(Sn))p(parents(Sn)) (4)
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Among them, P(parents(Sn)) called PPD, P(Sn|parents(Sn)) refers to the probability of
Sn obtained under certain evidence information parents(Sn), called CPD, which is used to
describe the process of generating data Sn.

From Figure 1, we can know that the occurrence of the ship-ice collision accident
(N1) is directly caused by the risk event M1, M4, and M9. According to Equation (4),
the Bayesian inference process of N1can be represented by Equation (5):

R(N1) = P(N1, parents(N1)) = P(N1, M) = ∑
M

P(N1|M)P(M)

= P(N1|M1)P(M1) + P(N1|M4)P(M4) + P(N1|M9)P(M9)
(5)

In the process of solving Equation (5), since the event M is an intermediate event,
its PPD cannot be directly obtained. It is necessary to find all the parent nodes that affect
the occurrence of M, in turn until the initial event X appears, and then use Equation (4) to
perform joint inference. In order to simplify this calculation process, the chain rule of CPD
is introduced to solve it. The solution to the joint probability of risk events {S1, S2, . . . , Sn}
can be calculated by Equation (6):

P(S1, S2, . . . , Sn) = P(Sn|Sn−1, . . . , S1)P(Sn−1, . . . , S1)
= P(Sn|Sn−1, . . . , S1)P(Sn−1|Sn−2, . . . , S1)P(Sn−2, . . . , S1)
= P(Sn|Sn−1, . . . , S1)P(Sn−1|Sn−2, . . . , S1) . . . P(S2|S1)P(S1)

= P(S1)
n
∏
j=2

P(Sj
∣∣parents(Sj))

(6)

According to Equations (4)–(6), the Bayesian risk inference process of N1 can be
expressed by Equation (7):

R(N1) = P(N1, M, X) = P(N1|M, X)P(M, X)
= P(N1|M, X)P(M|X)P(X)

=
14
∑

k=1
P(Xk)∏ P(N1|parents(N1))

(7)

2.4.2. Bayesian Method of Risk Inference under Evidence Information

In risk analysis, it is often necessary to perform reverse reasoning, that is, according to
the evidence information of the child node, reverse the probability change of the parent
node. The Bayesian reasoning method of this process is expressed by Equation (8):

P(parents(Sn)|Sn) =
P(Sn|parents(Sn))

p(Sn)
P(parents(Sn)) (8)

Among them, P(parents(Sn)|Sn) is called posterior probability distribution (PoD),
which represents the probability of occurrence of risk event parents(Sn) after the evidence
update, which is the required event probability. P(Sn) represents the probability of event
Sn under any hypothesis, which called standardized constant.

In the Bayesian network structure of Figure 1, the occurrence of X1 will directly affect
M1, and then indirectly lead to the occurrence of N1. Take the Bayesian inference of this
process as an example. The main purpose of this reasoning process is to analyze the degree
of change in each state of X1 when N1

i=yes, so as to find the state that has a greater impact on
the collision accident. Since N1 and X1 are indirect relationships in the Bayesian network
structure and cannot be solved directly, they need to be solved jointly with the Equation (6)
on the basis of Equation (8). The calculation process is shown in Equation (9), where the
solution of P(N1) is referred to Equation (7):

P(X1|Ni=yes
1 ) = P(X1)

P(Ni=yes
1

∣∣∣X1)

p(Ni=yes
1 )

=
P(Ni=yes

1

∣∣∣X1, M1)P(M1
∣∣∣X1)P(X1)

14
∑

k=1
P(Xk)∏ P(Ni=yes

1

∣∣∣parents(N1))
(9)
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2.4.3. The Calculation Approach of Factors Network Parameters

The necessary parameters for Bayesian network inference include PPD P(Sn) and
likelihood P(Sn−1|Sn). Other parameters can be calculated after these two parameters are
known. In addition to the method of mathematical statistics, the solution of Sn needs to be
solved by subjective judgment in most cases. Among them, the calculation of mathematical
statistics method is shown in Equation (10):

P(Si=h
n ) =

A(Si=h
n )

∑ A(Si
n)

(10)

Among them, ∑ A(Si
n) represents the frequency of occurrence of all states in risk factor

Sn, and i = h represents the h-th state among all i states of the risk factor S.
P(Sn−1|Sn) is the CPD calculation under certain information. In Bayesian analysis, it is

usually judged based on experience. Since experts often come from different fields, they are
different in age, experience, and knowledge reserves, and judgments on the results are also
different. The Dempster-Shafer (D-S) theory has great advantages in dealing with the joint
solution of multi-source information fusion, so, a CPD calculation method based on the
D-S theory is proposed. First, define the universe of discourse in the form of a combination
of CPD between the states of two directly related nodes in the Bayesian network, as shown
in Equation (11), α represents the CPD function between two states of two nodes:

Θ = {α1, α2, . . . αn} (11)

On this basis, define the mass function on the universe, and each mass function repre-
sents an expert’s scoring of CPD. In a mass function, m(φ) = 0, ∑

α⊆Θ
m(α) = 1 needs to be

satisfied. For the scoring opinions of multiple experts, that means multiple mass functions,
represented by m1, m2, . . . , mn and their synthesis rules are denoted by Equation (12).
By combining the opinions of multiple experts, a CPD between two nodes with mutual
dependence is obtained:

m1 ⊕m2 · · · ⊕mn(α) = K ∑
α1∩α2∩...∩αn=α

m1(α1) ·m2(α2) . . . mn(αn) (12)

K−1 = ∑
α1∩α2∩...∩αn 6=φ

m1(α1) ·m2(α2) . . . mn(αn)

= 1− ∑
α1∩α2∩...∩αn=φ

m1(α1) ·m2(α2) . . . mn(αn)
(13)

2.5. Data Collection

Maritime traffic in Arctic waters will tend to the central area [14,50], so we select a
hypothetical trans-Arctic route and take maritime traffic risk on this route as the assessment
object, which is provided by [51], as shown in Figure 2. Based on the maritime traffic
information for five consecutive days on this route, the ship-ice collision risk on this route
is analyzed.
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2.5.1. Prior Probability Distribution of Factors Network Parameters

The database of the National Snow & Ice Data Center (NSIDC) contains a variety of
physical data information in the Arctic waters. According to the needs of this research,
satellite platforms DMSP 5D-3/F17 and DMSP 5D-3/F18 are selected and the “Near-Real-
Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1” data product
is obtained, and the relevant information is shown in Table 2. The data set divides the
Arctic sea ice data into a grid of 448 rows × 304 columns, and the value is the daily average
change of SIC within a 25 km × 25 km spatial coverage area. During data processing,
the ship’s position information is the point coordinates, and the SIC data is the regional
average. The average SIC data of the grid to which the ship’s position coordinates belong
is used as the SIC data of the ship’s location.

Table 2. Basic information of sea ice data.

Data Source Content Usability Format Value Range Data Processing Tool

https://nsidc.org/data Daily SIC change data Open access bin [0, 1] Python (NumPy, pyproj)

According to the position coordinate information of the five points and starting point
on the selected route, a total of 186 pieces of data on the daily change of SIC in August 2018
for these six positions in the database are extracted, as shown in Figure 3. By analyzing
the influence of SIC on the maritime traffic risk, with the SIC value of 48% as the limit,
the original data of SIC is changed into two state discrete data (NAI or HAI). On the basis
of the four states of X1 given in Equation (3), the discrete data of two states is changed to
the distribution of four states, and then the PPD of the four states of X1 is calculated in
combination with Equation (10), as shown in Table 3.

https://nsidc.org/data
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Table 3. Prior probability distribution of ice condition(X1).

State
PPD

A B C D E

NAI-NAI 0 0 0.232 0 0
NAI-HAI 0.931 0 0 0.299 0
HAI-NAI 0 0.232 0.079 0 0
HAI-HAI 0.069 0.768 0.689 0.701 1

The PPDs of other root nodes in the model are obtained by combining other literature
(OL) and expert judgment (EJ), as shown in Table 4. EJ relies on five professionals who
have rick experience in the shipping industry and are familiar with polar navigation
practice. Among them, two experts are captains from the China Polar Research Center,
with more than 15 years of ship driving experience, and have long been engaged in
the driving operations of the Chinese polar scientific research mission. One expert is a
professor from Shanghai Maritime University, he has been engaged in maritime traffic risk
research for more than 20 years, and has devoted himself to ship navigation risk research
in Arctic waters for the past five years. Another two experts are captains from COSCO
Special Transport Group, which is actively engaged in the commercial operation of Arctic
routes. The two captains have many experience in Arctic routes. Use the five experts
to judge the probability of risk factors, and take the average value of their judgments as
actual probability.

Table 4. Prior probability distribution of other root nodes.

Nodes

X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

yes 0.036 0.03 0.053 0.056 0.029 0.004 0.038 0.025 0.024 0.032 0.022 0.004 0.029
no 0.964 0.97 0.947 0.944 0.971 0.996 0.962 0.975 0.976 0.968 0.988 0.996 0.971

Data source OL OL EJ EJ OL OL OL OL OL EJ EJ OL EJ
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2.5.2. Conditional Probability Distribution of Factors Network Parameters

In Bayesian network reasoning, the calculation of CPD mainly relies on expert expe-
rience. In Section 2.4.3, the CPD calculation method based on D-S theory is introduced.
Since ice condition will directly affect human error, take the calculation of the CPD of
SDA’s state NAI-HAI on human error as an example. Table 5 shows the scores of the five
experts on the human error status of increase, constant, and decrease under the influence
of state NAI-HAI.

Table 5. Five experts’ scoring opinions on human error under the influence of state NAI-HAI.

State expert1 expert2 expert3 expert4 expert5

increase 0.69 0.64 0.72 0.85 0.91
constant 0.28 0.33 0.28 0.13 0.08
decrease 0.03 0.03 0.04 0.02 0.01

In the calculation of CPD in the above situation, according to Equation (9), the universe
of discourse is Θ = {increase, constant, increase}. According to Equation (13), the consis-
tency coefficient K of five expert opinions is calculated, and on this basis, by utilizing
Equation (12), the CPD of the influence of NAI-HAI on human error after the combined
opinions of five experts is obtained. In other cases, the calculation methods of CPD are in
the same pattern, and finally the CPD of human error under SDA is obtained, as shown in
Table 6.

K−1 = ∑
α1∩α2∩...∩αn 6=φ

m1(α1) ·m2(α2) . . . mn(αn)

= m1(increase) ·m2(increase) ·m3(increase) ·m4(increase) ·m5(increase)
+m1(constant) ·m2(constant) ·m3(constant) ·m4(constant) ·m5(constant)
+m1(decrease) ·m2(decrease) ·m3(decrease) ·m4(decrease) ·m5(decrease)
= 0.69 ∗ 0.64 ∗ 0.72 ∗ 0.85 ∗ 0.91 + 0.28 ∗ 0.33 ∗ 0.28 ∗ 0.13 ∗ 0.08
+0.03 ∗ 0.03 ∗ 0.04 ∗ 0.02 ∗ 0.01 = 0.246

(14)

K−1 = ∑
α1∩α2∩...∩αn 6=φ

m1(α1) ·m2(α2) . . . mn(αn)

= m1(increase) ·m2(increase) ·m3(increase) ·m4(increase) ·m5(increase)
+m1(constant) ·m2(constant) ·m3(constant) ·m4(constant) ·m5(constant)
+m1(decrease) ·m2(decrease) ·m3(decrease) ·m4(decrease) ·m5(decrease)
= 0.69 ∗ 0.64 ∗ 0.72 ∗ 0.85 ∗ 0.91 + 0.28 ∗ 0.33 ∗ 0.28 ∗ 0.13 ∗ 0.08
+0.03 ∗ 0.03 ∗ 0.04 ∗ 0.02 ∗ 0.01 = 0.246

(15)

Table 6. Conditional probability distribution of serious ice condition (M1).

State NAI-NAI NAI-HAI HAI-NAI HAI-HAI

increase 0 0.999 0 0.348
constant 0.982 0.001 0.017 0.652
decrease 0.018 0 0.983 0

3. Result
3.1. Comparative Analysis of Maritime Traffic Risk

The ship-ice collision accident risk Bayesian network assessment model (AM) in
Figure 1 is used to analyze the impact of SDA on ship-ice collision risk. Besides, the node
X1 in AM is deleted, and the node M1 and M2 will change to root node. By giving the
PPD of node M1 and M2 to establish a sea ice non-associated control model (CM). Figure 4
shows the SDA information at the five positions, and the Bayesian network reasoning
result of the ship-ice collision risk through running the AM and the CM, respectively.
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The probability of ship-ice collision on the selected route is around 0.15. Through the
CM, the risk of ship-ice collision accident along the route are 0.16, 0.13, 0.12, 0.16, and 0.16.
By using the AM, the risk of ship-ice collision accident are 0.2, 0.09, 0.09, 0.14, and 0.11.
The risk change trends calculated by the two models are basically the same, but at the
same location, the model analysis results under the SDA are more sensitive to ice condition.
At station A, the risk assessment result of the AM is 32.69% higher than that of the CM.
At station B, C, D, and E, the risk assessment results of the CM are higher than that of the
AM, which are 32.33%, 27.64%, 10.26%, and 30.13%, respectively.

3.2. The Impact of Ice Condition on Maritime Traffic Risk

To further explore the difference of risk assessment results between the AM and the
CM, the evidence information of SDA in the AM are set as P(NAI-NAI) = 1, P(NAI-HAI) =
1, P(HAI-NAI) = 1, and P(HAI-HAI) = 1, the evidence information in the corresponding
CM are P(NAI) = 1, P(HAI) = 1, P(NAI) = 1, and P(HAI) = 1, respectively. Figure 5 shows
the ship-ice collision risk assessment result by updating the model information.

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 17 

 

 
Figure 5. Risk assessment results under evidence information of the AM and CM. 

According to the risk assessment results of the AM and CM under the evidence in-
formation of SDA’s each state, with or without SDA effect, maritime traffic risk show ob-
vious differences: 
(a) When the evidence information in AM and CM are P(NAI-NAI) = 1 and P(NAI) = 1, 

the risk assessment results are basically the same, and the risk assessment result in 
the AM is slightly higher than those in the CM. 

(b) When the evidence information in AM and CM are P(NAI-HAI) = 1 and P(HAI) = 1, 
the risk assessment result in the AM is significantly higher than that in the CM. 

(c) When the evidence information in AM and CM are P(HAI-NAI) = 1 and P(NAI) = 1, 
P(HAI-HAI) = 1 and P(HAI) = 1 respectively, the risk assessment results in the AM 
are lower than those in the CM. 
Recalling the ship-ice collision risk assessment results in Figure 4: 

• When the ship at station A, the state with a higher probability of SDA is NAI-HAI, 
which is close to the state of scenario b), so the risk assessment result of the AM is 
significantly higher than that of the CM. 

• When the ship is at station B, C, D, and E respectively, the state with a higher proba-
bility of SDA is HAI-HAI, which is close to the state of scenario c), so the risk assess-
ment result in the CM is higher than AM. 

3.3. Model Validation 
Through increasing the state occurrence probability of SDA’s every state in the AM 

by 10% and 30% respectively, observe the changes of PoD for each state in M1 and M2 to 
analyze the impact of SDA on the ship-ice collision risk, the results of PoDs are shown in 
Figure 6a–d and Figure 6e–h respectively. 

With the increase in the occurrence probability of NAI-NAI, the occurrence probabil-
ity of M2 is likely to increase, while the occurrence probability of M1 remains stable, indi-
cating that the vigilance of ship operators will decrease under the continuous state of no 
ice threat, resulting in a slightly higher navigation risk, but the navigation risk is still far 
lower than in other states. The increase in the occurrence probability of NAI-HAI will 
cause the occurrence probability of M1 and M2 to increase at the same time, indicating 
that the sudden sea ice threat affects navigation safety at the same time on M1 and M2, 
and ship operators are insufficiently prepared to respond to sudden sea ice threats. When 
the occurrence probability of state HAI-NAI increases, the occurrence probability of M1 

Figure 5. Risk assessment results under evidence information of the AM and CM.



Sustainability 2021, 13, 147 12 of 17

According to the risk assessment results of the AM and CM under the evidence
information of SDA’s each state, with or without SDA effect, maritime traffic risk show
obvious differences:

(a) When the evidence information in AM and CM are P(NAI-NAI) = 1 and P(NAI) = 1,
the risk assessment results are basically the same, and the risk assessment result in
the AM is slightly higher than those in the CM.

(b) When the evidence information in AM and CM are P(NAI-HAI) = 1 and P(HAI) = 1,
the risk assessment result in the AM is significantly higher than that in the CM.

(c) When the evidence information in AM and CM are P(HAI-NAI) = 1 and P(NAI) = 1,
P(HAI-HAI) = 1 and P(HAI) = 1 respectively, the risk assessment results in the AM
are lower than those in the CM.

Recalling the ship-ice collision risk assessment results in Figure 4:

• When the ship at station A, the state with a higher probability of SDA is NAI-HAI,
which is close to the state of scenario b), so the risk assessment result of the AM is
significantly higher than that of the CM.

• When the ship is at station B, C, D, and E respectively, the state with a higher probabil-
ity of SDA is HAI-HAI, which is close to the state of scenario c), so the risk assessment
result in the CM is higher than AM.

3.3. Model Validation

Through increasing the state occurrence probability of SDA’s every state in the AM
by 10% and 30% respectively, observe the changes of PoD for each state in M1 and M2 to
analyze the impact of SDA on the ship-ice collision risk, the results of PoDs are shown in
Figure 6a–d and Figure 6e–h respectively.
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With the increase in the occurrence probability of NAI-NAI, the occurrence probability
of M2 is likely to increase, while the occurrence probability of M1 remains stable, indicating
that the vigilance of ship operators will decrease under the continuous state of no ice
threat, resulting in a slightly higher navigation risk, but the navigation risk is still far lower
than in other states. The increase in the occurrence probability of NAI-HAI will cause
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the occurrence probability of M1 and M2 to increase at the same time, indicating that the
sudden sea ice threat affects navigation safety at the same time on M1 and M2, and ship
operators are insufficiently prepared to respond to sudden sea ice threats. When the
occurrence probability of state HAI-NAI increases, the occurrence probability of M1 and
M2 will decrease instead, indicating that the sudden disappearance of sea ice threat will
have a negative effect on M1 and M2, and ship operators are still on sea ice threat alert
status. Under the increase in the occurrence probability of HAI-HAI, the occurrence
probability of M1 remains unchanged, but the occurrence probability of M2 is likely to
decrease, indicating that when the sea ice threat continues to exist, ship operators will
maintain the sea ice threat alert state, which will reduce the maritime traffic risk. However,
the overall navigation risk under HAI-HAI of is still high.

The ship-ice collision risk analysis under the SDA can reflect the influence of the status
change of human on the navigation risk under the change of SIC. During the navigation,
it needs to be extra vigilant of the SDA status of NAI-HAI and HAI-HAI.

4. Discussion

In relevant studies, researchers often pay attention to risk factors’ relationships and
analyze risk factors’ comprehensive effects through different methods and models to assess
maritime traffic risk [52,53], but maritime traffic is a dynamic process, and humans on board
continuously adapt to various maritime traffic environments during the navigation process,
so, their adaptability to the state of risk factors will also change accordingly. This means
that even the same risk factor status, under different association modes, will have different
effects on maritime traffic risks. Therefore, we propose a DA effect of risk factor’s state,
in which we pay attention to the impact of risk factor’s state changes with time on maritime
traffic risk. To assess the maritime traffic risk in Arctic waters under DA effect, based on
the ship-ice collision risk behavior under the influence of dynamic sea ice, we establish a
Bayesian network model of ship-ice collision risk with multi-factor coupling to explore the
Impact of SDA to ship-ice collision accident risk. Combined with the SIC sample data of the
trans-Arctic route in Arctic waters, the proposed model reveals the general regulation of
the dynamic risk for ship Arctic navigation under SIC. Under the DA effect of risk factor’s
state, the perception of maritime traffic risk has also changed. Results show that the AM’s
response to different SDA effects is robust, and the SDA effect has a positive impact on the
manifestations of human error and serious ice condition. The ship-ice collision risk under
SIC is formed through SDA.

The impact of association effects on driving is more in road traffic safety research.
Because in-vehicle information systems (IVIS) are widely used in vehicles, drivers continu-
ous use the IVIS during driving will form behavioral adaptation effects [54]. Some drivers
perform risky driving because of excessive participation in IVIS during driving, but,
some drivers respond positively to the safety assistance in IVIS to improve driving safety.
Relevant research found that under an advanced driver assistance system (ADAS), drivers
would stop at intersections less frequently, and the speed would increase, which is not
conducive to driving safety [55]. These studies all show that drivers will display behav-
ioral adaptation for consecutive events, which will have a positive or negative impact
on driving safety. According to the phenomenon that the drivers appear in the driving
process, we propose the influence of the risk factor’s DA effect on the maritime traffic risk,
which means that the navigation risk is not only affected by the risk factors of its current
state, but also formed by the cumulative effect of the risk factors in the time series.

Based on this, we analyzed the impact of SDA effect on ship-ice collision accidents in
Arctic waters through the Bayesian risk assessment model. In related research, the conclu-
sion generally believes that SIC is the main factor affecting navigation risk [35,56]. In the
maritime traffic risk assessment results of CM in Figure 5 also verify the rationality of this
statement. However, through the further in-depth study of this research, we found that
the impact of SIC on maritime traffic risk is not as simple as the presence of sea ice threat
cause the high navigation risk, and the absence of sea ice threat lead the low navigation
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risk. Through the influence of SDA status on the ship-ice collision accident risk in Figure 5,
and the influence of SDA status on human error in Figure 6, we can find that the SDA
effect of NAI-NAI and HAI-NAI both indicate that the current state of the ship is no sea ice
threat, but the risk assessment result of the ship-ice collision accident under the association
state NAI-NAI is higher than the association state HAI-NAI. This is mainly due to the fact
that in the NAI-NAI state, ship operators have adapted to the navigation environment
without sea ice threats, thereby increasing the probability of human error and leading to the
increase of navigation risk. The SDA effect NAI-HAI and HAI-HAI both indicate that the
current state of the ship is threatened by sea ice, but the risk assessment result of ship-ice
collision accident in the association state NAI-HAI is significantly higher than that in the
association state HAI-HAI. The main reason is that in the state of NAI-HAI, ship operators
have adapted to the navigation environment without sea ice threats, and are insufficiently
prepared for sudden sea ice threats, which leads to a high growth in navigation risk.

In this study, we calculated the occurrence probability of risk nodes X1 and M1 in
the ship-ice collision accident risk Bayesian network assessment model based on the sea
ice concentration data monitored by satellites. Limited by the availability of data related
to maritime traffic in Arctic waters, the conditional probability of node M2 is obtained
through expert knowledge, and the prior probability of other nodes is obtained through
reference to other researches and expert knowledge judgments, which may have a certain
impact on the objectivity of the model assessment results. However, through model testing,
we found that the constructed ship-ice collision accident assessment model for maritime
traffic in Arctic waters is highly sensitive. With the addition of more monitoring data,
the constructed model can be well applied to guide ships navigate in Arctic waters under
ice conditions.

Through this research, we apply the proposed DA effect of risk factors to maritime
traffic risk assessment in Arctic waters. With the risk analysis of ship-ice collision accidents
in Arctic waters under the influence of DA effect, we recognize that in a ship-ice collision
accident, the threat of SIC will affect the ship, and the DA effect produced by SIC will
affect the adaptation of ship operators. Therefore, maritime traffic risks in Arctic waters are
complex and volatile. The SDA effect has a positive effect on our further understanding of
the causes of ship-ice collisions in Arctic waters. In order to effectively reduce the risk of
ships navigate in Arctic waters, the ship management department can focus on training
crews to maintain a good mental state in conducting crew training for Arctic navigation,
so as to overcome the adaptability that occurs during maritime traffic practice.

5. Conclusions

This paper has argued that maritime traffic risk is caused by the dynamic association
(DA) effect of the risk factor’s state in the time series. Bayesian networks can obtain the
inference model of risk forming factors through parameter learning and structure learning,
and the risk decision-making can be optimized through the new state design of risk factor
nodes. Based on the Bayesian network analysis method, the logical relationship between
factors can be reflected, and the impact of DA effect can be expressed. The establishment of
the Bayesian network model for the risk assessment of ship-ice collision accidents in Arctic
waters is under the influence of sea ice status dynamic association (SDA) effect. Through
Bayesian network reasoning, different forms of SDA have different threats to the occurrence
possibility of human error and serious ice condition. The SDA is more obvious in the form
of “No Adverse Impact (NAI)-Have Adverse Impact (HAI)” and “Have Adverse Impact
(HAI)-Have Adverse Impact (HAI)”.

Objectively understanding risks and analyzing their causes are an important part of
realizing risk prevention. This study has shown that on the basis of analyzing the logical
relationship between risk factors of the ship-ice collision accident, and introducing the DA
effect into the maritime traffic risk assessment model, we have a deeper understanding
of the cause of the ship-ice collision accident risk, which will promote the discovery of
the objective regulations of maritime traffic risk changes in Arctic waters. Through the
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new understanding of maritime traffic risks in Arctic waters, when carrying out relevant
crew safety operation training, the crew can be targeted to realize that they will have
adaptability during Arctic navigation operations, and then they can actively overcome
them psychologically to achieve the improve of maritime traffic safety.

A limitation of this study is that the SDA effect of sea ice concentration (SIC) considered
in this study are only two consecutive days in the discrete state (SIC state of the previous
day on the current day) and only the impact of SDA on maritime traffic risk was considered.
maritime traffic is a continuous process and there will be multiple risk factors that have DA
effects, so the DA effect in maritime traffic risk assessment model should also be continuous
repeated in multiple times and risk factors. In the next study, it is necessary to consider
the impact of the cumulative association effect produced by the continuous changes of
multiple risk factors in the time series on the maritime traffic risk.
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