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Abstract: Air pollution is a common problem for many countries around the world in the process of
industrialization as well as a challenge to sustainable development. This paper has selected Chengdu-
Chongqing region of China as the research object, which suffers from severe air pollution and has
been actively involved in air pollution control in recent years to achieve sustainable development.
Based on the historical data of 16 cities in this region from January 2015 to November 2019 on six
major air pollutants, this paper has first conducted evaluation on the monthly air quality of these
cities within the research period by using Principal Component Analysis and the Technique for
Order Preference by Similarity to an Ideal Solution. Based on that, this paper has adopted the Long
Short-Term Memory neural network model in deep learning to forecast the monthly air quality of
various cities from December 2019 to November 2020. The aims of this paper are to enrich existing
literature on air pollution control, and provide a novel scientific tool for design and formulation of
air pollution control policies by innovatively integrating commonly used evaluation models and
deep learning forecast methods. According to the research results, in terms of historical evaluation,
the air quality of cities in the Chengdu-Chongqing region was generally moving in the same trend in
the research period, with distinct characteristics of cyclicity and convergence. Year- on-year speaking,
the effectiveness of air pollution control in various cities has shown a visible improvement trend. For
example, Ya’an’s lowest air quality evaluation score has improved from 0.3494 in 2015 to 0.4504 in
2019; Zigong’s lowest air quality score has also risen from 0.4160 in 2015 to 0.6429 in 2019. Based on
the above historical evaluation and deep learning forecast results, this paper has proposed relevant
policy recommendations for air pollution control in the Chengdu-Chongqing region.

Keywords: air pollution control; historical evaluation; deep learning; forecast; Chengdu-Chongqing
region of China

1. Introduction

In the process of economic development, the improvement in industrial production
capacity plays a decisive role, and it is often the only way for a country to achieve mod-
ernization [1–3]. However, according to historical experience, with the progression of
economic development, air pollution brought by industrial production will usually become
an important obstacle to the sustainable development [4–6].

As one of the major developing countries, China is facing increasingly prominent air
pollution problems after over 40 years of rapid economic growth [7–9]. Air pollution control
and protection of sustainable development has become a priority of the government [10,11].
Since 2010, China’s central government and local governments at all levels have attached
great importance to air pollution control [12–14]. China’s top leadership has put forward
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the philosophy of “green hills and clear waters are as precious as gold and silver” [15],
and included pollution control and ecological civilization in the constitution of China [16].
Therefore, behind all these political slogans and mobilization, the actual effectiveness of
China’s air pollution control campaigns in recent years has become an important topic of
general concern to the academia [17–20].

However, the existing academic research on China’s air pollution and pollution con-
trol often focus on the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta
regions, but pay relatively less attention to the Chengdu-Chongqing region located in
Midwest China. For example, Li et al. [21] established a multi-regional computable general
equilibrium model to evaluate the impact of China’s air pollution abatement policies in the
Beijing-Tianjin-Hebei area. They have shown that those policies would cause an average
loss of 1.4% of Gross Regional Product growth every year. Among those policies, the
end-of-pipe control has been identified as the most efficient one for air pollutant reduction.
Xiao et al. [22] have used the air quality data collected from 161 air monitoring stations
in Beijing-Tianjin-Hebei region to construct the indicator system for urban air quality
assessment. Their results showed that PM2.5, PM10 and SO2 improved from 2015 to 2018,
while ozone deteriorated significantly. Further, they used the multiple linear regression
model to reveal the negative correlation between air quality and meteorological factors.
Yun et al. [23] studied the spatial distribution and variation characteristics of PM2.5 and its
influencing factors in the Yangtze River Delta from 2005 to 2015. By remote sensing inver-
sion of PM2.5 and spatial statistical analyses, they have found that the formation of PM2.5
is dominantly affected by CO2 emissions and population density, and PM2.5 concentration
diffusion is mainly driven by regional climate and geomorphology. Bao et al. [24] collected
real-time observation data of PM2.5, PM10, SO2, NO2, CO and O3 in the Yangtze River Delta
region to analyze wintertime haze events. Constructing hybrid receptor models, they have
identified source regions of PM2.5 and found that air pollution is significantly affected by
local emissions and regional transportation. Wu et al. [25] have assessed the effectiveness
of pollution control policies in the Pearl River Delta and estimated the trends of prema-
ture mortality attributable to PM2.5 and O3. They found that the PM2.5-related premature
deaths varied little with respect to time, while the O3-related premature deaths increased
significantly because of the increases in both O3 concentration and exposed population,
especially in the central Pearl River Delta including Guangzhou, Foshan, Dongguan, and
Shenzhen. Xie et al. [26] utilized the clustering technique to study the effect modulation of
the clustered local wind fields have on air quality in the Pearl River Delta. They found the
wind-dependent spatial characteristics of PM2.5, PM10, and NO2 concentrations.

Contrasted to existing literature, this paper has selected the Chengdu-Chongqing
region as the research project for the following reasons:

(1) Geographic Location.
The Chengdu-Chongqing region is located in the Sichuan Basin in inland China. The
landform of basin does not provide favorable natural conditions for the diffusion
of air pollution compared to the coastal areas [27–29]. It is the general consensus
in the academic community that climatic conditions are one of the most important
constraints for air pollution control [30–34]. The precipitation in the Sichuan Basin
is lower than that in the Yangtze River Delta and Pearl River Delta region in all
seasons, and this region is a low-wind speed area with an average wind speed of
below 1.5 m/s in all seasons, which is significantly lower than that in the Beijing-
Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta region [35]. Therefore,
compared to the Yangtze River Delta and Pearl River Delta region, the air quality in
Chengdu-Chongqing region can better reflect the actual effectiveness of air pollution
control policies.

(2) Economic Industries.
Due to its location in central China, the economic development of the Chengdu-
Chongqing region is relatively slower than that of the coastal areas [36–38]. Al-
though Sichuan province has kept a GDP growth rate of over 10% from 2005 to 2013,
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its GDP growth has dropped significantly after 2014 [39]. Therefore, maintaining
local economic growth while combating air pollution and shutting down heavily
polluting enterprises is presenting more challenges to the local government. In
addition, since 2010, the traditional industries in the Chengdu-Chongqing region
have been experiencing weak growth and this region is looking for new pillar
industries to achieve economic transformation [40–42]. In view of this, this pa-
per has collected the monthly average data of six major air pollutants of 16 cities
in the Chengdu-Chongqing region (including 15 cities of Sichuan Province and
Chongqing, the municipality directly under the central government) from January
2015 to November 2019. The paper first conducts evaluation of the air quality of
various cities within the research period by using the Principal Component Analy-
sis (PCA) and the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) models. Based on that, the paper further utilizes the Long Short-Term
Memory neural network model in deep learning to forecast the monthly air quality
of each city from December 2019 to November 2020 in order to show the historical
effectiveness and simulate future performance of the air pollution control policies
of these cities.

Through the above research, this paper strives to achieve the following two aims:

(1) Enrich existing literature on air pollution control by selecting the typical region of a
large developing country as the research object, analyzing its air pollution control
policies as well as the effectiveness in-depth, and making scientific forecast of the air
quality in one year;

(2) Provide a novel scientific tool for design and formulation of air pollution control
policies by innovatively integrating commonly used evaluation models and deep
learning forecast methods, fully utilizing historical data and applying innovative
algorithms to the field of air pollution control.

In the existing literature, on the one hand, Multi-Criteria Decision Making (MCDM)
methods are commonly used for air quality assessment. Based on the MCDM method,
Chalabi et al. [43] combined the chemistry transport model and health impact model to
assess the air quality policies in the United Kingdom. Their results show that, taking
into account all standards, reducing industrial combustion emissions is the most valuable
for improving air quality. Wang et al. [44] used MCDM method to evaluate the impact
of air pollution on urban economic development. By proposing an improved Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) model, they evaluated
various factors of air pollutants and economic development. Moreover, they optimized
the model training process to overcome the traditional disadvantages of the TOPSIS
method. Using the MCDM method, Caravaggio et al. [45] evaluated 10 air pollutants in 30
European countries from 2008 to 2015 from a macro perspective. By merging the relevant
procedures commonly used in environmental assessment under the MCDM framework,
they conducted cluster analysis based on the relative performance of air pollution in various
countries, which provides a comprehensive picture of the European economy and discloses
the advantages and disadvantages of controlling atmospheric pollutants in those countries.
Chen et al. [46] used the MCDM method and the alternative method based on causality to
analyze potential improvement strategies for air quality in Kaohsiung, Taiwan. By assessing
the correlation between different air quality improvement standards and focusing on
providing long-term improvements, they argued that coal-fired power plants and factory
exhausts are the main source of pollution in Kaohsiung City, and environmental authorities
should urge those factories to continuously improve energy efficiency to reduce pollutant
emissions. Chauvy et al. [47] used the MCDM method to evaluate the use of carbon dioxide.
They divided the evaluation indicators into three dimensions: engineering, economy and
environment, and discussed the application of decision analysis methods. Their results
show that in the process of making full use of carbon dioxide to reduce atmospheric
pollution, that technical, economic and environmental aspects are complementary, but not
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interchangeable. At the same time, low-level compensation methods should be used to
promote carbon dioxide emissions reduction.

On the other hand, neural networks are commonly used for air quality prediction.
Alimissis et al. [48] used real data from the urban air quality monitoring network in
Athens, Greece, with the help of artificial neural networks and multiple linear regression
methods to predict the future spatial situation of nitrogen dioxide, nitric oxide, ozone,
carbon monoxide and sulfur dioxide. They demonstrated that the spatial correlation
between monitoring stations will be reduced under the condition of limited atmospheric
quality network density. Therefore, the artificial neural network method has advantages
in predicting atmospheric quality compared with the multiple linear regression method.
Zhao et al. [49] built a Long Short-Term Memory (LSTM) fully connected neural network
model, and used China’s historical air quality data to predict PM2.5 pollution data for
specific air quality monitoring stations within 48 h. This neural network model was used
to analyze the correlation between PM2.5 pollution at the central station and adjacent
stations in Beijing from 1 May 2014 to 30 April 2015. Zhou et al. [50] established a Deep
Multi-output LSTM neural network model, which combines mini-batch gradient descent
algorithm, dropout neuron algorithm, and L2 regularization algorithm to analyze the key
factors of complex spatiotemporal relationships. Through the analysis and prediction
of data from five air quality monitoring stations in Taipei, Taiwan, they found that the
proposed neural network model and algorithms can significantly improve the accuracy of
regional multi-level air quality forecast. Maleki et al. [51] built an artificial neural network
model to predict hourly standard air pollutant concentration, air quality index and air
quality health index. By analyzing the air pollution data of Ahvaz, Iran, from August 2009
to August 2010, they obtained the model’s predicted correlation coefficient and root-mean
square error of 0.87 and 59.9, respectively. The results show that artificial neural networks
can be used to predict air quality and thus prevent health effects. Fong et al. [52] used Long
Short-Term Memory (LSTM) recurrent neural networks to predict the future air pollutant
concentration in Macau. The experimental sample spans more than 12 years and includes
daily measurements from multiple air pollutants and other more classic meteorological
values. Their results show that the neural networks have high prediction accuracy. It has a
shorter training time than the randomly initialized recurrent neural network.

Based on the existing literatures, the PCA and TOPSIS method are combined to
evaluate the historical air pollution situation in Chengdu-Chongqing Region, and the
deep learning forecast for the future air pollution situation are conducted by the Long
Short-Term Memory (LSTM) neural network model in this paper, which realizes research
novelties compared to the existing literatures.

2. Materials and Methods
2.1. Research Objects and Data Sources

The 16 cities in the Chengdu-Chongqing region include: Chengdu, Chongqing,
Dazhou, Deyang, Guang’an, Leshan, Luzhou, Meishan, Mianyang, Nanchong, Neijiang,
Suining, Ya’an, Yibin, Zigong, and Ziyang. Among them, Chongqing is one of the four mu-
nicipalities directly under the Central Government of China, and Chengdu is the provincial
capital of Sichuan Province [36]. These two cities have the important status of “leaders” in
the region (see Figure 1).
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Figure 1. Cities in Chengdu-Chongqing region: (a) Chengdu-Chongqing region in China; (b) Geo-
graphical locations of cities in Sichuan-Chongqing region [36].
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The data used in this paper includes statistics on six major air pollutants in 16 cities,
which are separated cities according to China’s official administrative divisions of the
Chengdu-Chongqing region. The research period is from January 2015 to November 2019.
Based on China’s national air quality standards, this paper has selected the monthly average
concentration data of six major pollutants: PM2.5, PM10, CO, NO2, O3, and SO2 [53,54].
Then, the monthly average concentration data of six major pollutants were individually
divided by the number of the population in each city (per million population) to obtain the
concentration data of every pollutant corresponding to each million of people in that city
during the period of research. The data sources include: China National Environmental
Monitoring Center [55], Data Center of China’s Ministry of Environmental Protection [56],
air quality and pollutant monitoring reports released by Sichuan Province [57], and the
air quality and pollutant monitoring reports issued by Chongqing City [58]. It should be
pointed out that regional grid monitoring will provide a good idea of where the pollution
is and at what levels, but it is expensive to have so many monitors. Many places use
hot-spot monitoring and locate measuring sites where specific worst-case situations exist.
These systems over-estimate the regional levels and are resistant to showing improvements
in some situations, while over-estimating improvements if the specific cause of the “hot-
spot” has been eliminated. In order to avoid the impacts from those factors, this paper
used those abovementioned official statistics, and the values of all pollutants have been
comprehensively calculated based on the data collected from all monitoring locations in
this city. As the air pollutant concentration data are reported on a daily basis (1795 days
in all), this paper has calculated the monthly average concentration of various pollutants
based on the daily statistics to form a data set for air quality evaluation and forecast.

Let the number of samples in this data set be n, and the indicator value of the jth
pollutant in the ith sample be eij (i = 1, 2, . . . , n; j = 1, 2, . . . , 6). The definition of each
variable is shown below in Table 1:

Table 1. Definitions of variables.

Variable Definition

ei1 Monthly Average Value of PM2.5 for Sample i (per million population)
ei2 Monthly Average Value of PM10 for Sample i (per million population)
ei3 Monthly Average Value of SO2 for Sample i (per million population)
ei4 Monthly Average Value of NO2 for Sample i (per million population)
ei5 Monthly Average Value of O3 for Sample i (per million population)
ei6 Monthly Average Value of CO for Sample i (per million population)

When used to perform evaluation and forecast, these data need to be de-averaged and
normalized to arrive at a standardized indicator value of aij:

aij =
eij − µj

SDj
, i = 1, 2, . . . , n; j = 1, 2, . . . , 6 (1)

where µj =
1
n

n
∑

i=1
eij, and SDj =

√
1

n−1

n
∑

i=1

(
eij − µj

)2, j = 1, 2, . . . , 6, i.e., µj is the sample

mean of the jth pollutant, while SDj is the sample standard deviation of the jth pollutant.

2.2. PCA Model

Principal Component Analysis (PCA) is a method of data dimensionality reduction.
It derives a few principal components from the original variables and makes sure that they
retain as much information of the original variables as possible [59–61]. This paper uses the
PCA model to objectively weight the indicators of the six air pollutants in order to provide
a basis for weighting in the evaluation model. The steps are as follows:
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(1) Calculate the Correlation Coefficient Matrix R =
(
rij
)

6∗6:

rij =
∑n

k=1 aki ∗ akj

n− 1
, i, j = 1, 2, . . . , 6 (2)

in which rij is the correlation coefficient between the ith indicator and the jth indicator,
and rij = rji. The larger rij is, the more similar the information conveyed by the two
indicators is.

(2) Calculate the eigenvalues ˘1 ≥ ˘2 ≥ . . . ≥ ˘6 ≥ 0 of the Correlation Coefficient Matrix
R and the corresponding eigenvectors V1, V2, . . . , V6, in which Vi = [v1i, v2i, . . . , v6i]

T

as shown in Equation (3) below:

RVi = λiVi, i = 1, 2, . . . , 6 (3)

The indicator vectors xj (j = 1, 2, . . . , 6) of the original sample are linearly combined
by using the eigenvectors, thereby obtaining six new indicator vectors yk (k = 1, 2, . . . , 6):

yk = v1kx1 + v2kx2 + . . . + v6kx6, k = 1, 2, . . . , 6 (4)

in which xj =
[
a1j, a2j, . . . , anj

]T. The six indicator vectors yk are also called the
principal components, with y1 being the first principal component, y2 being the
second principal component, . . . , and y6 being the sixth principal component.

(3) Select z (z < 6) principal components, and calculate the information contribution rates
as well as cumulative information contribution rates of these principal components.
First, calculate the information contribution rate gj of each principal component:

gj =
λj

∑6
k=1 λk

, j = 1, 2, . . . , 6 (5)

Then, calculate the cumulative information contribution rate Gj of the principal com-
ponents:

Gj =
∑

j
k=1 λk

∑6
k=1 λk

, j = 1, 2, . . . , 6 (6)

The information contribution rate of principal components reflects the importance of
each principal component to sample evaluation. A higher contribution rate indicates
that the principal component has provided more differentiated information for sample
evaluation [62,63].

(4) The original indicators are objectively weighted based on the eigenvector Vj and the
corresponding information contribution rate gj, as shown in Equation (7):

wi =
z

∑
j=1

∣∣∣∣∣vij

∣∣∣∣∣∗gj, i = 1, 2, . . . , 6 (7)

in which wi stands for the weight of the ith indicator (please refer to Appendix B for
the calculation of PCA and weights).

2.3. TOPSIS Model

TOPSIS is a sample evaluation method based on multiple features [64–66]. This paper
has adopted this method to conduct historical evaluation of the air quality of cities in the
Chengdu-Chongqing region. This paper has selected six air pollution evaluation indicators.
Then, calculate the distance of each sample to the optimal solution and the worst solution
in order to score the samples. The closer the sample is to idealized optimal solution, the
higher the evaluation score of the sample. The true “best” condition is that all humans
and all their activities are removed, and only the level at which nature participates in the
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discharge of “pollutants” is checked, which is too extreme. However, in theory, the best
and worst cases need to be defined based on the measured conditions in the analyzed
data set.

The detailed steps are as follows:

(1) Construct a normalization matrix B =
(
bij
)

n∗6, where bij is calculated as follows:

bij =
eij√

∑n
i=1 e2

ij

, i = 1, 2, . . . , n; j = 1, 2, . . . , 6 (8)

(2) Calculate the normalization weight Cij:

Cij = wjbij, i = 1, 2, . . . , n; j = 1, 2, . . . , 6 (9)

(3) Determine the idealized optimal solution A∗ and the negative idealized solution
A− based on the normalization weight Cij:

A∗ =
(
maxiCij

∣∣j ∈ J1
)
,
(
miniCij

∣∣j ∈ J2
)
,
∣∣i = 1, 2, . . . , n = a∗1 , a∗2 , . . . , a∗6 (10)

A− =
(
miniCij

∣∣j ∈ J1
)
,
(
maxiCij

∣∣j ∈ J2
)
,
∣∣i = 1, 2, . . . , n = a−1 , a−2 , . . . , a−6 (11)

where J1 is a benefit indicator set, representing the best value of the ith indicator; J2 is
a loss indicator set, representing the worst value of the ith indicator. The larger the
benefit indicator, the better the evaluation result is; the larger the loss indicator, the
less favorable the evaluation result is.

(4) Calculate the distance from each sample to the idealized optimal solution (S∗), and
the distance from each sample to the negative idealized solution (S−):

S∗ =

√√√√ n

∑
j=1

(
Cij − C∗j

)2
, i = 1, 2, . . . , n (12)

S− =

√√√√ n

∑
j=1

(
Cij − C−j

)2
, i = 1, 2, . . . , n (13)

in which C∗j and C−j are the distances from the jth sample to the optimal solution
and the worst solution, respectively. Cij is normalized weight of the jth evaluation
indicator of the ith sample obtained from Equation (9). S∗ represents the proximity
of the evaluation indicator to the optimal solution. The smaller S∗ is, the closer the
sample is to the optimal solution, and the better the sample is.

(5) Calculate the proximity to the optimal solution C∗i :

C∗i =
S−i(

S−i + S∗i
) , i = 1, 2, . . . , n (14)

where C∗i is the evaluation score of the sample, 0 ≤ C∗i ≤ 1. The closer C∗i is to 1, the
higher the evaluation score, and the more ideal the sample is. In practice, C∗i = 1
generally will not occur.

Please refer to Appendix C for the program code of the PCA-TOPSIS Model.

2.4. LSTM Deep Learning Forecast Model

LSTM is a variant of the Recurrent Neural Network (RNN), an effective tool for
processing time series data [67–69]. Compared with other neural networks, the results of
the output layer of RMM are not only related to the current input, but also to the previous
result of the hidden layer, which means it can retain some memory of the time series data.
At the same time, RNN has the problems of vanishing gradient, exploding gradient and
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insufficient long-term memory. LSTM can overcome these problems and is widely used
in the field of time series data forecast [70–73]. Compared with RNN, LSTM has further
introduced a cell state. During the transmission process, the information within the cell
state is added or deleted through the current input, the state of the hidden layer in the
previous period, the cell state of the previous period, and three gate structures. The detailed
unit structure is shown in Figure 2 below.

Figure 2. Diagram of LSTM (Long Short-Term Memory) network structure.

There are three gates in an LSTM unit: the Forgetting Gate, the Input Gate, and the
Output Gate. The Forgetting Gate and the Input Gate are mainly used to control the
amount of information in the cell state of the previous period pt−1 and the instant state p̃t
generated from the current input that can be added into the current cell state pt. The cell
state is updated based on the output of the Forgetting Gate and the Input Gate, and the
hidden state ht is generated from the Output Gate based on the updated cell state. The
calculation methods of the Forgetting Gate, the Input Gate, and the Output Gate are shown
in Equations (15)–(17) respectively:

ft = σ
(

U f [ht−1, mt

]
+ d f ) (15)

it = σ(Ui[ht−1, mt] + di) (16)

ot = σ(Uo[ht−1, mt] + do) (17)

in which ft, it and ot represent the results of the Forgetting Gate, the Input Gate, and the
Output Gate, respectively; U f , Ui and Uo are the weight matrices of the Forgetting Gate,
the Input Gate, and the Output Gate, respectively; d f , di and do are the bias terms of the
Forgetting Gate, the Input Gate, and the Output Gate, respectively; ht−1 is the output of
the hidden layer in the previous period, and mt is the input at period t, which is the time
series data of a certain indicator of a city in this paper; σ() is a Sigmoid function, which is
defined as:

σ(x) =
1

1 + e−x (18)

In the LSTM model, the final output is determined by the Output Gate and the cell
state. The calculation methods of the instant state p̃t, the cell state pt, and the hidden layer
output ht are shown in Equations (19)–(21), respectively:

p̃t = tanh
(
Up[ht−1, mt

]
+ dp) (19)
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pt = ft � pt−1 + it � p̃t (20)

ht = ot � tanh (pt) (21)

in which Up is the instant state weight matrix; dp is the instant state bias term; the formula
of the tanh() function is defined in Equation (22); � represents the hadamard product.
Assuming Φ = (φij) and Ψ = (ψij) are of the same order, if ωij = φij ∗ ψij, the matrix
Ω = (ωij) is called the hadamard product of Φ and Ψ.

tanh(x) =
ex − e−x

ex + e−x (22)

After constructing the structure of LSTM, this paper has obtained a trained network by
adopting an adaptive moment estimation algorithm and training the network with actual
data in order to update the weights and bias terms in the network. Based on the data of the
average concentration of pollutants, this paper further combines the population of each
city to predict the future air pollutant data. Please refer to Appendix D for the program
code of the LSTM forecast model. Moreover, the Mean Absolute Percentage Error (MAPE)
values of each city are also calculated to justify the application of the LSTM forecast model
(please refer to Appendix E).

3. Results

Based on the raw data introduced in Part 2.1, the PCA-TOPSIS evaluation model
discussed in Part 2.2 and 2.3, and the program code presented in Appendix C, this paper
has calculated the air quality evaluation scores of 16 cities in the Chengdu-Chongqing
region from January 2015 to November 2019, such as shown in Figures 3–9 (for detailed
evaluation data, please refer to Tables A1–A7 in Appendix A):

Figure 3. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from January 2015 to September 2015.
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Figure 4. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from October 2015 to June 2016.

Figure 5. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from July 2016 to March 2017.
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Figure 6. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from April 2017 to November 2017.

Figure 7. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from December 2017 to July 2018.
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Figure 8. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from August 2018 to March 2019.

Figure 9. The air quality evaluation scores of 16 cities in the Chengdu-Chongqing region from April 2019 to November 2019.

Further, with the help of the LSTM deep learning forecast model introduced in Part
2.4 and the program code presented in Appendix A, this paper has forecasted the air
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quality scores of the 16 cities in the Chengdu-Chongqing region from December 2019 to
November 2020, as shown in Figures 10 and 11 (for detailed evaluation data, please refer
to Tables A8 and A9 in Appendix A):

Figure 10. The air quality forecasted scores of 16 cities in the Chengdu-Chongqing region from December 2019 to May 2020.

Figure 11. The air quality forecasted scores of 16 cities in the Chengdu-Chongqing region from June 2020 to November 2020.
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The above figures show the calculation results of this paper, and their specific meaning
will be discussed in the next section.

4. Discussion
4.1. Analysis of Previous Effectiveness of Air Pollution Control

Based on the air quality evaluation scores of cities in the Chengdu-Chongqing region
from January 2015 to November 2019 as displayed in Section 3, this paper has noticed the
following characteristics in the effectiveness of air pollution control in this region:

4.1.1. Conformity

It can be seen from the evaluation results that in the research period, the year-on-year
movement of historical air quality evaluation results across cities in this region was gen-
erally the same. Such conformity is mainly attributable to the following reasons: firstly,
the geographical locations of cities in this area are highly similar, and these cities generally
face the same external environment; secondly, the air pollution control policies of these
cities have a lot in common. This region consists of two provincial administrative regions,
Sichuan Province and Chongqing Municipality (directly under the central government
of China). Within the research period, Sichuan Province uniformly formulated and im-
plemented air pollution control policies which ensured coordinated and consistent air
pollution control measurers across the 15 cities under its jurisdiction [74–77]. Although
each city would also formulate tailored pollution control policies in accordance with their
own economic and industrial characteristics, these tailored policies must be carried out
under the framework of the overall provincial policies. In addition, Chongqing has been
under the administrative jurisdiction of Sichuan Province from 1954 to 1997, and only
became a municipality directly under the central government in 1997 [78]. Therefore,
Chongqing and Sichuan Province have a lot in common in terms of their economic de-
velopment stage, the external environment for air pollution control, and policy design
and implementation. These factors abovementioned have resulted in the conformity in
the overall trend of effectiveness of historical air pollution control policies across different
cities in the Chengdu-Chongqing region.

4.1.2. Cyclicity

If analyzed by years, the effectiveness of historical air pollution control policies
across the cities in this region have shown cyclical movements. The policy effectiveness
usually reached its lowest level between December of the previous year and January of the
current year, which gradually improved after that and climbed to the highest point from
September to October of the current year, and then fell again to start the next cycle. The
reason is that the air pollution control policies adopted by cities in Chengdu-Chongqing
region mainly focus on industrial pollution sources and mobile pollution sources such
as motor vehicles [79–81]. The amount of air pollutants emitted has increased as the
residents’ demand for heating in winter increases [82,83], which has weakened the effects
of control policies to a certain extent. In spring and summer, with less air pollution
generated by heating, the air pollution control policies have shown stronger positive
impact [84].

4.1.3. Improvement

It can be seen from year-on-year comparison that there is an improving trend in the
air pollution levels indicating the increasing effectiveness of air pollution control measures
across the cities (please refer to Tables A1–A7 in Appendix A). Taking Ya’an, which has the
relatively lowest evaluation scores during the survey period, as an example, its lowest air
quality evaluation score has improved from 0.3494 in 2015 to 0.4504 in 2019, and its highest
air quality evaluation score has increased from 0.6889 to 0.7002. As for Zigong, where the
air quality evaluation score is relatively low, its lowest air quality evaluation score has also
improved from 0.4160 in 2015 to 0.6429 in 2019, and the highest score has improved from
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0.7286 to 0.8236. The rest of the cities have also shown improvements of varying degrees,
indicating that the cities in this region have achieved significant results in air pollution
control and treatment.

4.1.4. Air Pollution Control Policies in Key Cities and Their Effectiveness

(1) Chengdu
Chengdu is the capital city of Sichuan Province, as well as the economic center and
air pollution control center of the province. It can be seen from the historical data
that Chengdu has achieved significant air quality improvements within the research
period, with its air quality score rising from 0.8960 in January 2015 to 0.9700 in
November 2019, an improvement of 8.26%. Even compared with the score of January
2019 (0.9532), there has been an improvement of 1.76%. At the same time, except
for 2016, the air quality of Chengdu has been improving during the research period.
In order to combat air pollution, Chengdu set up an emergency command office
for heavy pollution in 2014, which is responsible for coordinating and leading air
pollution control campaigns in the city as well as pollution control policy implemen-
tation. In 2015, Chengdu strictly enforced the “Measures for Public Participation in
Environmental Protection” [85], and continuously improved the details through im-
plementation, which expanded the participants in environmental protection from the
government and enterprises to the general public and tried to encourage the attention
and involvement of the public in air pollution control. As Chengdu is located in the
Sichuan Basin with a fragile environment, it suffers more from air pollution incidents
compared with other regions in China. Therefore, the local government has further
developed an emergency response system in order to quickly and professionally
handle air pollution incidents and minimize the negative impact of sudden pollution
events. Chengdu has put great emphasis on controlling the sources of air pollution.
It has stipulated restricted zones for heavy-pollution fuels [86], strictly limits the
emission of motor vehicles, and prohibits vehicles that do not meet standards from
driving on the road; during heavy pollution periods, the local government would
enforce polluting enterprises to curtail or stop production [87]. These policies and
measures have effectively reduced air pollution from the source.

(2) Chongqing
Chongqing is another key city in the Chengdu-Chongqing region. It is also one of the
four municipalities directly under the central government of China, thereby enjoying
the same administrative level as Sichuan Province. Due to the geographical proximity
and the resulting economic and cultural integration, Chongqing follows similar ideas
in air pollution control policy design as the other cities in the Chengdu-Chongqing re-
gion. However, as a municipality directly under the central government, Chongqing
is more independent and implements additional measures in pollution control policy
design compared with other cities in the Chengdu-Chongqing region. Under the
general leadership of the central government, Chongqing has come up with the con-
cept of “Blue Sky Protection Campaign” for air pollution control [88,89]. It is worth
noting that in the model setting and calculation, this paper uses the average value of
six pollutants based on the population of each city. Although the total emissions of
air pollutants in Chengdu and Chongqing are not low, the population of them are
also considerable—the population of Chengdu in 2019 is 16.5810 million [90] and
that of Chongqing is 31.2432 million [91]. The above two cities have relatively high
air quality evaluation values, indicating that their air pollution control policies have
achieved improved air quality in the time since 2016 to the present.

4.2. Analysis of Forecasted Effectiveness of Air Pollution Control

This paper has summarized the following characteristics regarding the forecasted
effectiveness of air pollution control in this region for December 2019 to November 2020:
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(1) The forecasted air quality still shows an improved trend in general, but the im-
provement has reached the policy effectiveness ceiling under existing conditions.
Using January data which shows the worst air pollution levels for comparison, the
forecasted policy effectiveness in January 2020 is still improved compared with that
of January 2019, but only Leshan, Mianyang and Yibin’s evaluation scores have
improved, while the remaining 13 cities have declined to varying degrees. Therefore,
in 2020 and beyond, how to maintain and further improve the effectiveness of air pol-
lution control policies will be a major challenge to cities in the Chengdu-Chongqing
region. It can be seen from the calculation results since 2015 that the marginal effects
of air pollution control policies in the Chengdu-Chongqing region are increasingly
prominent, which means the policies have reached the ceiling of producing fur-
ther effects. To further improve air quality, the cities need to increase the budget,
and administrative resources invested, as well as work efficiency. Therefore, this
has brought further challenges to the design and implementation of air pollution
control policies.

(2) The gap between the forecasted results for different cities is shrinking. Sichuan
Province are making and carrying out the unified planning of air pollution con-
trol policies and the regional co-management of air pollution between itself and
Chongqing. The “Thirteenth Five-Year Plan for Ecological Protection and Ecological
Enhancement of Sichuan Province” issued in 2017 has explicitly adopted the guiding
philosophy of “Coordinated Planning and Implementation” for pollution control
and emphasized putting this guiding idea into practice [92]. It can be seen from the
calculation results that before 2016, there were quite large differences in the policy
effectiveness of cities in the region, but the gap started to shrink after 2016 and this
trend is further reflected and confirmed in the forecasted results for 2020.

5. Conclusions

Based on the historical data of 16 cities in the Chengdu-Chongqing region from
January 2015 to November 2019 on six major air pollutants, this paper has first evaluated
the monthly air quality of different cities by using the PCA-TOPSIS Evaluation Model.
Based on that, this paper has adopted the LSTM neural network model in deep learning
to forecast the monthly air quality of the cities from December 2019 to November 2020 in
order to show the historical effectiveness, as well as simulate future performance of the air
pollution control policies of these cities. The research results indicate that:

(1) In terms of historical evaluation, air quality is improving, with distinct characteristics,
like seasonal cycles in the air quality are as expected, with winters showing more
severe problems related to the additional energy needs for heating.

(2) Based on a year-on-year comparison, there is a trend of improving air quality indicat-
ing the effectiveness of control policies across the cities. Among those cities, Ya’an’s
lowest air quality evaluation score has improved from 0.3494 in 2015 to 0.4504 in 2019;
Zigong’s lowest air quality score has also risen from 0.4160 in 2015 to 0.6429 in 2019.
The rest of the cities have also shown improvements of varying degrees, indicating
that the cities in this region have achieved significant results in air pollution control
and treatment.

(3) Basedon the forecasted results from December 2019 to November 2020, this paper
has noticed that although the air quality still shows an improved trend, it appears to
have reached the ceiling under existing conditions. Moreover, the gap between the
forecasted policy effectiveness for different cities is shrinking, which places higher
requirements on the future design and implementation of air pollution control policies
in this region.

Based on the Chinese government’s vigorous control of air pollution in recent years,
the calculations and the abovementioned policy analysis in this paper will likely help to
make practical policy measures, which will reduce emissions of air pollutants in Chengdu-
Chongqing region and enhance the sustainable development there.
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Appendix A. Air Quality Assessment Score and Forecasted Score of Cities in
Chengdu-Chongqing Region

Table A1. Air quality assessment score of cities in Chengdu-Chongqing region (January 2015 to September 2015).

Jan. 2015 Feb. 2015 Mar. 2015 Apr. 2015 May 2015 Jun. 2015 Jul. 2015 Aug. 2015 Sep. 2015

Chengdu 0.8960 0.9284 0.9335 0.9364 0.9372 0.9479 0.9372 0.9440 0.9552
Chongqing 0.9586 0.9742 0.9798 0.9795 0.9836 0.9880 0.9822 0.9835 0.9872
Dazhou 0.7072 0.7964 0.8444 0.8730 0.8608 0.8796 0.8557 0.8568 0.8725
Deyang 0.6247 0.7178 0.7214 0.7186 0.7528 0.8012 0.7562 0.7541 0.8143
Guang’an 0.5471 0.6488 0.7176 0.7282 0.7435 0.7879 0.7578 0.7618 0.7710
Leshan 0.5606 0.6926 0.6678 0.6777 0.7155 0.7368 0.7403 0.7524 0.7876
Luzhou 0.6289 0.7166 0.7549 0.7934 0.8013 0.8373 0.8100 0.8332 0.8635
Meishan 0.5432 0.6770 0.6722 0.6977 0.7007 0.7370 0.7080 0.7532 0.8019
Mianyang 0.7733 0.8250 0.8340 0.8307 0.8339 0.8567 0.8344 0.8550 0.8806
Nanchong 0.7956 0.8186 0.8631 0.8961 0.8888 0.9073 0.8847 0.8956 0.9039
Neijiang 0.6109 0.6730 0.7017 0.6945 0.7046 0.8068 0.7826 0.7919 0.8158
Suining 0.6309 0.6734 0.7054 0.7428 0.7482 0.8052 0.7772 0.8017 0.8178
Ya’an 0.3494 0.4485 0.4435 0.5534 0.6168 0.6691 0.6889 0.6493 0.6616
Yibin 0.6615 0.7280 0.7679 0.7970 0.8051 0.8236 0.8155 0.8377 0.8580
Zigong 0.4160 0.5239 0.5828 0.6657 0.6844 0.7278 0.7012 0.7026 0.7286
Ziyang 0.5594 0.5917 0.5967 0.6873 0.7472 0.7993 0.7703 0.7954 0.8327

Table A2. Air quality assessment score of cities in Chengdu-Chongqing region (October 2015 to June 2016).

Oct. 2015 Nov. 2015 Dec. 2015 Jan. 2016 Feb. 2016 Mar. 2016 Apr. 2016 May 2016 Jun. 2016

Chengdu 0.9360 0.9503 0.9217 0.9357 0.9417 0.9297 0.9434 0.9458 0.9510
Chongqing 0.9823 0.9835 0.9778 0.9775 0.9797 0.9793 0.9853 0.9831 0.9845
Dazhou 0.8553 0.8563 0.8258 0.7944 0.8022 0.8185 0.8549 0.8628 0.8748
Deyang 0.7542 0.8099 0.6842 0.6791 0.7209 0.7144 0.7603 0.7908 0.7596
Guang’an 0.7453 0.7562 0.7050 0.6689 0.6722 0.6975 0.7363 0.7512 0.7804
Leshan 0.6940 0.7362 0.6799 0.6822 0.6859 0.6469 0.7162 0.7368 0.7780
Luzhou 0.8094 0.8275 0.8015 0.7910 0.7718 0.7580 0.8346 0.8069 0.8305
Meishan 0.6989 0.7603 0.6603 0.6566 0.7008 0.6435 0.7304 0.7248 0.7622
Mianyang 0.8417 0.8575 0.7750 0.7650 0.7921 0.8123 0.8438 0.8530 0.8428
Nanchong 0.8742 0.8935 0.8561 0.8475 0.8510 0.8691 0.8886 0.8850 0.9024
Neijiang 0.7474 0.8056 0.7407 0.7359 0.7000 0.7347 0.8013 0.7755 0.7895
Suining 0.7562 0.8078 0.7472 0.7184 0.7037 0.7286 0.7804 0.7443 0.7924
Ya’an 0.5244 0.4746 0.4117 0.4045 0.4801 0.4865 0.5566 0.5717 0.5709
Yibin 0.7954 0.7980 0.7596 0.7563 0.7680 0.7648 0.8237 0.8198 0.8590
Zigong 0.6104 0.6556 0.5786 0.5783 0.5820 0.6237 0.7166 0.6633 0.7329
Ziyang 0.7883 0.8160 0.7496 0.6122 0.5885 0.5992 0.6691 0.6110 0.6630
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Table A3. Air quality assessment score of cities in Chengdu-Chongqing region (July 2016 to March 2017).

Jul. 2016 Aug. 2016 Sep. 2016 Oct. 2016 Nov. 2016 Dec. 2016 Jan. 2017 Feb. 2017 Mar. 2017

Chengdu 0.9563 0.9467 0.9540 0.9564 0.9311 0.9104 0.9057 0.9419 0.9542
Chongqing 0.9848 0.9843 0.9797 0.9882 0.9827 0.9772 0.9740 0.9815 0.9841
Dazhou 0.8951 0.8789 0.8422 0.8824 0.8464 0.7634 0.7872 0.8334 0.8615
Deyang 0.7942 0.7983 0.8073 0.8289 0.7291 0.6358 0.6339 0.7180 0.7782
Guang’an 0.7912 0.7813 0.7548 0.7765 0.7222 0.6462 0.6392 0.7081 0.7336
Leshan 0.7843 0.7540 0.7697 0.7519 0.6547 0.6102 0.5562 0.6563 0.7132
Luzhou 0.8430 0.8115 0.8014 0.8178 0.7787 0.7421 0.7017 0.7693 0.7892
Meishan 0.7927 0.7573 0.7589 0.7627 0.6688 0.6036 0.5521 0.6631 0.7066
Mianyang 0.8730 0.8759 0.8635 0.8788 0.8024 0.7491 0.7468 0.8027 0.8455
Nanchong 0.9135 0.9042 0.8878 0.9006 0.8778 0.8449 0.8377 0.8717 0.8851
Neijiang 0.8138 0.8037 0.8009 0.8050 0.7447 0.6857 0.6456 0.7416 0.7815
Suining 0.8087 0.7757 0.7564 0.8039 0.7558 0.7183 0.6712 0.7268 0.7930
Ya’an 0.5731 0.5561 0.5542 0.4785 0.3328 0.2562 0.2247 0.3515 0.4793
Yibin 0.8655 0.8506 0.8393 0.8208 0.7501 0.7188 0.6837 0.7503 0.7943
Zigong 0.7406 0.7010 0.7121 0.6561 0.5318 0.5000 0.4499 0.5829 0.6642
Ziyang 0.7122 0.7322 0.7443 0.7463 0.6848 0.6205 0.5684 0.6535 0.7191

Table A4. Air quality assessment score of cities in Chengdu-Chongqing region (July 2016 to March 2017).

Apr. 2017 May 2017 Jun. 2017 Jul. 2017 Aug. 2017 Sep. 2017 Oct. 2017 Nov. 2017

Chengdu 0.9557 0.9527 0.9565 0.9543 0.9647 0.9656 0.9681 0.9512
Chongqing 0.9858 0.9838 0.9852 0.9833 0.9836 0.9907 0.9927 0.9827
Dazhou 0.8706 0.8647 0.8731 0.8905 0.8929 0.8993 0.8835 0.8478
Deyang 0.7763 0.7577 0.7753 0.8044 0.8443 0.8378 0.8445 0.7593
Guang’an 0.7552 0.7600 0.7813 0.7929 0.8082 0.8270 0.8293 0.7701
Leshan 0.7460 0.7321 0.7761 0.7795 0.8313 0.8154 0.8098 0.7441
Luzhou 0.8242 0.8064 0.8487 0.8516 0.8650 0.8682 0.8774 0.7936
Meishan 0.7252 0.7195 0.7512 0.7685 0.8143 0.8160 0.8061 0.7266
Mianyang 0.8520 0.8451 0.8560 0.8795 0.8982 0.8864 0.9018 0.8421
Nanchong 0.8972 0.8770 0.8950 0.8956 0.9060 0.9063 0.9158 0.8827
Neijiang 0.8178 0.7647 0.8310 0.8261 0.8531 0.8663 0.8812 0.7930
Suining 0.7923 0.7512 0.8101 0.7971 0.8171 0.8394 0.8659 0.7901
Ya’an 0.5345 0.5384 0.6051 0.5825 0.5960 0.5883 0.6277 0.4688
Yibin 0.8072 0.7978 0.8322 0.8306 0.8491 0.8403 0.8470 0.7567
Zigong 0.7188 0.6882 0.7494 0.7399 0.7618 0.7515 0.7650 0.6024
Ziyang 0.7326 0.7205 0.7692 0.7630 0.7840 0.7948 0.8140 0.7199

Table A5. Air quality assessment score of cities in Chengdu-Chongqing region (December 2018 to July 2018).

Dec. 2017 Jan. 2018 Feb. 2018 Mar. 2018 Apr. 2018 May 2018 Jun. 2018 Jul. 2018

Chengdu 0.9297 0.9417 0.9485 0.9474 0.9514 0.9553 0.9647 0.9660
Chongqing 0.9749 0.9825 0.9836 0.9872 0.9864 0.9860 0.9858 0.9856
Dazhou 0.7552 0.7991 0.8082 0.8431 0.8685 0.8783 0.8792 0.8839
Deyang 0.6462 0.7023 0.7153 0.7436 0.7649 0.7834 0.8237 0.8498
Guang’an 0.6804 0.7000 0.7046 0.7446 0.7578 0.7642 0.7922 0.8053
Leshan 0.6699 0.7032 0.7252 0.7331 0.7289 0.7520 0.7967 0.8138
Luzhou 0.7399 0.7729 0.7998 0.8230 0.8334 0.8321 0.8612 0.8589
Meishan 0.6282 0.6512 0.6883 0.7103 0.7325 0.7378 0.7867 0.8144
Mianyang 0.7544 0.7895 0.7957 0.8185 0.8371 0.8503 0.8777 0.8969
Nanchong 0.8398 0.8496 0.8535 0.8760 0.8835 0.8864 0.9056 0.9148
Neijiang 0.6968 0.7352 0.7376 0.7948 0.7937 0.8081 0.8403 0.8580
Suining 0.6994 0.7141 0.7245 0.7534 0.7672 0.7711 0.8120 0.8310
Ya’an 0.3262 0.3394 0.3651 0.4775 0.5273 0.5102 0.6209 0.6464
Yibin 0.7041 0.7282 0.7482 0.7645 0.7869 0.7981 0.8477 0.8602
Zigong 0.5014 0.5436 0.5917 0.6556 0.6687 0.7116 0.7479 0.7701
Ziyang 0.5950 0.6435 0.6544 0.7021 0.7094 0.7295 0.7705 0.7976
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Table A6. Air quality assessment score of cities in Chengdu-Chongqing region (August 2018 to March 2019).

Aug. 2018 Sep. 2018 Oct. 2018 Nov. 2018 Dec. 2018 Jan. 2019 Feb. 2019 Mar. 2019

Chengdu 0.9585 0.9731 0.9680 0.9623 0.9566 0.9532 0.9665 0.9663
Chongqing 0.9816 0.9933 0.9923 0.9888 0.9881 0.9804 0.9891 0.9880
Dazhou 0.8688 0.9028 0.8803 0.8886 0.8176 0.7901 0.8624 0.8581
Deyang 0.8054 0.8635 0.8321 0.7976 0.7670 0.7261 0.7886 0.7950
Guang’an 0.7729 0.8351 0.8186 0.7993 0.7630 0.7140 0.7613 0.7927
Leshan 0.7856 0.8229 0.7963 0.7838 0.7506 0.6753 0.7580 0.7762
Luzhou 0.8564 0.8926 0.8850 0.8411 0.8394 0.7789 0.8382 0.8354
Meishan 0.7718 0.8440 0.8188 0.7816 0.7484 0.6737 0.7563 0.7618
Mianyang 0.8765 0.9088 0.8839 0.8615 0.8395 0.8171 0.8627 0.8649
Nanchong 0.9025 0.9262 0.9122 0.9062 0.8796 0.8543 0.8882 0.9084
Neijiang 0.8246 0.8888 0.8562 0.8256 0.7975 0.7481 0.7867 0.8207
Suining 0.7914 0.8605 0.8335 0.8194 0.7913 0.7447 0.7934 0.8185
Ya’an 0.5895 0.6702 0.6840 0.5369 0.4623 0.4504 0.6084 0.6405
Yibin 0.8508 0.8786 0.8585 0.8202 0.8150 0.7516 0.8194 0.8186
Zigong 0.7493 0.8153 0.7981 0.7192 0.7117 0.6429 0.7240 0.7635
Ziyang 0.7287 0.8309 0.7939 0.7370 0.6798 0.5794 0.6746 0.7184

Table A7. Air quality assessment score of cities in Chengdu-Chongqing region (April 2018 to November 2019).

Apr. 2019 May 2019 Jun. 2019 Jul. 2019 Aug. 2019 Sep. 2019 Oct. 2019 Nov. 2019

Chengdu 0.9631 0.9684 0.9720 0.9729 0.9646 0.9741 0.9758 0.9700
Chongqing 0.9877 0.9896 0.9902 0.9873 0.9828 0.9877 0.9938 0.9922
Dazhou 0.8719 0.8684 0.8820 0.8909 0.8737 0.8772 0.9057 0.8779
Deyang 0.8057 0.8296 0.8517 0.8453 0.8216 0.8447 0.8519 0.8128
Guang’an 0.7991 0.8097 0.8495 0.8555 0.8231 0.8481 0.8818 0.8387
Leshan 0.7791 0.8110 0.8300 0.8497 0.8113 0.8249 0.8281 0.8170
Luzhou 0.8458 0.8759 0.8757 0.8771 0.8345 0.8626 0.8766 0.8611
Meishan 0.7460 0.7857 0.7938 0.8136 0.7770 0.8033 0.8078 0.7815
Mianyang 0.8729 0.8848 0.8953 0.8957 0.8798 0.8975 0.9028 0.8754
Nanchong 0.9087 0.9069 0.9210 0.9322 0.9128 0.9234 0.9350 0.9118
Neijiang 0.8338 0.8590 0.8734 0.8843 0.8351 0.8589 0.8847 0.8500
Suining 0.8125 0.8198 0.8428 0.8461 0.8086 0.8393 0.8693 0.8293
Ya’an 0.6385 0.6782 0.6921 0.7002 0.6631 0.6946 0.6905 0.6495
Yibin 0.8209 0.8638 0.8904 0.9065 0.8842 0.8945 0.8993 0.8897
Zigong 0.7569 0.7838 0.8056 0.8236 0.7717 0.7880 0.8122 0.7710
Ziyang 0.7251 0.7502 0.7796 0.7969 0.7476 0.7806 0.7967 0.7473

Table A8. Air quality forecasted score of cities in Chengdu-Chongqing region (December 2019 to May 2020).

Dec. 2019 Jan. 2020 Feb. 2020 Mar. 2020 Apr. 2020 May 2020

Chengdu 0.9331 0.9297 0.9375 0.9499 0.9475 0.9504
Chongqing 0.9634 0.9631 0.9602 0.9673 0.9647 0.9652
Dazhou 0.8214 0.7220 0.7424 0.8510 0.8648 0.8591
Deyang 0.6722 0.6637 0.6692 0.7897 0.7957 0.8188
Guang’an 0.8128 0.6698 0.6602 0.7805 0.8059 0.8048
Leshan 0.7753 0.7298 0.6126 0.6331 0.6507 0.7842
Luzhou 0.7512 0.7378 0.7303 0.8414 0.8317 0.8268
Meishan 0.5815 0.5552 0.5641 0.7688 0.7493 0.7773
Mianyang 0.8512 0.8416 0.7599 0.7743 0.7819 0.8673
Nanchong 0.8310 0.8160 0.8305 0.8949 0.8875 0.8927
Neijiang 0.8287 0.6989 0.6929 0.7186 0.7962 0.8213
Suining 0.7866 0.6607 0.7013 0.8063 0.7044 0.7988
Ya’an 0.6074 0.3202 0.3106 0.5900 0.5792 0.6006
Yibin 0.8699 0.8218 0.6914 0.7016 0.8374 0.8542
Zigong 0.5055 0.5020 0.5368 0.7781 0.7661 0.7848
Ziyang 0.6702 0.5105 0.5466 0.6593 0.6777 0.7071
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Table A9. Air quality forecasted score of cities in Chengdu-Chongqing region (June 2020 to November 2020).

Jun. 2020 Jul. 2020 Aug. 2020 Sep. 2020 Oct. 2020 Nov. 2020

Chengdu 0.9527 0.9416 0.9433 0.9572 0.9600 0.9442
Chongqing 0.9678 0.9659 0.9609 0.9557 0.9592 0.9664
Dazhou 0.8684 0.7753 0.7704 0.7737 0.8680 0.8702
Deyang 0.8325 0.8294 0.7569 0.8320 0.8404 0.7412
Guang’an 0.8177 0.8197 0.8195 0.6765 0.8309 0.8400
Leshan 0.8050 0.7133 0.7249 0.8328 0.8361 0.7020
Luzhou 0.8566 0.8573 0.8565 0.7616 0.8439 0.7660
Meishan 0.6310 0.7835 0.6098 0.7746 0.7798 0.6019
Mianyang 0.8726 0.8432 0.7888 0.8016 0.8869 0.8900
Nanchong 0.9069 0.9088 0.8588 0.8719 0.9096 0.8646
Neijiang 0.8467 0.8610 0.7209 0.7135 0.8616 0.7716
Suining 0.8215 0.8195 0.7144 0.8176 0.8381 0.7230
Ya’an 0.5988 0.3236 0.3049 0.5943 0.3169 0.3134
Yibin 0.8707 0.8800 0.6527 0.8265 0.9019 0.9008
Zigong 0.7929 0.7963 0.4792 0.4980 0.8126 0.4881
Ziyang 0.7289 0.7547 0.6220 0.7549 0.7665 0.6335

Appendix B. The Calculation of PCA (Principal Component Analysis) and Weights

After calculation, the eigenvalue and variance contribution percentage of each princi-
pal component can be obtained, as shown in the following Table A10:

Table A10. The eigenvalue and variance contribution percentage of each principal component.

Principal Component Eigenvalue Variance Contribution Percentage (%) Cumulative Variance Contribution
Percentage (%)

y1 4.3887 73.1442 73.1442
y2 0.9255 15.4256 88.5698
y3 0.3281 5.4679 94.0377
y4 0.1906 3.1771 97.2148
y5 0.1431 2.3843 99.5991
y6 0.0241 0.4009 100.0000

It can be seen that the sum of the cumulative contribution percentage of the first two
principal components y1 and y2 to the whole has reached more than 85%, so this article
selects the first two principal components for the subsequent assignment of indicators. The
principal component load matrix is shown in the following Table A11:

Table A11. The principal component load matrix of six pollutants.

y1 y2 y3 y4 y5 y6

PM2.5 0.9527 0.9416 0.9433 0.9572 0.9600 0.9442
PM10 0.9678 0.9659 0.9609 0.9557 0.9592 0.9664
SO2 0.5988 0.3236 0.3049 0.5943 0.3169 0.3134
NO2 0.8707 0.8800 0.6527 0.8265 0.9019 0.9008
O3 0.7929 0.7963 0.4792 0.4980 0.8126 0.4881
CO 0.7289 0.7547 0.6220 0.7549 0.7665 0.6335

Finally, the weights of the six pollutants can be obtained, as shown in the following Table A12:

Table A12. The weights of the six pollutants.

PM2.5 PM10 SO2 NO2 O3 CO

Weight 0.1797 0.1785 0.1634 0.1628 0.1565 0.1591
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Appendix C. The MATLAB Algorithm for the PCA-TOPSIS Model

Algorithm A1 PCA-TOPSIS.

1: function [T]=PCA_TOPSIS(b)
2: x=zscore(b);
3: [coeff,score,latent,tsquare]=pca(x);
4: y=(100*latent/sum(latent))’;
5: y_s=y(1);
6: n=1;
7: if y_s<85
8: n=n+1;
9: y_s=y(n)+y_s;
10: end
11: coeff_abs=abs(coeff(:,1:n));
12: for i=1:n
13: if i==1
14: weight=y(1)*coeff_abs(:,1);
15: else
16: weight=weight+y(i)*coeff_abs(:,i);
17: end
18: end
19: weight=weight/sum(weight);
20: [m,n]=size(b);
21: for i=1:n
22: s=0;
23: for j=1:m
24: s=s+b(j,i)ˆ2;
25: if j==m
26: s=sqrt(s);
27: end
28: end
29: b(:,i)= b(:,i)/s;
30: b(:,i)=b(:,i)*weight(i);
31: end
32: v1=max(b);
33: v2=min(b);
34: T=zeros(m,1);
35: for i=1:m
36: C1=b(i,:)-v1;
37: S1=norm(C1);
38: C2=b(i,:)-v2;
39: S2=norm(C2);
40: T(i)=S1/(S1+S2);
41: end
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Appendix D. The MATLAB Algorithm for the LSTM Model

Algorithm A2 LSTM

1: function [dataPred]=LSTM(data,population,P_t,lL,fCL,ME,GT,ILR,LRDP,LRDF)
2: mu = mean(data);
3: sig = std(data);
4: dataStandardized = (data-mu)/sig;
5: populationStandardized = (population-mean(population))/std(population);
6: XTrain = zeros(2,length(dataStandardized)-1);
7: XTrain(1,:) = dataStandardized(1:end-1);
8: XTrain(2,:) = populationStandardized(2: length(dataStandardized))
9: YTrain = dataStandardized(2:end);
10: layers = [...
11: sequenceInputLayer(2)
12: lstmLayer(lL)
13: fullyConnectedLayer(fCL)
14: regressionLayer];
15: options = trainingOptions(‘adam’, ...
16: ‘MaxEpochs’,ME, ...
17: ‘GradientThreshold’,GT, ...
18: ‘InitialLearnRate’,ILR, ...
19: ‘LearnRateSchedule’,’piecewise’, ...
20: ‘LearnRateDropPeriod’,LRDP, ...
21: ‘LearnRateDropFactor’,LRDF, ...
22: ‘Verbose’,0, ...
23: ‘Plots’,’training-progress’);
24: net = trainNetwork(XTrain,YTrain,layers,options);
25: net = predictAndUpdateState(net,XTrain);
26: [net,dataPred]=predictAndUpdateState(net,[YTrain(end);populationStandardized(length(dataStandardized)+1)]);
27: numTimeStepsPred = P_t;
28: for i = 2:numTimeStepsPred
29: [net,dataPred(:,i)]=predictAndUpdateState(net,[dataPred(:,i-1);
30: populationStandardized(length(dataStandardized)+i)]);
31: end
32: dataPred = sig*dataPred + mu;

Appendix E. The Mean Absolute Percentage Error (MAPE) of LSTM Forecast Model

The research sample in this paper contains a total of 59 months of data. Here, the data
of the first 48 months is used as the training set, and the data of the next 11 months is used
as the verification set. The Mean Absolute Percentage Error (MAPE) is used to evaluate the
training results of LSTM forecast model (please refer to the following Table A13):

Table A13. The Mean Absolute Percentage Error (MAPE) of cities in Chengdu-Chongqing region.

City Mean Absolute Percentage Error (MAPE)

Chengdu 0.1099
Chongqing 0.1443

Dazhou 0.1570
Deyang 0.1634

Guang’an 0.1670
Leshan 0.1670
Luzhou 0.1639
Meishan 0.1110

Mianyang 0.1068
Nanchong 0.1675
Neijiang 0.1383
Suining 0.1195
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Table A13. Cont.

City Mean Absolute Percentage Error (MAPE)

Ya’an 0.1340
Yibin 0.1679

Zigong 0.1089
Ziyang 0.1560

According to the above calculation results, the MAPE value of each city is low, indi-
cating that the LSTM forecast model can predict the future trend of air quality in cities in
Chengdu-Chongqing region well [93,94].
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