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Abstract: The Nitrates Directive aims (a) to protect water quality across Europe from nitrates orig-
inating from agricultural sources that pollute ground and surface water, and (b) to promote good
farming practices. One of the most controversial measures of the directive is the winter prohibition
period of fertilization, which has been extended by a month in two steps in recent years. According
to the regulation, it is forbidden to apply nitrogen fertilization in Hungary between 31st October and
15th February, even though the winter climate is gradually becoming milder. Using the fertilization
data of nearly half a million parcels of land in the Hungarian Nitrate Database, a crop model-based
spatial analysis was carried out. Our aim was to test if a shift in the prohibition period starting
date from 31st October to 30th November caused any differences in the nitrate amount leached at
a 90 cm depth. Detailed nitrate inputs and soil and weather databases were coupled with the 4M
crop model. The yield, plant nitrogen uptake, and nitrate leaching under five major crops were
simulated, covering a considerable portion of arable land. Shifting the prohibition period starting
date did not result in significant changes in the nitrate leaching. Further runs of the 4M model with
different weather scenarios are needed to decide whether the modification of the prohibition period
significantly affects the amount of nitrate leached.

Keywords: nitrogen turnover; nitrate leaching; nitrate directive; prohibition period; digital soil maps;
crop model; simulation

1. Introduction

Nitrogen is a vital nutrient for plant (animal and human) growth, but high concentra-
tion even in organic or inorganic forms cause risks to human health and the environment.
In parallel, increasing agricultural production while reducing nitrogen (N) losses is a major
challenge for the European Union as well as producers worldwide [1,2]. This recognition
led to the implementation of the Nitrates Directive in 1991 (91/676/EEC) as the first EU
legislation regarding the agro-environment. The Nitrates Directive (1991) aims to protect
water quality across Europe by preventing nitrates from agricultural sources polluting
ground and surface waters and by promoting the use of good farming practices [3]. Its ap-
plication in Hungary has been mandatory since 2002. However it has been in force for
30 years now, and several impact studies have come to the conclusion that the nitrogen
pollution of ground water has not been significantly reduced. In addition, some measures
have pointed to increasing trends in the EU [4–6].

From this perspective, Hungary is well-ranked, as its average livestock unit is around
22 heads per hundred hectares, which is 30% under the EU average. In a review of the
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NP turnover of the EU countries, according to the Hungarian approach to estimating
livestock units, around 75 livestock units (LU)/100 hectare agricultural land proved to
be the optimum [7,8]. The livestock density in Hungary is only one third of the optimal
number of 75. In conjunction with this, the amount of 100–110 kg ha−1 N (in active
ingredients) applied as manure is far below the specific maximum limit of 170 kg ha−1

(kg ha−1 yr−1 of nitrogen from livestock manure) defined by the Nitrates Directive [9].
Besides this, the inorganic fertilizer consumption in Hungary is under the EU average,
which is clearly visible from the cumulative nitrogen balances [8,10,11]. It can be concluded
that the intensification of nutrient replenishment in the light of sustainable agriculture
would increase crop production [12].

The requirements of good agricultural practices contain several issues regarding the
deposition and use of nitrogenous fertilizers. In practical terms, one of the most problematic
aspects is the winter prohibition period for applying fertilizers, which means that any
nitrogenous fertilization is forbidden between 31st of October and 15th of February [13].
Before this regulation came into force, the beginning of the winter prohibition period was
1st of December. The matter of extending the winter prohibition period was discussed by
the European Commission and the Hungarian government in two stages. Unfortunately,
in the course of the negotiations the potential pollution effect of winter fertilization was
never inspected, and attention was given only to the agro-political dimensions.

The regulations of the prohibition period in most European countries differ from
the Hungarian ones. The Hungarian regulations treat the manure and slurry generated
in animal husbandry and the fertilizers produced by industrial production in a uniform
manner, and the use of all nitrogenous substances is prohibited between October 31 and
February 15. Most European countries apply differentiated rules; they distinguish organic
and inorganic nitrogenous substances and take into account the specificities of the crop
grown when determining the length of the ban period [14].

Since the creation of the Nitrates Directive, compulsory data acquisition from farmers
in Nitrate Vulnerable Zones (NVZs) has been in force [15]. Data regarding the livestock
density, manure deposition, and applied amounts of organic manure and inorganic fer-
tilizer should be clearly identified. As 67% of Hungary’s arable lands are nitrate vulner-
able, a database of hundreds of thousands of parcels has been established. In the begin-
ning, the paper-based submission of the data made its management difficult. From 2015,
only electronic submission has been accepted by the National Food Chain Safety Office
(NFCSO), which has provided new opportunities for assessment. Given that the NVZs’
data are assigned to Agricultural Parcel Identification System (MePAR) blocks, their use has
enabled the compilation of a complex Geographic Information System (GIS) database. Until
now compilation, scientific assessment, analysis, and evaluation have not been conducted.

The aim of this study was to compile a spatial GIS dataset based on compulsory data
acquisition from farmers according to the Nitrates Directive, which can provide input data
for the 4M model. The 4M process-based model is used for estimating the yield, crop N
uptake, nutrient balances, and amount of NO3-N leached under the root zone in each
MePAR block so that the values of these variables can be spatially visualized. Besides the
currently valid fertilization prohibition period model, results for two shortened prohibition
periods were simulated. The potential pollution effect of nitrate leaching on water quality
was evaluated taking into account the reduced prohibition period. The aim of this study
was to evaluate the effect of different timings of fertilization on nitrate leaching at the
country scale. Evaluating the results of the 4M simulation model, we propose that the
prohibition period could be shortened by 1 month without an increased risk of N leaching.

2. Materials and Methods

To ensure representativeness, it became necessary to interconnect some databases.
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2.1. Agricultural Parcel Identification System (MePAR)

An accurate definition of NVZs is given by Government Decree 27/2006. (II. 7.) [16]
concerning the protection of waters against pollution caused by nitrates from agricultural
sources. Inner city areas, large livestock farms and areas of manure storage are vulnerable
to nitrates. In the case of farms, if the whole area is not vulnerable, data must be provided
only for the NVZs. To identify NVZs, MePAR blocks are used, whereby a block ID allows
the user to check if a given parcel is a NVZ [16,17].

Spatial data of MePAR blocks from 2016 were provided by the Government Office of
Budapest, Department of Geodesy, Cartography and Remote Sensing (DGCRS). The origi-
nal raster file was converted into vectors in order to facilitate the analysis.

2.2. Hungarian Nitrate Database (HND)

According to the Nitrates Directive, farmers who exercise agricultural activities (crop
production or livestock farming on a scale that surpasses the needs of a single household)
in a NVZ have to provide data [13]. The compulsory annual reports of the data and a
logbook of the farm’s management are processed by the NFCSO.

Recently, there have been two significant changes in the data report conditions, which
allowed us to carry out our analysis.

Firstly, electronic submissions became available in 2015. This has dramatically in-
creased the number of the submitted data sheets and also the size and representativeness
of the areas concerned. Generally speaking, since 2016, data have been collected from the
vast majority of NVZs; in some regions, almost 90% of the parcels are covered. Therefore
building a unique GIS database became possible.

A second recent improvement was that cultivated crops and their average yields have
to be indicated in the annual report. These two additional pieces of data have signifi-
cantly increased the possibilities of data analysis. The use of nitrogen can be investigated
not only from the perspective of nitrogen loads, but by calculating nutrient balances,
the environmental impact associated with its use can also be quantified.

Moreover, simulation modeling of temporal and vertical changes in the soil mineral
nitrogen content have become feasible. During the modeling work performed in the
present research, cultivated crops and their yields were used mainly to calibrate the model
and validate the results. Without model calibration and validation, the results cannot be
regarded as valid.

2.2.1. Data Collection and Filtering Procedure

From the Hungarian Nitrate Database, the following data were used for the analysis
for the year 2016:

• MePAR block identifier of the parcel;
• size of the fertilized area (ha);
• type of applied manure (liquid or solid manure), amount (m3 ha−1 or t ha−1), applica-

tion method, quantity of nitrogen applied in the form of manure (kg ha−1);
• quantity of applied nitrogen applied in the form of inorganic fertilizer (kg ha−1);
• crop and yield (t ha−1).

Raw data verifying and cleaning were conducted by the National Food Chain Safety
Office and Institute for Soil Sciences and Agricultural Chemistry as data were received
from farmers, without any checks during the data submission process. Two limit values
were established regarding each data type. When the quantity of data exceeded the study
level limit value, it was excluded from the present study. The analysis level was fixed to a
relatively low maximum for the current analysis. Each piece of data located between the
level of analysis and the study was examined on a case-by-case basis (Table 1). Explanations
of the applied data filtering limits are given in the following section. The number of data
included in the present study after applying the filtering process was 533,523.
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Table 1. Boundary limits of data filtering (first round).

Data Type Analysis Level Study Level

Maximum size of fertilized area (ha) 250 350
Amount of farmyard manure application (t ha−1) 70 100

Amount of slurry application (m3 ha−1) 80 200
N-content of mineral fertilizer (kg ha−1) 200 300

Yield (t ha−1)
winter wheat 1.5 15.0

barley 1.2 12.0
maize 1.7 17.0

sunflower 0.5 5.0
rapeseed 0.6 5.5

2.2.2. Data Filtering: The Maximum Size of the Fertilized Area

For the first step, we sorted the extraordinarily high values. The most frequent
inaccuracies were due to the use of the wrong unit or typing errors. We defined 350 ha
(Table 1) as the largest size of a fertilized area, above which the data were not deemed to be
valid. Bigger parcels were excluded from the analysis.

2.2.3. Data Filtering of Manure and Mineral Fertilizer Application

During the filtering process of manure and mineral fertilizer application data, some fre-
quently observed errors in the database were typographical errors, using the wrong units,
or not giving the amount of manure and/or fertilizer in tons per hectare (t ha−1), but rather,
citing the amount of manure and/or mineral fertilizer in tons per parcel (t parcel−1).
To avoid such mistakes, the given amount of manure and/or mineral fertilizer in tons per
parcel was divided by the size of the managed parcel (ha). If the result was in the formerly
defined limits of realistic values regarding the whole territory, the value was corrected.

2.2.4. Data Filtering of Yields

Data filtering of yields were based on the ProPlanta (PP) system. PP is an environmentally-
friendly and cost-saving fertilizer recommendation system, developed at the Center for
Agricultural Research and intended to support sustainable agriculture [18,19]. The maxi-
mal average yields of different crops defined in PP provide a basis for comparisons with
farmers’ data submissions. The most frequently encountered error regarding these data
were the use of incorrect units and giving yields in quintal (q) instead of tons per hectare
(t ha−1). To correct inaccurate yields, values given in quintal (q) were converted into tons
(t). If the result obtained was in the formerly defined limits of realistic values regarding the
whole territory of the farmer, the yield data was corrected; otherwise, it was excluded from
the database (Table 1). The limits were 1.5–15.0 t ha−1 for winter wheat, 1.2–12.0 t ha−1

for barley, 1.7–17.0 t ha−1 for maize, 0.5–5.0 t ha−1 for sunflower and 0.55–5.5 t ha−1 for
rapeseed. All yields below or above these values were disregarded.

After the first round of data filtering, the problem of having 0.0 t ha−1 yields occurred
for a significant number of blocks. A possible explanation for this could be that at the time
of submitting the annual report, yield data were not yet available to farmers.

2.2.5. Spatial Identification of the Filtered Dataset

In the filtered dataset comprising 533,523 records, the total area of the relevant parcels
was 2,897,000 ha. The parcels are parts of 87,454 MePAR blocks; some such blocks contained
only one parcel, while others contained more than 50.

To spatially identify the site of a parcel, the MePAR block IDs provided by DGCRS
were used. We concluded that 10% of the data therein were incorrect, as farmers occa-
sionally provided an incorrect MePAR block ID or simply did not notice that the former
correct MePAR block ID had changed at the time of data submission in the financial year
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2015/2016. Incorrect data were excluded from our study, so the size of the studied area
further decreased by 500,000 ha.

As there were, in extreme cases, 50 parcels within a MePAR block, we had to somehow
manage the aggregation of these data. The crop grown on the largest area of a given block
was considered. This led to a further decrease in area, because only the sowing area of the
dominant crop was included in the analysis; areas dedicated to other crops were excluded.
Extending the dominant crop to the whole MePAR block could lead to distorted sowing
structure data, and averaging the fertilizer doses of the various crops within a MePAR
block could give rise to significant systematic errors in the analysis.

After the aggregation and spatial assignment, the remaining area of the database was
1,562,000 ha in 80,000 MePAR blocks, from which was possible to evaluate and spatially
analyze the use of nitrogen.

For the crop production simulation with 4M [20], the remaining blocks were selected
according to crop type. While 4M can handle various crops, 80% of arable lands in Hungary
are dedicated to winter wheat, barley, maize, sunflower and rapeseed. The designated area
for crop modelling was 1,282,000 ha within 55,100 MePAR blocks, which was considered
representative for Hungary.

2.3. Meteorological Data FORESEE

The Open Database for Climate Change-Related Impact Studies in Central Europe
(FORESEE) is a sophisticated, open access meteorological database that covers the pe-
riod from 1951–2100 and contains observed and projected daily maximum/minimum
temperatures and precipitation for Central Europe.

For the 1951–2018 period, FORESEE v3.1 provides interpolated meteorological fields
based on observations, while for the 2018–2100 period, ten bias corrected regional climate
model (RCM) results are available based on the projections created and disseminated
within the framework of the ENSEMBLES FP6 project using the A1B emission scenario.
The FORESEE is a simple database containing gridded daily meteorological data based on
a state-of-the-art bias correction method for regional climate projections [21].

In this work, the daily global radiation, minimum and maximum temperature, and pre-
cipitation were used.

2.4. Digital Soil Maps

The Digital, Optimized, Soil Related Maps and Information (DOSoReMI.hu) initiative
aims to renew the national soil spatial infrastructure in Hungary. Within the framework of
DOSoReMI.hu, different soil property, soil type, and certain primary functional soil maps
were compiled using up-to date digital soil mapping techniques incorporating geostatistical,
machine learning, and Geographic Information System (GIS) tools. The soil property maps
were compiled partly according to GlobalSoilMap.net specifications, partly by slightly
or more strictly changing some of their predefined parameters (depth intervals, pixel
size, property etc.) according to the specific requirements of the final product. The maps
are published on the www.dosoremi.hu website, and the results were also elaborated by
creating a specific WMS environment [22].

In the present research, we applied nationwide organic matter, clay, silt, and sand
content maps, as well as USDA texture class maps from the DOSoReMI.hu database as
input parameters for the 4M model. The maps were 100 m × 100 m per pixel resolution for
the following four depths: 0–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm.

The 3D Soil Hydraulic Database of Europe (EU-SoilHydroGrids ver1.0) [23,24] pro-
vides information on the most essential soil hydraulic properties at 250 m resolution at
seven soil depths up to 2 m with full European coverage. EU-SoilHydroGrids is a consistent
spatial soil hydraulic database compiled based on SoilGrids250m [25] and 1 km datasets
and pedotransfer functions trained on the European Hydropedological Data Inventory.
The database contains maps on saturated water content, water content at field capacity
and wilting point, saturated hydraulic conductivity, and Mualem-van Genuchten parame-

www.dosoremi.hu
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ters for the description of the moisture retention and unsaturated hydraulic conductivity
curves.

As input parameters for the 4M model, the following was used from EU-SoilHydroGrids:
saturated water content (pF = 0), water content at field capacity (pF = 2.5), and wilting
point (pF = 4.2). In order to fit the requirements of the model, we limited the data to
the territory of Hungary and converted the available information regarding the seven
soil depths (0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm, and 200 cm) to 0–30-cm, 30–60-cm,
60–100-cm, and 100–200-cm depth intervals.

The 4 M model requires data on the bulk density of the soil. As there is currently no
available bulk density map for Hungary in the DOSoReMI.hu database, we calculated
bulk density values from the clay, sand, and organic matter content of soil according to a
method described by Rawls [26].

According to the input data requirements of the 4M model, the soil properties were
assigned to MePAR blocks from the spatial soil information detailed above. In cases of
continuous variables, the block mean was calculated. As for soil properties (USDA texture
classes), the dominant class was selected for each block. Furthermore, a FORESEE ID was
assigned to each MePAR block.

We aggregated the data from the Nitrate Database (refers to parcels) for MePAR blocks.
From data for the year 2016, we took in account only those crops which occupied the largest
area. The fertilized area was computed from the sum of the area of the dominant crop,
while areas dedicated to other crops were omitted.

2.5. 4M Crop Model

The computations of the 4M daily step, deterministic model are determined by the
numerical characteristics (defined by input parameters) of the atmosphere-soil-plant system.
Those input data describe the physical, chemical, and biological profile of the system. It is
also necessary to set the initial, boundary, and constraint conditions in the input file of the
model. The following parameters determine the model functions: development, growth,
and senescence of plants, as well as the heat, water, and nutrient balance of the soil [20].

The initial conditions are the measured system variables at the beginning of the simu-
lation run, such as the water or nutrient content of the soil. The boundary conditions are
primarily the daily meteorological data, such as global radiation, temperature, and precipi-
tation. The constraint conditions cover the numerical agro-management expressions, e.g.,
data about planting, harvest, fertilization, or irrigation.

Phenological development is based upon the cumulative thermal time. The daily
photosynthesis rate is calculated using a Beer-Lambert law based equation. The produced
mass is divided into the major parts (root, stem, leaf and yield) of the plant. The partitioning
ratios change with the phenological stages. Matter allocated to the leaves is converted
to area by multiplying the mass with the specific leaf area. The age of every leaf area
portion that is added to the total area in a day is kept on record. If the age of a portion
exceeds the value of the “lifespan of leaves” parameter it “dies”, i.e., it ceases to take part
in photosynthesis. The aging of leaves is accelerated by abiotic stress.

Root expansion depends on the daily thermal time and the minima of the water and
nitrogen stress factors.

The water balance module calculates the following elements: runoff, evaporation,
transpiration, and the volume of water percolating both downward and upward. The tem-
perature of the soil layers is calculated according to the depth, taking into account that
the upper soil layers absorb energy and the heat needs time to reach the lower layers.
The extent of the delay and the decrease depend upon the average moisture content and
the average bulk density of the topsoil.

The soil organic matter submodel includes three soil organic matter (SOM) pools
(active, slow, and passive) with different potential decomposition rates, above and be-
lowground crop residue pools, and a surface microbial pool, which is associated with
decomposing surface residue. The decomposition of both plant residues and SOM is
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assumed to be microbially mediated, with an associated loss of CO2 due to microbial
respiration.

Each pool is characterized by different maximum decomposition rates, which are
reduced by multiplicative functions of soil moisture and soil temperature. The nutrient sub-
model uses simple equations to represent N inputs and outputs attributed to atmospheric
deposition, fertilization, mineralization, nitrification, immobilization, denitrification, plant
uptake, and nitrate leaching.

In this study, the 4M model simulated the yields of five principal crops (winter wheat,
barley, maize, sunflower, and rapeseed) based on input parameters, N uptake by plants,
nutrient balances, and amount of NO3-N leached under the 0–90 cm soil depth.

2.6. Establishing Standard Nutrient Replenishment Technologies

The Nitrate database contains the amounts of applied manure and mineral fertilizer
expressed in active N- ingredients, while the dates of fertilizer application and distribution
rates in cases of multiple applications are missing/absent. In contrast, 4M requires input
regarding fertilizer application and meteorological factors with a daily step. To fulfill
the model’s input requirements, the standard dates of fertilizing were defined for the
five principal crops based on real fertilizing dates (for the autumn and spring seasons
as well) contained in the Nitrate database. The nitrogen distribution rates (in percent)
per crop species were estimated and simulated based on the total applied amount of N
(kg ha−1). To estimate the nitrogen distribution rates, real values from the Soil Degradation
Information System (TDR) database were taken into account (Table 2), which, given its
complete national coverage, represents roughly 2000 plots [27–29].

Table 2. Estimated date of N application depending on crops and doses. Methodology derived from the TDR database.

1 × Fertilized % 2 × Fertilized % 3 × Fertilized %

Winter wheat

N < 50 kg ha−1 50 kg ha−1 < N < 100 kg ha−1 N > 100 kg ha−1

15th March 100 5th October 50 5th October 25
1st April 50 15th March 40

15th April 35

Winter barley

N < 50 kg ha−1 50 kg ha−1 < N < 80 kg ha−1 N > 80 kg ha−1

15th March 100 15th September 60 15th September 30
15th March 40 5th March 30

1st April 40

Rapeseed

N < 70 kg ha−1 70 kg ha−1 < N < 110 kg ha−1 N > 110 kg ha−1

15th March 100 1st September 40 1st September 20
15th March 60 5th March 50

1st April 30

Maize

N < 80 kg ha−1 80 kg ha−1 < N < 120 kg ha−1 N > 120 kg ha−1

10th April 100 10th April 50 15th October 20
10th May 50 10th April 40

10th May 40

Sunflower

N < 50 kg ha−1 50 kg ha−1 < N

20th April 100 10th October 30
20th April 70

2.7. Initial Soil Nitrate-N Content Data

In order to use 4M, information regarding the initial nitrate-N content in the 0–30,
30–60, 60–90 cm soil profiles was required. These data, derived from the TDR database,
averaged the initial nitrate-N content at 0–30, 30–60, 60–90, and 100–120 cm depths, de-
pending on the soil physical properties (Table 3) [27–29].
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Table 3. Average nitrate content (mg kg−1) estimation related to soil physical properties in the Nitrate
database based on the TDR database.

Soil Texture
Average Nitrate Content (mg kg−1)

0–30 cm 30–60 cm 60–90 cm

sand 16.9 10.0 4.1

sandy loam 18.7 10.4 4.9

loam 20.4 10.8 5.8

clay loam 22.9 11.6 6.2

clay loam 25.5 12.5 6.6

2.8. Software

The Hungarian Nitrate Database was set up in Microsoft Access. Data verifying was
done using Microsoft Excel. GIS queries and analyses, as well as spatial visualization of the
data and the results of model 4M, were carried out using the ESRI ArcGIS 10.6 software.

3. Results
3.1. The Amount of Total Nitrogen Applied to Crops (Hungarian Nitrate Database)

The sum of the utilized proportion of organic N plus the total amount of mineral N
fertilizer applied to the parcels of HND is shown on the Figure 1. The proportion of organic
N utilized in the first year is specified according to Appendix 2 of 59/2008. FVM Decree.
It was 0.4 for farmyard manure, and 0.5 for slurry. On the map, the sum of the utilized
proportion of organic N plus the total amount of mineral N fertilizer is shown. The amounts
of total N applied were highest in the west-southwest part of the country, as well as in the
of Hajdúság Loess plateau, and lowest in the middle and north-east regions.
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The average amount of applied N was 96 kg ha−1, comprising 15 kg N in the form
of organic manure and 81 kg in the form of fertilizer. The distribution of N doses was as
follows: 0–100 kg ha−1 range: 57%; 100–200 kg ha−1 range: 40%; 200–300 kg ha−1 range:
3%, as shown in Figure 1.

Based on an examination of the N application data, it was found that smaller farms
(which are widely present in Hungarian agriculture) carry out more extensive fertilization
practices. However, the rate of doses can only be assessed with knowledge of the cultivated
plants and their N uptake.

3.2. Determination of Crop N Uptake

Using the input data, the 4M model estimated the yields, the N uptake of the five
major crops (winter wheat, maize, barley, sunflower, and rapeseed), as well as the amount
of NO3-N leached at a 0–90 cm soil depth. The crop N uptake (kg ha−1) can be observed
for the area represented by the Hungarian Nitrate Database on the Figure 2.
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Both estimations, i.e., based on either the Hungarian Nitrate Database or the 4M model
results, showed negative N balances at a country scale, i.e., average −39 kg N per hectare.
This was confirmed by the differences in the applied N dose and N uptake distributions:
the applied N (Ninp) fell mostly within the 0–100 kg ha−1 range, while the N uptake (Nupt)
fell within the 100–200 kg/ha range. Comparing the ratios of total applied N (Ninp) and N
uptake (Nupt), we get the following:

• in the range of 0–100 kg ha−1: Ninp is 57% and Nupt is 16%;
• in the range of 100–200 kg ha−1: Ninp is 40% and Nupt is 82%;
• in the range above 200 kg ha−1: Ninp is only 3% and Nupt is only 2%.
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Due to the fact that 2016 was a particularly wet year, providing high yields, crop N
uptake was also higher than usual. Comparing the two maps, it can be observed that in
most areas covered by the nitrate load database, there were negative N balances. Since the
4M model estimated the total N amount of the above-ground parts of plants for areas with
byproducts remaining in the field, the N amounts taken up by the byproducts should not
be taken into account at the outputs of the N balances. Even if these correction factors are
taken into account, on the majority of the area included in the database, the N balances
were presumed to be around zero kg ha−1 or even negative.

It is definitely remarkable and proves the qualities of the 4M model that the crop
N uptake map showed close correlation with the potential agro-productivity map of
Hungary [30]. It is evident that higher plant N-uptake is related to higher crop yields. Thus,
the N-uptake map refers more or less to the national crop yield maps as well.

As such, the 4M model meets the requirement of being sensitive to differences in
input data. Furthermore, it shows the achievable yield on a given field using a given set of
agronomic interventions.

3.3. Agronomic and Agro-Environmental Consequences of Shortening the Prohibition Time

In the currently decree of 59/2008. (IV.29) FVM, the prohibition time is defined as
the period from 31st October to 15thFebruary (D1). Besides this period, model runs were
carried out for more reasonable periods, as defined by the authors: 15th November–15th
February (D2), or 30th November–15th February (D3) (Table 4). The aim of running the
4M model with the different scenarios was to estimate whether changing to less strict
prohibition intervals would cause a significant increase in nitrate leaching.

Table 4. N application timing of the D3 scenario Nitrogen doses applied in autumn were shifted by one month.

1 × Fertilized % 2 × Fertilized % 3 × Fertilized %

Winter wheat

N < 50 kg ha−1 50 kg ha−1 < N < 100 kg ha−1 N > 100 kg ha−1

15th March 100 5th November * 50 5th November * 25
1st April 50 15th March 40

15th April 35

Winter barley

N < 50 kg ha−1 50 kg ha−1 < N < 80 kg ha−1 N > 80 kg ha−1

15th March 100 15th October 60 15th October 30
15th March 40 5th March 30

1st April 40

Rapeseed

N < 70 kg ha−1 70 kg ha−1 < N < 110 kg ha−1 N > 110 kg ha−1

15th March 100 1st October 40 1st October 20
15th March 60 5th March 50

1st April 30

Maize

N < 80 kg ha−1 80 kg ha−1 < N < 120 kg ha−1 N > 120 kg ha−1

10th April 100 10th April 50 15th November
* 20

10th May 50 10th April 40
10th May 40

Sunflower

N < 50 kg ha−1 50 kg ha−1 < N

20th April 100 10th November
* 30

20th April 70

* The shifted application date falls within the current prohibition period.

Compared to the current regulations, the modified application date falls within
November for 40% of the blocks in the case of the D3 scenario (Table 5). If winter barley or
rapeseed is produced, the modified application date does not affect the current prohibition
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period. In the case of intensive winter wheat cultivation, the modified fertilization date is
in November. Producing spring sown plant such as maize and sunflower only, the amount
of nitrogen can be released in autumn, which is required to decompose plant residues; this
means November fertilization according to the modified application timing.

Table 5. The quantitative characteristics of areas affected by fertilization in November in the case of
modified application.

Number of Blocks Area (ha)

Winter wheat 8468 214,896
Maize 6765 166,966

Sunflower 7022 139,259

Total 22,255 521,121

Proportion to modeling 40.39% 40.63%

Changing the starting date of the prohibition interval from 31st October to 15th
November or to 30th November (and thus, shortening the prohibition interval) did not
cause perceptible differences in the amount of N leached at 0–90 cm depth. Similarly, there
were almost no differences in plant N-uptake and nitrogen balances. After running the 4M
model with the two extreme scenarios (with starting dates of 31st October (D1) and 30th
November (D3)), the differences in the amount of N leached at 0–90 depth were calculated,
and are shown in Figure 3.
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As indicated in Figure 3, 99.2% of the differences between scenarios D1 and D3 were
situated in the −5 and +5 kg ha−1 N leaching category; consequently, no substantial
changes were caused by shortening the prohibition period by 1 month.
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4. Discussion

There may be several reasons for the minimal differences in N leaching observed
between the two scenarios. In the case of later fertilization in autumn, less precipitation
occurs, causing a moderate change in the leaching of nutrients. Based on the data of the
Hungarian Meteorological Service, the average precipitation in November is about 50 mm
in Hungary (Figure 4) [31]. Therefore, in the case of fertilization at the end of November
until the end of the winter prohibition period (December, January, first part of February),
only 85 mm rain is to be expected. This small amount is not enough to leach out NO3-N
under the root zone, so in spring, as the growing season starts, plants can easily take up
this nutrient.
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In order to slow the rate of global warming and diminish the adverse effects of climate
change, reducing CO2 levels in air was set as a priority in EU climate policy. To reach
this goal under a community arrangement, standards of emission reductions were fixed.
EU countries shall reduce their greenhouse gases (GHG) emissions by a certain percent
over a definite time period compared to the 1990 base year levels. Additionally, strict CO2
emissions quotas were set [32].

As issues related to global warming were acknowledged at the EU level, reviewing
their policy on defining the length of the winter fertilization prohibition period in the
Nitrates Directive would be a logical progress.

The period when the topsoil is frozen in Hungary and in other countries has decreased
significantly. Before or after the current prohibition period, frozen topsoil cannot be
expected to enhance the leaching of nitrogen fertilizer loads.

To estimate the nitrate leaching exposure, i.e., as minor, moderate, or high, the Directorate-
General for the Environment (DG-ENV) and Task Force on Reactive Nitrogen (TFRN) de-
fined 13 climate zones in the EU. Hungary belongs to the Pannonian (PAN) climate [33–36].
Within this climate region (and also in two other groups), the amount of precipitation never
exceeds the amount of evapotranspiration, so the risk of nitrate leaching is minimal.

This study represents a first look at the environmental effect of altering the prohibition
period. Effects over longer periods on the amount of N leached related to the D1 and D3
prohibition interval can be estimated by 4M runs with different weather scenarios using
same Hungarian Nitrate Database from 2016.

5. Conclusions

Confirming our hypothesis, it was found that shortening the prohibition period by
changing the start date from 31st October to 15th November or to 30th November did not
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result in significant differences either in crop N uptake or in the amount of NO3-N leached
under the root zone (0–90 cm).

The results of 4M model simulations deferring the starting date by one month from
31st October to 30th November showed no increase in agro-environmental risk (that is,
increased amount of NO3-N leached under 0–90 cm soil depth or changes in nutrient
balances). In accordance with these results, a shortening of the prohibition period seems
to be possible, but results from just one year should be viewed with caution, since crop
N uptake may vary, as may environmental variables such as the rainfall in autumn or
winter. Further application of the 4M model with different weather scenarios (wet, average,
dry) for the same year (2016) database, or using databases of other years (2017, 2018,
etc.), are needed to determine whether the modification of the prohibition period will
significantly affect the amount of nitrate leached.
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