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Abstract: An important component in improving the quality of forests is to study the interference
intensity of forest fires, in order to describe the intensity of the forest fire and the vegetation recovery,
and to improve the monitoring ability of the dynamic change of the forest. Using a forest fire event
in Bilahe, Inner Monglia in 2017 as a case study, this study extracted the burned area based on the
BAIS2 index of Sentinel-2 data for 2016–2018. The leaf area index (LAI) and fractional vegetation
cover (FVC), which are more suitable for monitoring vegetation dynamic changes of a burned area,
were calculated by comparing the biophysical and spectral indices. The results showed that patterns
of change of LAI and FVC of various land cover types were similar post-fire. The LAI and FVC of
forest and grassland were high during the pre-fire and post-fire years. During the fire year, from
the fire month (May) through the next 4 months (September), the order of areas of different fire
severity in terms of values of LAI and FVC was: low > moderate > high severity. During the post
fire year, LAI and FVC increased rapidly in areas of different fire severity, and the ranking of areas
of different fire severity in terms of values LAI and FVC was consistent with the trend observed
during the pre-fire year. The results of this study can improve the understanding of the mechanisms
involved in post-fire vegetation change. By using quantitative inversion, the health trajectory of
the ecosystem can be rapidly determined, and therefore this method can play an irreplaceable role
in the realization of sustainable development in the study area. Therefore, it is of great scientific
significance to quantitatively retrieve vegetation variables by remote sensing.

Keywords: Sentinel-2A; BAIS2; fire severity; vegetation biophysical variables

1. Introduction

Fires can influence the global carbon cycle and act as important disruptors of forest
ecosystems by damaging large numbers of trees, changing tree species composition, reduc-
ing biomass and changing the surface landscape [1,2]. On the other hand, the succession
resulting from forest fires plays an important role in adjusting the structure of the plant
community and maintaining species diversity, which is an indispensable driving force for
the development of the forest ecosystem plant community [3]. The severity of a forest fire
relates to the degree of damage inflicted by the fire on the forest ecosystem, including to
vegetation, soil nutrients and physical and chemical characteristics of the soil [4,5]. The
fire severity refers to the loss or decomposition of organic matter aboveground and below-
ground. Metrics for this parameter vary with the ecosystem. [6]. The traditional method of
calculating the forest fire severity according to the specific investigation technical standard
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includes observing and recording forest type, height, diameter at breast height and number
of dead and surviving trees. The commonly used methods of evaluating forest fire severity
include the following steps: (1) selecting a remote sensing spectral index; (2) combining
the spectral index results with field investigation data; (3) conducting a regression analysis
and establishing a quantitative equation [7,8]. Remote sensing information technology has
become an important tool for monitoring vegetation growth as information is obtained
rapidly and at large spatial scales [9]. In addition, remote sensing data are widely used
in forest fire monitoring and assessment because of the large spatial areas that can be
converted and the high temporal resolution and low cost of the data [10–12]. In this way,
the technology allows for rapid analysis of damage to vegetation during the early post-fire
stage as well as monitoring of vegetation succession over the long term. At present, the
most widely used indices are the normalized burn ratio (NBR) and delta NBR (dNBR).
The dNBR index is considered more suitable among the spectral indices for describing fire
severity in dry Mediterranean climates [13]. Quantitative evaluation of forest fire sever-
ity is helpful for revealing the development and change in various ecological processes
and the mechanisms responsible for forest vegetation succession after forest fires [14,15].
Quantitative evaluation can also be used to estimate loss in biomass resulting from a forest
fire and can provide a reference for the study of vegetation recovery and the global carbon
balance [16].

Research on fire severity has becoming increasingly popular in recent years. The
traditional plot survey method is based on the composite burn index (CBI), which is a
ground-based measure proposed by Key and Benson [13] in 2006. CBI remains the standard
index used in field investigations and evaluations of forest fire severity within the United
States Forest Service. The normalized burn index (NBR) was first proposed by Garcia and
Lopez [17] as an alternative to the Normalized Difference Vegetation Index (NDVI), in
which the red (R) band in the NDVI calculation formula is replaced by the short-wave
infrared (SWIR) band. Further studies have shown that the dNBR is able to better represent
the spatial distribution of forest fire severity compared to the NBR [7,18,19]. Previous
studies have shown that the NBR index is more sensitive to changes in chlorophyll and
vegetation water content, and have concluded that this index is the most valuable remote
sensing method for assessing fire severity [8,20,21]. Most past studies of fire severity
using remote sensing data are based on the red (R), near infrared (NIR) and short-wave
infrared (SWIR) spectral regions [22]. However, few studies have to date linked the red-
edge spectral domain to fire severity. Filipponi [23] in 2018 proposed the burned area
index for Sentinel-2 (BAIS2) based on the Sentinel-2 red-edge spectral band. A study by
Fernández-Manso et al. [24] of fires in Sierra de Gata, mid-western Spain in 2015 found that
the red-edge band of Sentinel-2 data is very helpful for estimating the extent of damage
caused by fire and for monitoring post-fire reconstruction.

Forest fires result in large-scale destruction of surface vegetation in forest ecosystems,
which manifests in remote sensing images as a decrease and increase in the reflectance
of the NIR and SWIR bands, respectively [25,26]. Vegetation recovery of a burned area is
a function of various ecosystem factors. At present, medium and low-resolution remote
sensing data are widely used for monitoring of vegetation recovery, including Landsat,
Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very-High-
Resolution Radiometer (AVHRR) data. Caselles et al. [27] in 1991 used the NIR and SWIR
bands of thematic mapper (TM) images to conduct a disaster assessment following forest
fires in Valencia, Spain, and to monitor vegetation regeneration within the burned area.
Wimberly and Reilly [26] used TM images and the NBR to study the relationship between
forest fire damage and local biodiversity in the southern Appalachian Mountains. Zhu [28]
used multi-spectral and infrared data from satellites to map and classify the extent and
severity of fires in fire-prone areas such as An Ning City, Yunnan Province. MODIS and
Landsat TM/Enhanced Thematic Mapper (ETM+) (NASA, America) time series data are
often used to conduct research on annual vegetation recovery. The NDVI is related to
vegetation growth and coverage, and is generally used as an index to monitor dynamic
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changes in forest vegetation after a fire [29–31]. For example, Lanorte et al. [32] and
Pena et al. [33] used NDVI to study vegetation recovery after fires of different severity.
Xiao et al. [34] studied the impact of forest fires on vegetation and monitored recovery
based on leaf area index (LAI), NDVI, enhanced vegetation index (EVI), land surface
water index (LSWI) and other vegetation biophysical variables. Most of these studies
were based on individual sources of remote sensing data, using one or several vegetation
indices. However, there has, to date, not been a comparison between spectral indices
and biophysical indices using high-resolution satellite optical data. This comparison is
relevant as it can increase understanding of the mechanisms involved in post-fire vegetation
recovery. The Sentinel-2 Multi-Spectral imager (MSI) sensor (ESA) provides opportunities
to access open data characterized by a trade-off in spatiotemporal resolution (10–60 m
pixel size and a 5-day temporal resolution) and to improve research on post-fire vegetation
recovery [35]. Fernández-Manso et al. [24] and Navarro et al. [36] successfully evaluated
fire severity based on Sentinel-2 MSI data.

In addition, recent studies [37,38] have demonstrated the applicability and even su-
periority of Sentinel-2 MSI data for natural resource applications. Biophysical indices are
the variables related to the forest ecosystem, and those extracted from remote sensing
data are mainly related to biophysical variables used in the study of the terrestrial ecosys-
tem, including LAI, photosynthetic effective radiation absorption rate (FAPAR), fractional
vegetation cover (FVC), canopy water content (CWC) and chlorophyll content in the leaf
(CCL). These five variables represent essential climate variables (ECV) recognized by the
Global Climate Observation System (GCOS) and the Global Terrestrial Observation System
(GTOS) [39]. The advantages of the newly developed algorithm for Sentinel-2 imagery
are two aspects in comparison with other (e.g., look-up table [40], the empirical relation-
ship between biophysical variables and vegetation indices [41], etc.) derived biophysical
variables methods. First, the algorithm is generic with no need for input of the specific
land cover type and could be easily extended to the retrieval of vegetation biophysical
variables at the global scale. Second, the algorithm has been integrated into SNAP software
as a Simplified Level 2 Product Prototype Processor (SL2P) (ESA) tool that can be used
by the public community to produce biophysical products [42,43]. That is, we can easily
use the SL2P tool to estimate biophysics from a regional level to a global level. Therefore,
the Sentinel-2 biophysical estimated by this algorithm will be widely used in ecological
environments, even in various fields [43].

To date, there has not been a comparison between spectral indices and biological
indices using high-resolution satellite optical data. The aim of this study was to quantify
the short-term dynamic changes of vegetation post-fire. The burned area resulting from
a mega forest fire in Bilahe in 2017 was used as a case study, and vegetation short-term
dynamic changes after fires of different fire severity was studied using biophysical variables
such as LAI and FVC generated from Sentinel-2 satellite data. The specific objectives of the
present study were to: (1) extract the burned area and classify the severity of the fire using
the BAIS2 index [23], and to verify these results against the NBR; (2) compare spectral
indices with biophysical variables to identify biophysical variables that are more suitable
for evaluating fire severity; (3) use biophysical indices to quantitatively measure vegetation
changes of various land cover types in response to forest fires.

2. Materials and Methods
2.1. Research Data
2.1.1. Study Area

The present study investigated the area burnt by the 2017 Bilahe “5.02” mega forest
fire. This huge forest fire occurred on 2 May 2017 in the Beidahe Forest Farm of the
Bilahe Forestry Bureau, all open fire was finally put out at 10:30 on May 5, resulting in
damage to 82.82 km2 of forest out of a total forest area of 115 km2 [44]. To select image
the closest to occurrence time of fire, we used the Sentinel-2A image data (remote sensing
data in Section 2.1.2) for 25 May 2017 in this study. Figure 1a is a false-color image of



Sustainability 2021, 13, 432 4 of 21

the burned area of Bilahe, based on Sentinel-2A remote sensing data and ArcGIS 10.6
software. There are some thin clouds in the west part of this image that for not to affects
the accuracy of to extract the burned area, we remove this area completely. Figure 1b is
a land cover classification map of burned area in the Bilahe, the dataset about land use
is provided by the Finer Resolution Observation and Monitoring of Global Land Cover
(FROM-GLC) (Tsinghua University) product in 2017, which is the world’s first set of Global
Land Cover products with a resolution of 10 m [45] (http://data.ess.tsinghua.edu.cn). The
land covers an area of 83.11 km2 included 42.81 km2 of Grassland (51.51%), 38.30 km2 of
Forest (46.08%), 0.42 km2 of Cropland (0.50%), 0.0003 km2 of Shrubland (0.003%), 0.27 km2

of Wetland (0.33%), 1.08 km2 of Water (1.30%), 0.23 km2 of Impervious surface (0.27%)
and 0.01 km2 of Bareland (0.01%). The Bilahe forestry bureau is located in the southeast
slope of the Daxing’anling Mountains, which falls under the administrative rule of the
Oroqen Autonomous Banner of Inner Mongolia, and has a geographic coordinate range
of 122◦40′36′ ′–123◦55′00′ ′ E, 49◦00′37′ ′–49◦54′49′ ′ N and a total area of 4716.46 km2. The
terrain of the forest area is relatively gentle with only small variations in elevation, and is
generally high in the southwest and low in the northeast. The dimensions of the forest are
~84 km long in the north and south and ~45 km wide in the east and west, with a slope of
~15◦ and an altitude of 268 m–1235 m. The zonal soil includes meadow soil, dark brown
soil and chernozem; whereas the non-zonal soils include meadow soil and swamp soil.
This study area falls within the cold temperate zone and has a continental monsoon climate.
The region has cold and long winter, short and rainy summers, with a high variation in
temperature difference between day and night over the four seasons. The annual average
temperature and precipitation is 1.1 ◦C and 479.4 mm, respectively, and the rainy season
extends from July to August, accounting for 50–60% of total annual precipitation. The
vegetation of the area is dominated by flora of Eastern Siberian, Mongolian, and East Asian.
Some common plant/tree species include Larix gmelini Rupr., Betula platyphylla Suk., Betula
davurica Pall., Populus davidiana Dode. The more scattered species include Phellodendron
amurense Rupr., fraxinus mandshurica Rupr. and Tilia amurensis Rupr. The area has a rich
diversity of undergrowth herbs [46].
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Figure 1. Location of the study area. (a) False color image of the burned area of Bilahe (post-fire: 25 May 2017); (b) land
cover classification map of burned land in the Bilahe Forest Bureau (pre-fire).

2.1.2. Remote Sensing Data

The use of Sentinel-2 data can further improve environmental monitoring capability
and the disaster response rate. Real-time dynamic monitoring can be achieved by combin-
ing Sentinel-2 remote sensing data with that of other countries. Sentinel-2A was the second
satellite to be launched, and together with Sentinel-2B, was able to cover the surface of the
Earth every 5 days. Sentinel-2A represents novel satellite technology with a high spatial
resolution and multi-spectral imaging, and is mainly used for emergency rescue services
and for global land observation such as land vegetation, soil and water resources, inland
waterways and coastal areas [47]. In the current study, only good quality remote sensing
data collected during cloudless cover were used, with only 32 images (16 periods (Sensor

http://data.ess.tsinghua.edu.cn
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flight time) with two images per period) found to meet these requirements over the entire
study period of 2016–2018. Table 1 shows the dates during which were taken over the 16
periods. The Sentinel-2A satellite L1C remote sensing data were downloaded from the
Copernicus SciHub website (https://scihub.copernicus.eu/dh us/#/home, last accessed
13 April 2019).

Table 1. Dates for which Sentinel-2A satellites images for the study area were used over the 16 date
(fire time: 2–5 May 2017).

Dates

2016 27 May 19 June 08 August 28 August 27 October
2017 25 May 14 June 04 July 02 September 19 October
2018 27 April 30 May 26 June 18 August 27 September 17 October

2.2. Method
2.2.1. Preprocessing of Remote Sensing Data

The L1C (Level-1 C) level data and Sentinel-2 Toolbox (SNAP software toolbox, ESA)
were used for data processing and completion according to the Sentinel-2A user manual
issued by the ESA. L1C level data were generated by geometric resampling, georeferencing,
radiometric calibration and, top of atmosphere (TOA) processing. L1C are the user data
released by the ESA and L2A (Level-2 A) are the L1C data processed through the software
SNAP. The ESA specially developed various processing modules in SNAP to facilitate
the use, exploration and promotion of Sentinel data series among researchers, such as
the Sen2cor module (Sentinel-2 SEN2COR Processor). Other processing modules can also
be selectively installed according to different research fields and data types, such as the
Sentinel-2 Toolbox Kit Module and SMOS-box Kit Module. The main function of the
Sen2cor module is to calibrate the L1C data of Sentinel-2 for the atmospheric underlying
surface and to create a corresponding L2A data file [48]. Resampling is a gray processing
method in the image data reorganization. Specifically, the existing data are further pro-
cessed in accordance with the application requirements to make them more in line with
the needs. In addition, it has the characteristics of simplicity and fast calculation, and can
retain the gray value of the original image, which can meet the application purpose of
this study. Therefore, we resampled the atmospheric corrected Sentinel-2A data (three
resolutions of 10 m, 20 m and 60 m), and the resolution of all bands is unified to 10 m,
using the bilinear interpolation. Image mosaic: In order to enable remote sensing images to
completely cover the study area, two or more images need to be stitched together to obtain
a larger image map. Image subset: In order to obtain an accurate range of remote sensing
images, it is necessary to subset the image in conjunction with the boundary of the study
area. In a word, this study carried out atmospheric correction, resampling, image mosaic
and subset of several Sentinel-2A images to obtain the remote sensing image map of Bilahe
burned area.

2.2.2. Extraction of Burned Area and Classification of Fire Severity

The current study used the Sentinel-2A image data for 25 May 2017 and the BAIS2
index [23] to calculate the area of burning and to categorize the severity of burning within
the study area. The BAIS2 index defined in Equation (1), which detects the radiation
response of SWIR, has been shown to represent the burned area, and incorporates a red-
edge spectral-domain band ratio to describe vegetation characteristics [24]. In the current
study, the “band math” tool of the ENVI 5.3 software platform was used to process the
R, NIR and SWIR of Sentinel-2A images, which were then substituted into Equation (1)
to obtain the BAIS2 value. Filipponi [23] found the range of BAIS2 to be 0.75–1.25 and
a positive correlation between BAIS2 and fire severity was identified. The current study
combined the classification of forest fire severity with NBR to calculate the burned area and
classify fire severity. The measurement of fire severity based on remote sensing is usually

https://scihub.copernicus.eu/dh
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achieved using a specific spectral index. Finally, the ranges of fire severity of different parts
of the study area were determined, combined with the classification results of fire severity
in the study area of Liu et al. [49], following which fire severity was categorized into three
grades, namely low, moderate and high. Table 2 is fire severity classification rules of BAIS2
and NBR index in this study combined with the classification results of fire severity in the
study area of Liu et al. [49]. The results showed that BAIS2 ranged from 0.73 to 1.23, similar
to the results obtained by Filipponi [23], and the NBR ranged from −0.53 to 0.

Table 2. Fire severity classification rule.

Fire Severity BAIS2 Threshold Normalized Burn Index (NBR) Threshold

low 0.73–1.04 −0.16–0
moderate 1.04–1.18 −0.37–(−0.16)

high 1.18–1.23 −0.53–(−0.37)
range 0.73–1.23 −0.53–0

In Equation (1), B6, B7, B8A and B12 are the corresponding bands of Sentinel-2 images.

BAIS2 =
(

1−
√

B6× B7× B8A/B4
)
×

(
(B12− B8A)/

√
B12 + B8A + 1

)
(1)

2.2.3. A Comparison of Results Obtained from the BAIS2 Index with Those from Using
the NBR

The current study used NBR to evaluate the fire severity and the result of BAIS2 index
classification. The study by Garcia and Caselles [17] was the first to replace the R band in
the NDVI formula with the SWIR band, i.e., (NIR−SWIR)/(NIR+SWIR), to map burned
area in Spain. This index was formally named the normalized burn index (NBR) in 1999 [17].
The current study used the band math tool of the ENVI 5.3 software platform along with
Equation (2) to calculate the NBR of the NIR and the SWIR for Sentinel-2A image data
for 25 May 2017. The theoretical range of NBR is −1.0–1.0, and it is negatively correlated
with fire severity. Liu et al. [49] calculated the dNBR of Landsat 8 satellite images before
and after a fire and constructed a fire severity grading index by a combination of visual
interpretation and mathematical statistics. Using this index, Liu et al. [49] quantitatively
evaluated burned area fire severity, and using field measured GPS data and GF-2 data,
verified the accuracy of the index-based evaluation to be 86.39%. Therefore, the current
study used the NBR index to evaluate burned area fire severity for the study area. The
range of fire severity within the study area was then determined, and fire severity was
categorized into three grades; namely, low, moderate and high (Table 2). Finally, the
classification of the fire severity damage of the typical vegetation (forest and grassland) in
the BAIS2 index burned area was verified by comparing the results of the extraction and
the fire severity classification of NBR and BAIS2 according to the various land cover types
of the Bilahe Forest Farm.

NBR =
B8− B12
B8 + B12

(2)

In Equation (2), B8 and B12 are the corresponding bands of Sentinel-2 images.

2.2.4. Evaluation Metrics

To assess the similarity between BAIS2 and NBR, we computed the Sorensen–Dice
similarity index. Let a be the number of pixels that have been identified at the same severity
level from both indices, b the number of pixels that have been identified at the severity
level from BAIS2 only and c the number of pixels identified at the severity level from NBR
only. Sorensen similarity index is defined as follow:

Sorensen−Dice similarity (SD) index =
2a

2a + b + c
(3)
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The SD index ranges from 0 to 1, where 1 means perfect similarity and 0 no similarity
between the examined indices [50,51].

The coefficient of determination R2 was used to quantify the strength of relationship
between spectral indices and biophysical variables. R2 was used to quantify the accuracy
of the correlation since the correlation between the coefficient of determination and the
spectral indices and biophysical variables is proportional.

2.2.5. Calculation of Vegetation Biophysical Variables

In the L2A level data product, five important indices, namely, LAI, FAPAR, CCL,
CWC and FVC, can be generated for a large area using the Biophysical Processor module
of SNAP software through processing the variables zenith angle, solar altitude angle and
relative azimuth angle of a specific band. The module uses the PROSPECT+SAIL radiative
transfer model to calculate inversion. First, data training is conducted according to the
vegetation characteristics of the study area, following which the canopy characteristics of
each grid pixel are analyzed and calculated by using a neural network. The construction
of the neural network model consists of 11 explicit input layer variables, namely band 3,
band 4, band 5, band 6, band 7, band 8A, band 11, band 12, zenith angle cosine value,
solar height angle cosine value and relative azimuth angle cosine value, and five implicit
neuron variables with a tangent S-shaped curve (sigmoid) transfer function are composed.
This algorithm can calculate the relationship between the vegetation characteristics of
each pixel and the apparent reflectance of the canopy from the macro area, can ensure
the optimal simulation accuracy of remote sensing inversion through the self-verification
function of the model, and can generate effective data products with a resolution of 10 m
through resampling. The accuracy of the data produced is greatly improved compared
with previous remote sensing data, providing strong quantitative remote sensing analysis
for the regional vegetation environment [47]. A total of 32 images need to be invoked by
the Sen2cor model for L2A level data processing, following which the biophysical indices
for each scene data are retrieved separately using the Biophysical Processor and L2A level
data under SNAP 5.0 software. After mosaicking, the resampling and the subset modules
in SNAP 5.0 software were used to splice, crop and process the 32 images to obtain the
biophysical indices data of the burned area with a spatial resolution of 10 m [52]. Finally,
the five biophysical indices LAI, FAPAR, CCL, CWC and FVC were imported into ArcGIS
10.3 software for quantitative analysis.

LAI represents the sum of the leaf area of plants above the unit surface area [36],
and this variable can effectively represent the canopy structure of vegetation, which is
often a key variable in the global carbon cycle and water cycle model [53]. The range
of LAI used in the present study was (0, 2.5). FAPAR is the ratio of photosynthetically
active radiation (PAR) absorbed by vegetation incident to solar radiation and represents
the ability of the canopy to absorb PAR energy. FAPAR is therefore an important remote
sensing variable for estimating the productivity (NPP) of vegetation and is also used to
describe basic physiological variables involved in the material energy exchange processes
related to vegetation structure [54]. In the present study, the range of FAPAR used was
(0,1). FVC represents the percentage of the vertical projection of vegetation in the statistic
area of land surface and is a measure of surface vegetation coverage and regional growth
and an important indicator of ecological health [55,56]. The range of FVC used in the
current study was (0,1). CWC can be used to effectively evaluate the growth and soil
environment conditions of vegetation and is therefore useful for drought monitoring and
the improvement of ecological environments [53]. The range of CWC used in the present
study was (0, 0.08). CCL can effectively represent the growth and nutrition status of
vegetation, regional photosynthesis capacity and the health of the natural environment
and is therefore of great significance for predicting crop maturity and for the monitoring of
crop growth and crop pests [57]. The range of CCL used in the present study was (0, 180).
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2.2.6. Principal Component Analysis

The five biophysical indices LAI, FAPAR, CCL, CWC and FVC can represent certain
indicative effects on the distribution of regional vegetation characteristics. To select the
optimal biological variables, principal component analysis (PCA) was used to select the
typical vegetation type variables. PCA can transform several related indices into fewer
independent comprehensive indices on the premise of with minimum information loss. The
advantages of PCA include the objective simplification of a large number of factors while
avoiding human error [58,59]. The steps taken within the PCA in the current study were: (1)
vegetation biophysical variables calculated from Sentinel-2 image data were standardized;
(2) the correlation coefficient matrix R of each index was established; (3) the eigenvalue λ

and corresponding eigenvector l of R were calculated; (4) the variance contribution rate
was calculated and the number of principal components K was determined. Selecting more
suitable biophysical parameters based on PCA.

3. Results
3.1. Extraction of Burned Area and Classification of Fire Severity
3.1.1. Subsubsection Extraction of Burned Area and Classification of Fire Severity Based
on BAIS2

To extract the burned area in the study area, we used the Sentinel-2A image data
for 25 May 2017, the fire severity classification rule of BAIS2 index in Table 2 and ENVI
5.1 software. Figure 2a is a classification of fire severity and Table 3 represents the area
percentages of burned area in grassland and forest with different fire severity based on
BAIS2 index. It was found to be 61.39 km2, of which forest, grassland and remaining
burned areas were 23.89 km2, 36.18 km2 and 1.32 km2, respectively, accounting for 38.92%,
58.93% and 2.15% of the total burned area, respectively. The shape of the burned area
followed the prevailing wind direction, extending from southwest to northeast. The fire
severity classification rules shown in Table 2 were used to classify fire severity in the study
area (Figure 2a). In Figure 2a, red, orange and green represent high, moderate and low fire
severity areas, respectively. The area of moderate fire severity was the largest in the study
area. Low fire severity burned area covered the second largest area. The high fire severity
area covered the smallest area.
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3.1.2. Extraction of Burned Area and Classification of Fire Severity by NBR

To extract the burned area within the study area, we used the Sentinel-2A image data
for 25 May 2017, the fire severity classification rule of the NBR index in Table 2 and ENVI
5.1 software. Figure 2b is a classification of fire severity and Table 3 represents the area
percentages of burned area in grassland and forest with different fire severity NBR index.
The results showed that the total burned area was 62.86 km2, in which forest, grassland and
other burned areas were 24.52 km2, 36.88 km2 and 1.46 km2, respectively, accounting for
39.03%, 58.67% and 2.30% of the total burned area, respectively. The shape of the burned
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area followed that of the prevailing wind direction, extending from southwest to northeast.
The fire severity classification rules shown in Table 2 were used to classify the fire severity
in the study area (Figure 2b). In Figure 2b, red, orange and green represent high, moderate
and low fire severity areas, respectively. In the study area, moderate fire severity covered
the largest area. The low fire severity area covered the second largest area. The high fire
severity area covered the smallest area.

3.2. Analysis of the Results of Fire Severity Classification

The results (Table 3) showed that burned area according to NBR was 62.86 km2, and
was selected to compared the results of the spectral index BAIS2 based on the red edge
band, including 24.52 km2 and 36.88 km2 of forest and grassland, respectively. In contrast,
burned area according to BAIS2 was 61.39 km2, and had a 97.66% similarity to the result of
NBR, including 23.89 km2 and 36.18 km2 of forest and grassland, respectively, with a 97.43%
and 98.10% similarity to the NBR results, respectively. Burned areas in the low, moderate
and high classes according to NBR were 20.85 km2, 36.91 km2 and 5.10 km2, respectively, of
which 6.85 km2, 14.14 km2 and 3.53 km2 were forest, respectively, and 13.04 km2, 22.41 km2

and 1.43 km2 were grassland, respectively. In contrast, burned areas in the low, moderate
and high classes according to BAIS2 were 21.15 km2, 35.36 km2 and 4.88 km2, respectively,
achieving a similarity to NBR results of 98.56%, 95.8% and 95.69% respectively. Among
the three fire severity classes of low, moderate and high, BAIS2 found forest to occupy
6.62 km2, 13.56 km2 and 3.71 km2, respectively, with a similarity to the NBR results of
96.53%, 95.72% and 95.15%, respectively, whereas grassland occupied 13.72 km2, 21.33 km2

and 1.13 km2, respectively, with a similarity to NBR results of 95.04%, 95.72% and 73.45%,
respectively. In addition, the results of fire severity classification by BAIS2 and NBR were
very similar.

Within the NBR classification results, all of the pixels value for each fire severity
category for forest and grassland, and the corresponding values were extracted from the
results of BAIS2. Table 4 shows the SD index of comparison between the results of BAIS2
and NBR (Table 3). In both forested and grassland coverage areas, the moderate severity
presented the highest similarity with 0.89 for both cover types. The lowest similarity
observed in low severity class with 0.81 and 0.71 forest and grassland respectively. Finally,
the high severity class had a similarity index of 0.86 and 0.84 for forest and grassland
respectively. From the similarity table, it can be concluded that both indices have a similar
performance in fire severity classification. The difference between groups in the results of
BAIS2 and NBR was caused by the subjectivity of the threshold level.

Table 3. The distribution of the burned area.

Fire
Severity

Vegetation
Types

Area (km2) Percentage (%)

BAIS2 NBR
Total Area Forest/Grassland Low/Moderate/High Total Area

BAIS2 NBR BAIS2 NBR BAIS2 NBR BAIS2 NBR

Low
Forest

21.15
6.62

20.85
6.85

34.45 33.17
27.71 27.94 31.30 32.85 10.78 10.90

Grassland 13.72 13.04 37.92 35.36 64.87 62.54 22.35 20.74

Moderate
Forest

35.36
13.56

36.91
14.14

57.60 58.72
56.76 57.67 38.35 38.31 22.09 22.49

Grassland 21.33 22.41 58.96 60.76 60.32 60.72 34.75 35.65

High Forest
4.88

3.71
5.10

3.53
7.95 8.11

15.53 14.40 76.02 69.22 6.04 5.62
Grassland 1.13 1.43 3.12 3.88 23.16 28.04 1.84 2.27

Total area 61.39 62.86
62.38/ 64.02/
84.51 86.15
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Table 4. Similarity results of classification level for forest fire severity.

Fire Severity
Forest Grassland

a b c SD a b c SD

Low 29340 6184 7926 0.81 9304 5476 2261 0.71
Moderate 122146 18524 12928 0.89 193463 29265 19165 0.89

High 52328 6772 10627 0.86 105387 13804 27119 0.84

3.3. Relationship between BAIS2 and Vegetation Biophysical Indices
3.3.1. Relationship between BAIS2 and Vegetation Biophysical Indices for Grassland

Based on the fire severity classification results (Figure 2) of Sentinel-2A image data on
May 25 2017, the BAIS2 and its corresponding biophysical variable values (LAI, fAPAR,
CCL, CWC and FVC in Section 2.2.5) of each pixel were calculated. Finally, the relationship
between the BAIS2 index and the biophysical variable values for the different fire severity
of grassland was calculated by R software (as shown in Figure 3). The a, b, c, and d figures
represent total burned areas, and low, moderate and high fire severity, respectively. In the
figure, the diagonals show the distribution map, the lower left shows the bivariate scatter
map with fitting lines, and the upper right shows the correlation coefficient and significance
level. The correlation coefficients r between the BAIS2 index and LAI in the low, moderate
and high fire severity areas were −0.84, −0.72 and −0.49, respectively, and all correlations
were significantly negative. The correlation coefficients r between the BAIS2 index and
FAPAR in the low, moderate and high fire severity areas were −0.81, −0.89 and −0.78,
respectively, with all correlations being significantly negative. The correlation coefficients r
between the BAIS2 index and CCL in the low, moderate and high fire severity areas were
−0.37, −0.17 and −0.47, respectively, with all correlations being significantly negative. The
correlation coefficients r between the BAIS2 index and CWC in the low, moderate and high
fire severity areas were −0.76, −0.58 and −0.31, respectively, with all correlations being
significantly negative. The correlation coefficients r between the BAIS2 index and FVC were
−0.75, −0.85 and −0.89 in the low, moderate and high fire severity areas, respectively, and
were significantly negatively correlated. The correlation coefficients r between the BAIS2
index and LAI, FAPAR, CCL, CWC, and FVC in the total burned areas were −0.93, −0.94,
−0.54, −0.87 and −0.93, respectively, with all correlations being significantly negative. All
indicators had significant negative correlations with BAIS2, and scatterplots plotting BAIS2
against the biophysical variables are almost linear, with high correlations. The biophysical
variables showed downward trends with increasing BAIS2, i.e., with increasing fire severity,
damage to vegetation increased. These five biophysical variables have certain indicative
effects on the distribution of regional vegetation characteristics. In general, LAI and FVC
showed high correlations with BAIS2; therefore, they were selected as the key vegetation
biophysical variables in the current study.
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3.3.2. Relationship between BAIS2 and Vegetation Biophysical Indices for Forest

Based on the fire severity classification results (Figure 2) of Sentinel-2A image data
on May 25 2017, the BAIS2 value and its corresponding biophysical variable values (LAI,
fAPAR, CCL, CWC and FVC in Section 2.2.5) of each pixel were calculated, finally the
relationship between the BAIS2 index and biophysical variable values for the different
fire severity of forest was calculated by R software (as shown in Figure 4). The a, b,
c, and d figures represent total burned areas, and low, moderate and high fire severity,
respectively. In the figure, the diagonals show the distribution map, the lower left shows
the bivariate scatter map with fitting lines and the upper right shows the correlation
coefficient and significance level. The correlation coefficients r between the BAIS2 index
and LAI in the low, moderate and high fire severity areas were −0.86, −0.93 and −0.70,
respectively, with extremely significant negative correlations. The correlation coefficients r
between the BAIS2 index and FAPAR in the low, moderate and high fire severity areas were
−0.84, −0.94 and −0.80, respectively, with extremely significant negative correlations. The
correlation coefficients r between the BAIS2 index and CCL in the low, moderate and high
fire severity areas were −0.58, −0.38 and −0.33, respectively, with extremely significant
negative correlations. The correlation coefficients r between BAIS2 index and CWC in the
low, moderate and high fire severity areas were −0.81, −0.76 and −0.41, respectively, with
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extremely significant negative correlations. The correlation coefficients r between the BAIS2
index and FVC were −0.88, −0.78 and −0.45 in low, moderate and high fire severity areas,
respectively, with extremely significant negative correlations. The correlation coefficients
r between the BAIS2 index and LAI, FAPAR, CCL, CWC and FVC in the total burned
areas were −0.97, −0.96, −0.72, −0.93 and −0.95, respectively, with all correlations being
significantly negative. All indicators showed extremely significant negative correlations
with BAIS2, and scatterplots of BAIS2 plotted against the biophysical variables were almost
linear, displaying high correlations. The biophysical variables showed a downward trend
with increasing BAIS2 index, indicating that an increase in fire severity resulted in more
serious damage to vegetation. These five biophysical variables have certain indicative
effects on the distribution of regional vegetation characteristics. In general, LAI and
FVC showed high correlations with BAIS2, and therefore they were selected as the key
vegetation biophysical variables in the current study. From the distribution map, LAI
and FVC have different intensity of response to the changes of fire severity and various
land cover types. At low, moderate and high fire severity, the range of FVC and LAI in
grassland was 0–0.20, 0–0.12 and 0–0.05; and 0–0.60, 0–0.50 and 0–0.20, respectively; FVC
and LAI of forest were 0–0.60, 0–0.50 and 0–0.20; and 0–0.30, 0–0.14 and 0–0.05, respectively;
it was found that the range of FVC and LAI decreased with the increase of fire severity.
This paper attempts to use FVC = 0.2 and LAI = 0.3 as boundary values for forest and
grassland burned area, but the applicability of FVC and LAI needs further study to more
fully evaluate fire severity for various land cover types.
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3.3.3. Selection of Suitable Vegetation Biophysical Variables to Evaluate fire Severity

SPSS software was used to summarize the five indices, calculate the correlation coeffi-
cient matrix and variance contribution rate according to PCA, and taking the cumulative
contribution rate of 80% as the threshold value, selected the first k characteristic roots as the
principal component of the final comprehensive score. Table 5 is the principal component
analysis of the five indicators, and demonstrates that in the first principal component
(PC1) of both forest and grassland, FVC and LAI were the indexes with a larger coefficient,
respectively. Therefore, from the results of PCA, it can be concluded that LAI and FVC
can represent vegetation biophysical variables, finally LAI and FVC were selected as the
priority biophysical variables.

Table 5. The contribution rates and characteristic values of principal components.

Biophysical Variables Forest Grassland
PC1 PC1

CCL 0.848 0.742
CWC 0.963 0.918

FAPAR 0.980 0.964
FVC 0.991 0.978
LAI 0.973 0.985

Characteristic values 4.537 4.251
Variance contribution rates (%) 90.734 85.027

Abbreviations: CCL: chlorophyll content in the leaf; CWC: canopy water content; FAPAR: photosynthetic effective
radiation absorption rate; FVC: fractional vegetation cover; LAI: leaf area index.

3.4. Dynamic Changes in Vegetation LAI and FVC with Different Fire Severity

LAI and FVC were selected as the key biophysical variables in the current study. The
all-pixels average value of LAI and FVC for the various land cover types were extracted
for burned areas of different fire severity within the study area from 2016 to 2018 in 16
different periods, as shown in Figures 5 and 6, and the changes in the study area pre-fire
and post-fire were observed. After the fire, vegetation LAI and FVC decreased significantly,
although differences in LAI and FVC according to the severity of the fire were evident.
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Figure 5. Time variation of leaf area index (LAI) for various land cover types under different fire
severity (the red dotted line represents the time dividing line pre-fire and post-fire, and the red box
represents the fire month).
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Figure 6. Time variation of fractional vegetation cover (FVC) for various land cover types under
different fire severity (the red dotted line represents the time dividing line pre-fire and post-fire, and
the red box represents the fire month).

The patterns of change in LAI and FVC after the fire were similar for the various
land cover types. The results showed that the distribution of LAI and FVC for forest and
grassland across the burned areas of different fire severity in the year before the fire were
ranked as high > moderate > low, with the same pattern evident in the year after the fire.
LAI and FVC increased rapidly in the high, moderate and low fire severity areas in the year
after the fire, reaching the same patterns seen during the year before the fire. LAI and FVC
showed the most rapid and most significant growth in the high fire severity area, followed
by moderate and low fire severity areas. The fluctuations of the standard deviations of LAI
and FVC were similar to that of their growth, ranking among the fire severity categories as
high > moderate > low. From May to September in the fire year, the values of LAI and FVC
ranked according to burned areas of different severity were: low > moderate > high. The
LAI and FVC values of forest and grassland in the high fire severity area were significantly
lower than those of the moderate and low fire severity areas, and likewise those of the
moderate fire severity area were significantly lower than those of the low fire severity area.
Whereas LAI and FVC in the high fire severity area in October gradually exceeded those in
the moderate and low fire severity areas.

From 2016 to 2018, the growth trends of LAI and FVC in various land cover types
according to the category of fire severity had some differences. It was found that the
maximum LAI and FVC values for forest were higher than those of grassland, and the
standard deviation of LAI and FVC of forest was higher than that of grassland. In general,
similar FVC values of forest and grassland were evident in the years both before and after
the fire; however, the FVC value of forest during the fire year was smaller than that of
grassland. The LAI of forest was larger than that of grassland in the year before and after
the fire but smaller than that of grassland in the fire year. Table 6 shows the correlation
between leaf area index (LAI) and fractional vegetation cover (FVC) for various land cover
types in burned areas of the same category of severity. Table 6 shows that good correlations
between FVC and LAI were obtained for various land cover types in the same category
of severity of burned area. It is evident that LAI increased in parallel with FVC, although
LAI increased at a faster rate. The growth patterns of LAI and FVC over 2016–2018 for
the burned areas of different severity were the same for the same land cover types, but
it is clear that LAI increased at a greater rate than FVC. One post-fire year, the LAI and
FVC showed obvious improvement of the burned area, and the LAI at the post-fire year
is greater than at the pre-fire year in some areas. It can be seen that the vegetation was
recovered.
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Table 6. Correlation between leaf area index (LAI) and fractional vegetation cover (FVC) for various
land cover types in burned areas of the same category of severity.

Land Cover Type Grassland Forest

Fire Severity Low Moderate High Low Moderate High

R 0.932 0.765 0.569 0.945 0.736 0.547

The spatial distributions of LAI and FVC were extracted for various land cover types
of different fire severity within the study area during the period 2016–2018, the month of
the fire occurrence, and the corresponding month the year before and after fire by ArcGIS
10.6 software, as shown in Figures 7 and 8. In Figures 7 and 8, the two indicators LAI and
FVC are shown, with the color scale bar of each shown on the right. It was found that
the rank of values of LAI and FVC of grassland in the high fire severity area according
to the year was: post-fire year > pre-fire year > fire year, with a small distribution area,
mainly concentrated in the southwest of the study area and in the high fire severity area
around forest in the burned area. The rank of values of LAI and FVC of grassland in the
moderate fire severity area according to the year was: post-fire year > pre-fire year > fire
year, and LAI and FVC were distributed in the middle part of the study area extending
from southeast to northwest. The rank of values of LAI and FVC of grassland in the low
fire severity area according to year was: post-fire year > pre-fire year > fire year, and LAI
and FVC of grassland were randomly distributed across the study area. The rank of values
of LAI and FVC of forest in the high fire severity area according to year was: pre-fire year >
post-fire year > fire year, with a relatively small distribution area, mainly concentrated in
the northeast part of the study area. The rank of values of LAI and FVC of forest in the
moderate fire severity area according to year was: pre-fire year > post-fire year > fire year,
and these values showed a restricted distribution. The rank of values of LAI and FVC of
forest in the low fire severity area according to year was: pre-fire year > post-fire year > fire
year, with a scattered distribution.
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LAI and FVC can, to some extent, act as indicators of the damage to and recovery of
forest vegetation after a fire. After a forest fire, LAI and FVC in the burned area showed a
pattern of initial decline to the minimum value with some seasonal variation, followed by
a slow recovery, with the ranges of decline in LAI and FVC according to the severity of
the burned area being high > moderate > low. The higher the severity of a fire, the greater
the damage to vegetation and the faster the recovery rate in the year following the fire.
The extent of the burned area also affects the degree of vegetation damage and the time
required for vegetation recovery. In general, the vegetation biophysical variables in the
study area investigated in the current study recovered rapidly in the year after the fire,
requiring only 2 years in total to recover, which is related to the small area of fire damage,
a discrete distribution and the growth of the original vegetation in the study area.

4. Discussion

The present study used the BAIS2 index to extract the burned area, classify the severity
of the fire damage and verified the results using the NBR. NBR has become the established
remote sensing spectral index for research into the identification of burned area as it is
more suited for reflecting fire severity than other indices [60,61]. BAIS2 used the inter-band
ratio of the red band spectral domain to detect the burned area and to monitor changes in
vegetation after the fire. The BAIS2 index combined with the band ratio to detect radiation
response in the SWIR band is considered to be an effective method of determining the
burned area [23]. Morresi et al. [31] similarly showed that a spectral vegetation index
based on the SWIR band is highly sensitive to fire damage to forest cover and subsequent
restoration of forest structure.

LAI and FVC were selected as the key biophysical variables to examine in the present
study. FVC is an important variable for the study of the ecological effects of vegetation
at large spatial scales [62,63]. Ecological effect can be defined as the degree of impact on
the quality of an ecological environment [64]. The increase of FVC in the study area was
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found to have a significant ecological effect. Nowadays, LAI has become an important
variable to measure urban ecological benefits and has been widely used in urban green
space planning.

Changes in green vegetation cover can be said to be one of the clearest and most
ecologically significant effects of fires [65]. Vegetation cover and leaf state/color change
are key inputs to CBI [5] and have made significant contributions to dNBR of remote
sensing [38,66,67], such as the recent research results of Chuvieco et al. [22]. From a
spectral point of view, the use of LAI to quantify burn severity is reasonable. LAI is
more directly related to other key aspects of forest management compared to NBR. By
measuring combustion severity as the change in LAI, fire impact data and other ecological
information can be more effectively integrated, and forest landscapes at risk to fires can
be managed scientifically [19]. FVC as an index is a continuous scale of the proportion
of green vegetation in the landscape [56] and is a promising index for the evaluation of
vegetation recovery after a fire [68]. A recent study [69] used an FVC Landsat time series to
successfully demonstrate different approaches to forest recovery after a fire in a Siberian
Larch forest. However, at the pixel level, BAIS2 is highly correlated with LAI and FVC,
and part of the scattering may reflect the ability of BAIS2 to detect fire effects rather than
the loss of canopy leaves, such as changes in plant water content and carbonization of soil
surfaces. In general, LAI and FVC have high correlations with BAIS2 as well as to other
biophysical variables. The use of satellite time-series NDVI data and derived pheno-metric
indicators show the potential for tracking the dynamics of vegetation cover and continuous
changes to wildfire interference and forest restoration processes [70]. By using quantitative
inversion, the health trajectory of the ecosystem can be rapidly determined, and therefore
this method can play an irreplaceable role in the realization of sustainable development
in the study area. Therefore, it is of great scientific significance to quantitatively retrieve
vegetation variables by remote sensing [71].

The spatial distributions of the LAI and FVC area were extracted for various land
cover types of burned area of different fire severity within the study area during the period
2016–2018 for the years before and after the fire during the month of the fire. Although no
field survey data were used to verify the threshold of the burn severity level in BAIS2 in the
present study, the difference in the short-term dynamic changes of biophysical variables
post-fire is obvious when the burn severity increases. Since it is great that changes have
taken place so that forest fires can result in a change in vegetation, the increase or decrease
of biophysical variables can reflect the severity of a forest fire. Vegetation type and fire
severity have a significant influence on the recovery of the burned area, and the impact of
fire severity on vegetation recovery after a fire is critical; however, the interaction between
fire severity and vegetation type is not significant [32]. It was found that the rates of
growth of LAI and FVC were fastest and most significant in the severely burned area in
the year after the fire. During the early stage after a severe fire, the canopy density of the
forest was low, resulting in sufficient light falling to the floor of the forest to allow prolific
growth of the shrub and grass layer [3]. Shi et al. [72] found that severe fire can promote an
increase in biomass of undergrowth vegetation during the early stage of recovery. The LAI
and FVC values of the low fire severity area were higher than those of the moderate and
high fire severity areas in May and September of the fire year. This may have been due
increased opportunities for seeds to establish in soil, which is conducive to regeneration
of coniferous forests [73], and good natural regeneration and vegetation recovery was
observed in the low fire severity area [74]. Carter et al. [75] found that fires of moderate
severity are beneficial for the development of the shrub and herb layers and can promote
carbon storage of vegetation. The LAI of forest was larger than that of grassland in the
year before and after the fire, whereas during the fire year, the LAI of forest was smaller
than that of grassland. The effect of fire severity on forest recovery after a fire was greater
than that on shrub, grassland and swamp vegetation types, and fire severity also has a
significant effect on the vertical structure of the forest community.
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Research into understanding the relationship between the burned area and vegeta-
tion’s short-term dynamic change characteristics is of great importance for estimating
hydrogeological risks, such as triggered debris flow due to heavy rain. Abbate et al. [76]
attempted to quantitatively explain the influence of wildfire on terrain characteristics by
simulating the key variables, although they did not address the dynamics of the two debris
flow events in a more quantitative and targeted approach. The use of Sentinel-2 remote
sensing data provides a large amount of data for rather isolated zones that cannot be
studied by conventional on-site monitoring. Therefore, the present work can be of great
importance for the quantification of wildfire on terrain characteristics, and particularly on
the influence of wildfire in hydrogeological modeling.

5. Conclusions

The current study compared biophysical indices to the spectral index obtained by the
Sentinel-2 satellite and selected the appropriate index to monitoring vegetation short-term
dynamic changes in burned area by a fire. We used the BAIS2 index to extract the burned
area and to classify fire severity with relative accuracy. All indicators had significant
negative correlations with BAIS2. From 2016 to 2018, the growth trends of LAI and FVC in
various land cover types according to the category of fire severity had some different. In
general, the ranking of LAI and FVC according to the burned areas of different severity in
the pre-fire year was: high > moderate > low. The LAI of forest was greater than that of
grassland in the pre-fire and post-fire year, whereas the LAI of forest in the fire year was
smaller than that of grassland. The results of the present study are valuable for assessment
of vegetation dynamics change using biophysical indices of different vegetation types.
The current study has not considered the influence of vegetation, topography and other
factors on the heterogeneity of the spatial distribution of fire severity. Future studies
could determine the spatial dynamics change and constraints of fire behavior for the
development of fire-fighting strategies. The present work can be of great importance for
the quantification of wildfire on terrain characteristics, and particularly on the influence of
wildfire in hydrogeological modeling.
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