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Abstract: Performance-based design using computational and parametric optimization is an effective
strategy to solve the multiobjective problems typical of building design. In this sense, this study
investigates the developing process of parametric modeling and optimization of a naturally ventilated
house located in a region with well-defined seasons. Its purpose is to improve its thermal comfort
during the cooling period by maximizing Natural Ventilation Effectiveness (NVE) and diminishing
annual building energy demand, namely Total Cooling Loads (TCL) and Total Heating Loads (THL).
Following a structured workflow, divided into (i) model setting, (ii) Sensitivity Analyses (SA), and
(iii) Multiobjective Optimization (MOO), the process is straightforwardly implemented through
a 3D parametric modeling platform. After building set up, the input variables number is firstly
reduced with SA, and the last step runs with an innovative model-based optimization algorithm
(RBFOpt), particularly appropriate for time-intensive performance simulations. The impact of design
variables on the three-performance metrics is comprehensively discussed, with a direct relationship
between NVE and TCL. MOO results indicate a great potential for natural ventilation and heating
energy savings for the residential building set as a reference, showing an improvement between
14–87% and 26–34% for NVE and THL, respectively. The approach meets the current environmental
demands related to reducing energy consumption and CO2 emissions, which include passive design
implementations, such as natural or hybrid ventilation. Moreover, the design solutions and building
orientation, window-to-wall ratio, and envelope properties could be used as guidance in similar
typologies and climates. Finally, the adopted framework configures a practical and replicable
approach for studies aiming to develop high-performance buildings through MOO.

Keywords: parametric design; multiobjective optimization; natural ventilation; model-based algo-
rithm; energy demand

1. Introduction

Passive design and building optimization are attractive alternatives considering the
contemporary sustainable goals involving reducing energy consumption and CO2 emis-
sions [1]. The solutions include improving the building envelope, implementing passive
strategies, and taking advantage of natural light and ventilation. They aim to produce a
high-performance building that fulfills comfort and energy efficiency requirements [2–4].
Moreover, for the climates where natural ventilation is restricted to a period of the year,
implementing mixed-mode or hybrid ventilation systems is a more sustainable solution [5].
Additionaly, these goals are mostly conflicting, also defined as a multiobjective problem.
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Thus, performance-oriented design through computational and parametric optimization is
a way to solve them that is becoming increasingly popular [6–8].

Optimization methods applied to building performance simulation, or simple BSO
(Building Simulation Optimization), are beneficial since many variables affect building per-
formance, such as form, layout, envelope materials, orientation, and landscape design [9].
These variables are usually defined qualitatively and mainly considered in the conceptual
design phase [10]. Consequently, designers lack sufficient information to make effective
and appropriate decisions that lead to high-performance buildings, and the subject has
been the focus of many investigations [11–13]. Furthermore, although optimizing the
energy-efficient building design is encouraging, many applications demand skills that most
architects are unfamiliar with, and a smooth connection with standard and parametric
modeling programs is still missing [10].

In this sense, using the available tools must happen with parsimony. On the one
hand, they are credited to assist the design and decision process, optimizing the final
building performance with relatively low cost [14]. On the other hand, the tools also
present limitations and may not accurately represent the study’s objective [15]. Therefore,
the more structured the processes and the more substantiated the variables considered in
the project, the greater the chances of finding optimal solutions.

Building Performance Optimization through Simulation and Parametric Design

BSO has been explored to find optimum alternatives among potential combinations
of several parameters that involve passive design or responsive climate strategies. Tian
et al. [16] studied the integration of optimization algorithms into simulation-based de-
sign processes and summarized the different procedures that can be applied within the
technique (Table 1), which involve multiple steps, described in a tutorial form by Konak
et al. [17]. A review of computational optimization methods applied to building per-
formance design can be found in [6,18,19], which provide a classification of building
optimization problems and algorithms.

Table 1. Typical optimization methods applied in building performance simulation. Adapted from
Tian et al. [16].

Optimization Procedures Description

Three-phase optimization
The optimization process occurs in three phases:
preprocessing, running the optimization,
and postprocessing

Multitime design optimization Building performance simulation with optimization
methods is applied at each stage of building design

Sensitivity analyses and optimization

Sensitivity analyses are used to narrow the variables
range, determine the significant ones, and filter those
with little impact on the objectives. Optimization is then
conducted with a narrow variable range.

Generally, the most investigated parameters are related to building envelope [20–22]
and consider material properties, orientation, Window-to-Wall Ratio (WWR), shape, and in-
ternal space. The impact from different Heating, Ventilating, and Air Conditioning (HVAC)
systems and controls are also explored, combined with the aforementioned items [23,24].
Some studies focused on improving natural ventilation, assessed different window po-
sitions, sizes, and shapes [25–27]; roof types [28]; and also testing ventilation controls to
improve Phase Change Materials (PCM’s) efficiency [29–31].

Nevertheless, when addressing the BSO thematic from the architects’ perspective, Shi
et al. [10] point out some limitations regarding its design practice application. The authors
state that a common approach regarding the techniques or platforms used to perform the
optimization combines energy models and an optimization algorithm, mostly implemented
through GenOpt [32] and MatLab [33]. A more friendly and attractive option to integrate
BSO into the design process would be by using the same program where the project is
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developed, such as Building Information Modelling (BIM) [34,35], or parametric modeling
platform [36–38]. In that context, Díaz et al. [39] explored some strategies and challenges
and concluded that parametrization is crucial to integrating BSO into the construction
industry. A review about integrating performance simulation in parametric 3D modeling
is presented by Touloupaki and Theodosiou [40], which also proposed a methodology to
accomplish design optimization in the project’s early stages. According to the authors,
software such as Rhinoceros (Robert McNeel & Associates, Seattle, WA, USA) [41], Dynamo
BIM (Autodesk, Inc., Mill Valley, CA, USA) [42], and GenerativeComponents (Bentley
Systems, Exton, PA, USA) [43] have increased parametric 3D modeling application into
design practice by nonprogrammers.

Predominant is the plugin for the Rhinoceros software, the Grasshopper [44]. Pub-
lished studies that use the 3D parametric platform include building optimization concern-
ing both its overall passive performance and energy efficiency [45,46], or more specific
goals, such as solar radiation [47,48], natural ventilation [49,50], and daylighting [51–54].
Although growth in the application of parametric 3D modeling is noticed, the diffusion
of a simplified approach to optimization tools is still timid. Given this gap, by failing
to incorporate MOO into the design process, solutions for multiobjective problems may
underperform rather than provide the best passive or low-energy alternatives.

In this context, parametric 3D modeling and BSO-based process guided this research
development. Both procedures are implemented within the design platform to facilitate
optimization practice in the early design stages. The study aims to optimize the passive
design of a residential building with hybrid ventilation located in a region with well-defined
seasons (see Section 3). The problem can be characterized as multiobjective optimization
(MOO) since the objectives include improve thermal comfort during the cooling period
and reduce annual building energy demand. The focus is on natural ventilation use
expansion and heating and cooling consumption minimization employing a parametric
design platform.

Moreover, establishing a general approach that involves performance-based design is
a secondary goal. Therefore, the proposed methodology is a practical strategy that supports
high-efficiency building development. It contributes to spreading and encouraging the
use of optimization tools when dealing with conflict objectives so that the designer can
propose quantitatively based solutions. The workflow is universal, replicable, and can
be implemented for any building and location. Moreover, this study’s results can be
considered evidence that geometric aspects provided a greater solution diversity among
the parameters investigated.

Finally, this paper’s contents are as follows: Section 2 provides the optimization
framework adopted in the study, organized in three steps. The experimental house used
as a reference case and its corresponding numerical model are presented in Section 3,
while Section 4 summarizes the selected influential variables based on sensitivity analysis.
Problem description, results’ presentation, and discussions are the Section 5 themes. At last,
Section 6 closes the paper with the mains conclusions found, remarks, and future works.

2. Optimization Framework

Following the structure presented in [3], Figure 1 shows this study workflow, divided
into three significant steps: model setting with objectives definition, sensitivity analysis,
and multiobjective optimization (MOO), which are described in detail in the following
sections. Differently from other similar procedures carried out through multiple programs,
the approach uses a 3D parametric modeling platform. It allows performing passive design
optimization with a single canvas, easing its application into practice.
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2.1. Step 1: Model Setting for Multiobjective Optimization

First, an experimental house was parametrically modeled as a base case. With this
approach, the modifiable variables are linked to specific architectural elements and forms,
enabling direct visualization of these changes, significantly aiding complex geometry
design [55]. Thus, different design alternatives can be easily tested in the initial phase,
making it possible to find the best solution according to the established goals.

In this study, Rhinoceros was selected as a modeling tool and Grasshopper as a
command platform. Honeybee (HB), a plug-in running inside Grasshopper, is used as an
engine to perform the energy simulations through EnergyPlus (E+) and Open Studio. A
detailed description of the model is provided in Section 3.
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2.1.1. Optimization Objectives

• Natural Ventilation Effectiveness (NVE)

The number of hours the outdoor airflows can be used to cool space is estimated
through the performance metric Natural Ventilation Effectiveness (NVE) [56], expressed in
Equation (1). It calculates the weighted averaged of hourly ratios (αi) between the available
natural ventilation air changes per hour (ACH)—ACHavai to the required ones (ACHreq) of
zone i, where n is the total number of considered building zones, equal to 4.

NVE = ∑n
i=1 Viαi/∑n

i=1 Vi


α = 1, i f ACHavai ≥ ACHreq

α = 1, i f ACHreq = 0

α = 0, otherwise
(1)

ACHavai corresponds to the hourly E+ output AFN Zone Infiltration Air Change Rate
calculated for the Living room and Bedrooms 1–3, while the ACHreq is calculated through
Equations (2) and (3).

ACHreq/min = 3600× AFreq/min/V (2)

AFreq = q/ρ c (Tcom f − Tout) (3)

where AFreq is the required airflow to offset cooling load, expressed in m3/s, which is
converted to ACH, considering the volume of the room (V); q is the heat rate (kj/s)
calculated by the energy simulation (air-infiltration, solar radiation, heat gains from people,
equipment, and light); ρ is the density of air (kg/m3), set as 1.27; and c is the specific heat
capacity of the air (KJ/kg ◦C), equal to 1050. Tcom f is used instead of Tin because it is
assumed that when natural ventilation cannot provide sufficient comfort, occupants rely
on mechanical systems. ASHRAE Standard 55 [57] is used at the Tcom f calculations.

Moreover, the minimum airflow (AFmin) in m3/s is calculated by Equation (4) and
converted to ACH by Equation (2), following the design ventilation requirements for the
breathing zone of occupiable spaces, according to ASHRAE 62.1 [58].

AFmin = QpP + Qa A (4)

where Qp is the outdoor airflow rate required per person, set as 2.5 L/s.person; P is the
zone population (the most extensive number of people expected to occupy the zone during
typical usage); Qa is the outdoor airflow rate required per unit area, set as 0.3 L/s·m2; and
A is the zone floor area. Minimum and required airflow is compared; therefore, if ACHmin
is greater, it is set as a reference, rather than ACHreq.

In this study, as NVE is evaluated in the living room and bedrooms, the performance
metric was measured through the weighted average among the four considered spaces.

• Total Cooling Loads (TCL) and Total Heating Loads (THL)

The building energy demand was separately calculated as the sum of the cooling and
heating loads (kWh) of the considered rooms (Living room, Bedrooms 1–3), expressed
respectively by Equations (5) and (6) as:

TCL =
n

∑
i=1

Eci (5)

THL =
n

∑
i=1

Ehi (6)

where Eci and Ehi are E+ outputs from the energy consumption due by the cooling coil and
the heat pump for zone i cooling and heating, respectively, and n is the total number of
considered zones, equal to 4.

The cooling and heating loads were considered separately since they can be supplied
by different energy matrices and present heterogeneous consumption. Therefore, evalu-
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ating them together would lead to a limited understanding of their respective demands
and solutions.

2.1.2. Input Variables

As this study aims to find optimal passive design solutions for a residential building
in a temperate climate in terms of NVE, TCL, and THL, the considered input variables for
the reference building involve six variables categories: building orientation, Window-to-
Wall Ratio (WWR), opaque and translucid envelope material properties, external window
shading, natural ventilation, and HVAC system setpoints and AFN parameters (discharge
coefficient and the fraction of glazed area operable). The finally predefined 32 input
variables are presented in Table 2 with their respective description, lower and upper limits.

Table 2. Input values and their ranges for sensitivity analysis.

Category Variable Description Variable Name Probability Density
Function

Base-Case
Value

Lower
Limit

Upper
Limit

Building orientation 1 Building long axis azimuth (o) x01_orient Discrete 345 0 315
Window-to-Wall
Ratio (WWR) North WWR (%) x02_glzRn Continuous uniform 3.5 3.5 75

East WWR (%) x03_glzRe Continuous uniform 13 3.5 75
South WWR (%) x04_glzRs Continuous uniform 34 3.5 75
West WWR (%) x05_glzRw Continuous uniform 10 3.5 75

Material properties Window U-value (W/m2K) x06_windowU Continuous uniform 1.3 1.05 5.7
Window Solar Heat Gain Coefficient x07_shgc Continuous uniform 0.3 0.21 0.81
Aerogel thickness (m) x08_aeroT Continuous uniform 0.04 0.04 0.12
Roof thermal conductivity (W/mK) x09_roofC Continuous uniform 0.055 0.03 0.15

Window Shade Opening multiplier factor x10_shdOp Continuous uniform 0 0 1
Fraction of the shade surface open
to airflow x11_shdAir Continuous uniform 0 0 0.8

Shading control setpoint—Solar
radiation on the window (W/m2) x12_shdSp Continuous uniform 0 400 600

SetPoint
Minimum indoor air
temperature—AFN ventilation
control strategy (◦C)

x13_minAirT Continuous uniform 20 20 22

Maximum indoor air
temperature—AFN ventilation
control strategy (◦C)

x14_maxAirT Continuous uniform 27 25 28

Heating setpoint (◦C) x15_setPoint Continuous uniform 19 18 19
Cooling system operation (on-off) x16_onOff Discrete False True False

AFN Parameter Discharge coefficient 2 x17_disCoef Continuous uniform 0.6 0.33 0.84
Ventilation area x
window ratio 3

Fraction of operable
glazed area

LWindE Window VWR x18_LWindE Continuous uniform 0.75 0.5 1

LwindS1 Window VWR x19_LwindS1 Continuous uniform 0.75 0.5 1
LPorteS2 Window VWR x20_LPorteS2 Continuous uniform 0.75 0.5 1
LPorteW Window VWR x21_LPorteW Continuous uniform 0.75 0.5 1
LDoorH Window VWR x22_LDoorH Continuous uniform 0.75 0.5 1
LDoorC Window VWR x23_LDoorC Continuous uniform 0.75 0.5 1
R1WindN Window VWR x24_R1WindN Continuous uniform 0.75 0.5 1
R1WindW Window VWR x25_R1WindW Continuous uniform 0.75 0.5 1
H2W1door Window VWR x26_H2W1door Continuous uniform 0.75 0.5 1
R2WindW Window VWR x27_R2WindW Continuous uniform 0.75 0.5 1
R2WindS Window VWR x28_R2WindS Continuous uniform 0.75 0.5 1
R2Ndoor Window VWR x29_R2Ndoor Continuous uniform 0.75 0.5 1
R3WindE Window VWR x30_R3WindE Continuous uniform 0.75 0.5 1
R3SWind Window VWR x31_R3SWind Continuous uniform 0.75 0.5 1
R3Sdoor Window VWR x32_R3Sdoor Continuous uniform 0.75 0.5 1

Note: 1 The smaller of the angles, measured clockwise, between the true north and the long building axis. 2 Measured discharge coefficient
values from different window types (Table 3). 3 VWR.

The probability density functions of input variables can affect sensitivity analyses
and optimization results. Therefore, although the parameters are intrinsically discrete,
they were considered to be continuously uniform, with exception to the building orienta-
tion, which is restricted to eight discrete values (from 0–315◦, every 45◦) and the cooling
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system operation, defined as true (1) or false (0)—on/off. The range limits of Window
U-value and window Solar Heat Gain Coefficient (SHGC) were determined according to
the values from the reference building and the available products in the building material
market. Regarding the external walls’ thermal performance, the approach adopted was
limited to the exterior render thickness, instead of considering a broad thermal conduc-
tivity range, as performed with the roof. In this sense, wall composition remains the
same, and opaque envelope optimization involves finding the ideal aerogel-based exterior
render thickness [59].

Mass flow through openings is directly affected by the wind pressure coefficient (Cp),
discharge coefficient (Cd), and window-opening factor. Each operable opening area was
considered individually at this stage to provide a more practical and detailed passive
natural ventilation design solution, totaling 14 apertures or subvariables. Similarly, al-
though the literature suggests that Cd values range between 0.60–0.65 for sharp-edged
openings [60–62], the value can vary depending on the opening porosity, shape, location
in the façade, wind angle, and Reynolds number [63]. Therefore, a broader range was
considered in the investigation, based on wind-tunnel and on-site assessments. Table 3
summarizes the measured discharge coefficients, literature sources, and respective win-
dow types. The Cp values are automatically calculated by E+ using the surface average
calculation method [64] implemented through the E+ AFN model.

Table 3. Discharge coefficients/window types for sensitivity analyses.

Window Type Measured Cd Source
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2.2. Step 2: Sensitivity Analyses—Reducing Input Variables Number

Before the optimization, Sensitivity Analyses (SA) were performed to identify the
influential passive design variables in terms of the three objective functions previously
described in Section 2.1. Implementing SA at the early stage of this study reduced the num-
ber of variables for the optimization procedure, improving the algorithm performance and
making the process more effective. Tian et al. [67] reviewed sensitivity analysis methods in
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building energy investigations, which can be local and global. The authors commented
which options might be adequate concerning the research purpose, computational cost,
number of input variables, and familiarity with the methods. While local SA evaluates
the output variability changing one factor at a time, global SA ponders several factors
simultaneously, allowing for the interaction between elements, the effect of factor range,
and the shape of the factor probability density function to be considered.

To analyze the relationship between the design (or input) parameters on the optimization
objective (or output), the “sdo.analyze” function from Simulink® Design OptimizationTM [33]
was implemented in a MatLAB script using the Partial Ranked Correlation (PRC). The
global method was chosen because it analyzes how a model parameter and the outputs are
correlated, adjusting to remove the other parameters’ effect. First, a sample of 607 cases
with raw values (0–1) was generated using the Sobol sampling method. The sample
size was defined following the recommendation in [68], which states that the minimum
sample size should de 15–19 times the variables number considered in the analysis. Sobol
quasirandom sequences are drawn from the probability distributions specified for the
parameters, using Equation (7):

Varv = Llow +
(

Lup − Llow
)
× x (7)

where Varv is the variable value; x is the raw value, varying from 0 to 1; Llow is lower limit;
and Lup is the upper limit of the variable range. Sampling-based on Sobol’ sequences pro-
vides a highly systematic space-filling with low discrepancy, showing a better performance
than other sample techniques [69].

The 607 cases were run using Colibri components, a tool that performs parametric
simulations distributed with TT Toolbox [70]. A slider controls the case changes, and the
resulting impact of each run is recorded into a .csv file. Regarding the simulation time, the
607 runs took around 21 h (≈2 min for simulation) using an Intel i7-7500U Core laptop, up
to 3.2 GHz.

2.3. Step 3: Multiobjective Optimization (MOO) with Model-Based Algorithm

Instead of using an evolutionary MOO algorithm, such as HypE [71], SPEA [72], or
NSGA-II [73], commonly employed in similar investigations [11,17], the last step uses a Ra-
dial Basis Function Multiobjective Optimization (RBFMOpt). This machine-learning-related
MOO algorithm won the “Two Objectives Expensive” track of the Black Box Optimization
Competition (BBCOMP) 2019 [74]. Moreover, a benchmark study presented in [75,76]
showed its good performance compared to other algorithms, finding reasonable solu-
tions with fewer simulations. It has proven efficient and robust, while genetic algorithms
perform poorly [77], and therefore was chosen to run this study optimization phase.

In single-objective optimization, the goal is to find a single point, e.g., a design so-
lution, that best answers a sole performance metric or a project requirement. On the
other hand, MOO aims to find the best solution points according to multiple conflicting
objectives. These points or optimal solutions are non-dominated, meaning that one point’s
objectives cannot be improved without harming the others. When connected, the points
form a curve, which illustrates the optimization results, known as the Pareto surface or
front. According to Ciftcioglu and Bittermann (2009) the Pareto ranking is this solution
surface in a multidimensional solution space formed by several criteria, representing the
objectives. Although the solutions are diverse on this surface, they are assumed to be valid
in an identical way. Thus, the Pareto front graph supports designers’ decision-making
since it allows visualization of the trade-off among objectives [78]. In that light, the RBF-
MOpt’s goal, also known as a model-based method, is to find the nondominated points
in the Pareto front. The algorithm builds and iteratively refines surrogate models of the
unknown objective function that predict simulation results [79] and approximates the set
of points in the solution surface by iterating over a series of weights based on a Halton
sequence [80]. Wortmann and Natanian [75] explain that RBFMOpt exploits this property
by resuming RBFOpt and feeding it at each iteration with all known points, reweighted



Sustainability 2021, 13, 5739 9 of 25

according to the up-to-date set of weights. Hence, with every iteration, the initial RBFOpt
surrogate model becomes increasingly accurate, leading to more effective optimization
cycles. With this approach, model-based optimization is considered an attractive alterna-
tive for performance-oriented design [81] because it is seen as particularly effective for
optimizing problems with complex associations between variables and objectives and
time-expensive simulations [82]. Aimed for BSO Practitioners, the RBFOpt Algorithm Is
Available in Grasshopper via the Plug-in Opossum [83].

3. Base-Case Building Model

The base-case building (Figure 2) comprises one of the experimental houses from
the INCAS platform facility [84,85], developed by the French National Institute for Solar
Energy—INES facility located in Bourget-du-Lac, France (45◦38′38.5′′ N, 5◦52′27.4′′ E,
altitude 270 m). The region is characterized by warm summers (mean and max. temp of
20 and 34 ◦C), cold and wet winters (mean and min. temp. of 5 and −4 ◦C), and partly
cloudy year-round (Köppen: temperate climate, warm summer—Cfb [86]). The reference
building, also known as I-MA house, is a low-energy two-story rectangular construction
(7.5 × 8.5 m), with an opaque envelope made of cavity bricks (42 cm thick) covered with
an aerogel-based exterior insulating rendering. The building is taken as a base case in
this study because one of its purposes is to assist numerical validations, being equipped
with numerous sensors and featuring a simple design, which favors simulation process
and verification. Moreover, it is a passive building [87], whose design represents a single-
family residence typically found in the region. Passive Houses have been expanding in
the market, as they present themselves as a solution to the challenges related to energy
efficiency [88–90]. In this sense, the base building is also representative and characterizes a
movement, at least in Europe, to build under strict energy standards.
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Based on a one-week monitoring campaign (19–25 August 2014), an E+ numerical
model was created, calibrated, and used to perform annual energy and natural ventilation
assessments in [91,92], which also provide a detailed description of the measurement
equipment, experimental protocol, construction, and the climatic data recorded on-site and
used at the simulation. Moreover, the complete settings of the E+ model, including the
occupancy schedule and the .idf file, are available in the Data in Brief article [93].

Model creation within the optimization framework begins by importing the .idf file
available in [93] using the Honeybee component HB_Import idf. The base-case building
geometry is translated into the 3D modeling parametric platform (Rhino + Grasshopper)
through HB-Energy components. Figure 3 shows the nine thermal zones modeled with
the HB Model: three on the ground (Living room, Cellar, Hall 1), four on the first floor
(Bedrooms 1–3, Hall 2), and an attic and a staircase zone. Natural ventilation can be used as
a cooling strategy in all zones; therefore, the openings, either windows or external/internal
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doors, were modeled as AirflowNetwork (AFN) objects. However, just the Living room and
the Bedrooms have HVAC system, modeled with the HB Apply Setpoint Values component
that uses the E+ Ideal Loads Air System.
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Figure 3. Thermal zones of the building simulation model.

The external openings, either windows or doors, were assumed to have parametrically
adjustable dimensions. Their size varies in a window-to-wall-ratio function using the HB
Apertures by Ratio component, which depends on façade orientation (HB Façade Parameters).
Moreover, external shading devices were modeled with the HB Window Construction Shade
component, controlled based on the solar radiation incidence on the window, with a
parametric setpoint varying from 400–600 W/m2.

Openings operation regarding natural ventilation and building’s heating/cooling
system was established, configuring a hybrid behavior. Ventilation control depends on
occupancy and was based on a temperature setpoint, which was parametrized and varied
from 20–22 ◦C. The living room apertures can be operated only when the room is occupied,
whereas the bedrooms’ windows are operable whenever someone is in the house. Regard-
ing the heating system control, its activation happens if the occupied room’s operative
temperature is below 18–19 ◦C (parameterized value) so that the indoor temperature is
maintained at 21 ◦C. Once in operation, the heater is only turned off when the occupancy
in the room is null, and whenever the windows are open, mechanical ventilation cannot
happen, as well as the contrary.

Moreover, an extra operational condition was considered to turn on the cooling system
in the conditioned spaces when natural ventilation is insufficient to maintain the indoor
temperature within the established parameterized limited (25–28 ◦C). This hybrid behavior
was modeled through the Energy Management System (EMS) object [94] by adding additional
strings to the HB Model to OpenStudio Model component. The controls developed in the
EMS are presented in [93].

4. Selection of the Influential Variables and Sensitivity Analyses Results

The relation between the design parameters on the outputs was analyzed through the
Partial Ranked Correlation so that the most influential variable could be determined. With
this approach, the performance of the radial-based algorithm can be improved, and the
search for optimal solutions is therefore enhanced.

Figure 4 shows the calculated PRC of the 32 variables for the three objectives (NVE,
TCL, and THL), sorting from the largest to the smallest absolute value. The higher the PRC
absolute value, the more influential variable. The PRC positive/negative value indicates
the proportional/inverse relationship between an input parameter and the outputs.
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The figures show that the order and magnitude of the input variables slightly diverge
between the three objectives. Based on the PRC analysis, half of the top 10 influential
variables for the three objectives overlapped. Table 4 shows the sensitivity analysis results
straightforwardly, illustrating the relationships between each input variable and the three
goals (i.e., positive or negative) and each input variable’s sensitivity ranking.

Based on these results and aiming to reduce the input variables number, Figure 5
shows the PRC’s sum for the three objectives, sorting the numbers according to their
absolute value and finding a new arrangement index.
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Table 4. Results of sensitivity analysis and locally-improvements for the remaining less influential variables.

Variable Description Variable Name PCR for NVE
(Ranking)

PCR for TCL
(Ranking)

PCR for THL
(Ranking)

Locally-Improved
Solution

Building long axis azimuth (o) x01_orient Negative (10) Positive (13) Positive (04)
North WWR (%) x02_glzRn Positive (11) Positive (09) Positive (09)
East WWR (%) x03_glzRe Positive (05) Positive (04) Positive (20)
South WWR (%) x04_glzRs Positive (09) Positive (03) Negative (06)
West WWR (%) x05_glzRw Positive (08) Positive (11) Negative (18)
Window U-value (W/m2K) x06_windowU Negative (02) Positive (32) Positive (02)
Window Solar Heat Gain
Coefficient x07_shgc Positive (04) Positive (10) Negative (05)

Aerogel thickness (m) x08_aeroT Positive (12) Negative (14) Negative (03)
Roof thermal conductivity
(W/mK) x09_roofC Negative (14) Negative (28) Positive (28) base-case

Opening multiplier factor x10_shdOp Positive (13) Positive (23) Negative (07) HB E+ default
Fraction of the shade surface
open to airflow x11_shdAir Positive (31) Negative (30) Negative (12) minimum

Shading control setpoint—Solar
radiation on the window (W/m2) x12_shdSp Positive (07) Positive (05) Negative (11)

Minimum indoor air
temperature—AFN ventilation
control strategy (◦C)

x13_minAirT Negative (01) Positive (07) Positive (32)

Maximum indoor air
temperature—AFN ventilation
control strategy (◦C)

x14_maxAirT Positive (06) Negative (02) Negative (21)

Heating setpoint (◦C) x15_setPoint Positive (15) Negative (25) Positive (01)
Cooling system operation
(on-off) x16_onOff Negative (3) Positive (01) Negative (30)

Discharge coefficient x17_disCoef Positive (28) Positive (19) Negative (31) minimum
LWindE Window VWR x18_LWindE Positive (30) Positive (18) Negative (22) base-case
LwindS1 Window VWR x19_LwindS1 Positive (20) Negative (31) Negative (15) base-case
LPorteS2 Window VWR x20_LPorteS2 Positive (17) Negative (22) Positive (19) base-case
LPorteW Window VWR x21_LPorteW Positive (19) Negative (15) Negative (14) base-case
LDoorH Window VWR x22_LDoorH Positive (24) Positive (24) Positive (16) base-case
LDoorC Window VWR x23_LDoorC Positive (27) Negative (06) Positive (08) base-case
R1WindN Window VWR x24_R1WindN Positive (22) Negative (17) Positive (23) base-case
R1WindW Window VWR x25_R1WindW Negative (16) Negative (27) Positive (13) base-case
H2W1door Window VWR x26_H2W1door Positive (21) Positive (20) Negative (17) base-case
R2WindW Window VWR x27_R2WindW Negative (32) Negative (12) Positive (29) base-case
R2WindS Window VWR x28_R2WindS Positive (26) Positive (26) Positive (27) base-case
R2Ndoor Window VWR x29_R2Ndoor Positive (23) Negative (21) Positive (25) base-case
R3WindE Window VWR x30_R3WindE Positive (25) Positive (29) Negative (24) base-case
R3SWind Window VWR x31_R3SWind Positive (18) Negative (08) Negative (10) base-case
R3Sdoor Window VWR x32_R3Sdoor Negative (29) Negative (16) Positive (26) base-case

Note: The bold items are less influential variables and are supposed to be locally improved.

Lastly, the influential variables regarding all objectives were screened out to be an-
alyzed in the next optimization step, keeping the balance between the three considered
goals. The finally selected parameters are listed in Table 5, and the locally improved values
are established for the less influential parameters. All 12 remained variables presented
a PRC absolute result bigger than 0.1. The number of parameters could be drastically
reduced because many had a low impact on objective functions, such as all those related
to Ventilation area x Window Ratio (VWR). Adopting a unique value for such parameters
makes the optimization problem more effective.
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Table 5. Input variables and their ranges for multiobjective optimization.

Variable Description Variable Name Probability Density
Function

Base-Case
Value

Locally
Improved Values

Lower
Limit

Upper
Limit

Building long axis azimuth (o) x01_orient Discrete 345 0 315
North WWR (%) x02_glzRn Continuous uniform 3.5 3.5 75
East WWR (%) x03_glzRe Continuous uniform 13 3.5 75
South WWR (%) x04_glzRs Continuous uniform 34 3.5 75
West WWR (%) x05_glzRw Continuous uniform 10 3.5 75
Window U-value (W/m2K) x06_windowU Continuous uniform 1.3 1.05 5.7
Window Solar Heat Gain Coefficient x07_shgc Continuous uniform 0.3 0.21 0.81
Aerogel thickness (m) x08_aeroT Continuous uniform 0.04 0.04 0.12
Roof thermal conductivity (W/mK) x09_roofC Continuous uniform 0.055 0.055
Opening multiplier factor x10_shdOp Continuous uniform 0 0.5
Fraction of the shade surface open to
airflow (permeability) x11_shdAir Continuous uniform 0 0

Shading control setpoint—Solar
radiation on the window (W/m2) x12_shdSp Continuous uniform 0 400 600

Minimum indoor air
temperature—AFN ventilation
control strategy (◦C)

x13_minAirT Continuous uniform 20 20 22

Maximum indoor air
temperature—AFN ventilation
control strategy (◦C)

x14_maxAirT Continuous uniform 27 25 28

Heating setpoint (◦C) x15_setPoint Continuous uniform 19 18 19
Cooling system operation (on-off) x16_onOff Discrete False True
Discharge coefficient x17_disCoef Continuous uniform 0.5 0.6
LWindE Window VWR x18_LWindE Continuous uniform 0.75 0.75
LwindS1 Window VWR x19_LwindS1 Continuous uniform 0.75 0.75
LPorteS2 Window VWR x20_LPorteS2 Continuous uniform 0.75 0.75
LPorteW Window VWR x21_LPorteW Continuous uniform 0.75 0.75
LDoorH Window VWR x22_LDoorH Continuous uniform 0.75 0.75
LDoorC Window VWR x23_LDoorC Continuous uniform 0.75 0.75
R1WindN Window VWR x24_R1WindN Continuous uniform 0.75 0.75
R1WindW Window VWR x25_R1WindW Continuous uniform 0.75 0.75
H2W1door Window VWR x26_H2W1door Continuous uniform 0.75 0.75
R2WindW Window VWR x27_R2WindW Continuous uniform 0.75 0.75
R2WindS Window VWR x28_R2WindS Continuous uniform 0.75 0.75
R2Ndoor Window VWR x29_R2Ndoor Continuous uniform 0.75 0.75
R3WindE Window VWR x30_R3WindE Continuous uniform 0.75 0.75
R3SWind Window VWR x31_R3SWind Continuous uniform 0.75 0.75
R3Sdoor Window VWR x32_R3Sdoor Continuous uniform 0.75 0.75

5. MOO through RBFMOpt

In this step, the goal was to find the optimal values of the 12 selected influential
passive design parameters for maximizing cooling ventilation (NVE) while minimizing the
building energy demand (THL and TCL).

Although more than forty parameters control the RBFOpt, the Opossum’s graphical
user interface reduces its complexity into three tabs that afford increasing the control
levels and offers presets based on intensive testing with mathematical test functions [76].
Table 6 shows the adopted settings within Opossum in the optimization runs (Run 1,
Run 2, and Run 3). Most of them were left as default, following the predetermined
plug-in configurations.

Each variable is modeled in the Grasshopper canvas with a number slider, floating
the value according to the predetermined lower and upper limits. Opossum saves each
interaction run in a single log file, and after performing all function evaluations, it sum-
marizes the results in a table, which makes it easy to revisit all optimization outcomes by
double-clicking the entries in it. Among the results is the hypervolume from each simu-
lation, which measures the objective space’s volume dominated by the set of points, e.g.,
design solutions [75]. Within MOO, the hypervolume must be maximized as all objectives
are to be minimized. The goal is to dominate as much of the objective space as possible
since, mathematically, if one set is better than the other, it spans a larger hypervolume [95].
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Table 6. Adopted settings with the Opossum optimization process.

Configuration Description Input Data

Optimization type One is limited to either minimize or maximize the objective functions.
If controversial, the one to be adjusted is multiplied by −1. Minimize

Algorithm Algorithm chosen from those available in the plug-in RBFOpt
Max iterations Stop the simulation if the iterations exceed this number 500
Number of optimizations runs Number of times the simulations will be repeated 3
Number of cycles Determines how long the algorithm spends optimizing each set of weights 6

The former procedures resulted in Figure 6, which shows a 3D representation of
the three optimization objectives results. Each run generated respectively 268, 147, and
168 cases, totaling 588 function evaluations or model regenerations. It took about 20 h to
run them all, with the same laptop configurations mentioned in item 0. The Pareto front
is depicted in Figure 7, where the best solutions found in each run can be observed at the
curve formed at the lower-left corner.
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The hypervolume calculated in each of the three runs is the metric used to find
the optimized solution. In this regard, Figure 8 groups the three runs according to the
hypervolume generated, which shows stability (convergence) of the results between 100
and 150 interactions. The numbers in the graph correspond to the NVE, TCL, and THL
results of the three runs’ optimal solutions, which are also summarized in Table 7.
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Figure 8. Hypervolume calculated by the RBFOpt algorithm vs. function evaluations and optimal
solutions for each run.

Moreover, Figure 9 allows a comparison of these results variability over the runs,
presenting their normalized values, while Figure 10 illustrates normalized values, but of
the parameters of RBFOpt solutions according to the ranges.
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Table 7. Range of optimization variables in base-case and RBFOpt solutions and their respective objective functions results.

Selected Influential Variables Variable Name Base-Case Ranges Run 1 Run 2 Run 3

Building long axis azimuth (o) x01_orient 345 (0.315) 315 90 90
North WWR (%) x02_glzRn 3.5 (5.75) 17 57 15
East WWR (%) x03_glzRe 13 (5.75) 5 62 64
South WWR (%) x04_glzRs 34 (5.75) 7 7 34
West WWR (%) x05_glzRw 10 (5.75) 5 12 42
Window U-value (W/m2K) x06_windowU 1.3 (1.05, 5.7) 1.09 1.08 1.06
Window Solar Heat Gain Coefficient x07_shgc 0.3 (0.21, 0.81) 0.39 0.30 0.70
Aerogel thickness (m)
Wall U-value (W/m2K) x08_aeroT 0.04

0.71
(0.04, 0.12)
(0.71, 0.26)

0.12
0.26

0.10
0.31

0.11
0.28

Shading control setpoint—Solar radiation
on the window (W/m2) x12_shdSp 0 (400, 600) 590 490 520

Minimum indoor air temperature—AFN
ventilation control strategy (◦C) x13_minAirT 20 (20, 22) 20.3 20 20

Maximum indoor air temperature—AFN
ventilation control strategy (◦C) x14_maxAirT 27 (25, 28) 28 28 28

Heating setpoint (◦C) x15_setPoint 19 (18, 19) 18 18 18

NVE 585 665 933 1096
THL 11.238 7.924 8.359 7.455
TCL 10 4 26 78
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Figure 10. Comparison between solution variables.

Additionally, Figure 11 shows the respective optimized geometry generated for the
three runs’ selected solutions (Figure 11b–d) and the base case (Figure 11a). The images
are automatically generated with the Honeybee component HB Visualyze by Type and show
the changes related to building orientation and openings size. Thus, the significant WWR
variations that were firstly numerically attested are also visualized.
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In sum, when comparing all runs to the base case, an improvement between 14–87%
and 26–34% occurs in NVE and THL, respectively. As for TCL, a reduction of 60% concern-
ing the reference is restricted to Run 1, with an increase of 160% for Run 2 and 680% in
Run 3. Nevertheless, cooling consumption presents nearly negligible values. Thus, turning
on the air conditioning system can be disregarded, meaning that the I-MA building can
rely on cooling natural ventilation during the warm seasons.

6. Discussion

A fast convergence can be noted regarding the number of runs presented in Figure 8
(less than 150 interactions). Finding optimal solutions with few simulations is one of the
RBFMOpt algorithm advantages pointed in benchmark studies [75,76] when compared to
other algorithms. Observing the object function results individually in Figure 8, the total
heat loads (THL) present a slight variation in all runs, ranging from 7455 to 8359 kWh.
Regarding the objectives related to natural ventilation, NVE, and total cooling loads (TCL),
the values show more significant variability, ranging from 665 to 1096 h/year for NVE and
from 4 to 78 kWh for TCL. Simultaneously, there is a direct relationship between these two
results, where the greater the number of NVE hours, the greater the energy consumption
due to cooling (TCL). By contrast, such association is not observed among the heating loads
and other objectives.

When analyzing each of the variable outcomes for the optimal alternatives, the build-
ing long axis azimuth (x01) presents for runs 2 and 3 θ = 90◦, while Run 1 has θ = 315◦,
representing a minor difference regarding the base case. On the other hand, in all solutions,
the long axis changes so that the façades are more exposed. The base case has a north–south
orientation, where the south façade is the one with the most significant solar incidence
and the one with the most extensive opening area. When observing the three optimized
solutions, solar distribution is more balanced among the façades, which also have different
WWR. Thus, it is evident that with a heterogeneous distribution of the glazed areas, the
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proposed implantation in the optimized solutions enhances the solar gains through the
different building translucent facades.

On the other hand, compared to the base-case values (Figure 9), the optimized solu-
tions show a clear improvement in NVE and THL of all runs and for TCL in Run 1. The
NVE-bars show an increasing behavior for all runs, but the THL-bars show a decreasing
one. As for the TCL, on the other hand, the bars only diminish in run 1.

Besides showing the objective results for each run, Table 6 also outlines the scope of
the optimization variables from both base case and optimal solutions. Figure 10 presents
the solution variables, except for the building orientation, within a box plot graph with
normalized values centered on median 0, allowing for a direct results’ correlation.

Some parameters show a low variation, while others present a high range. Wort-
mann [76] comments in this regard that repeated runs of stochastic algorithms for identical
settings and problems can have very different results. In this sense, parameters related to
the temperature and shading setpoints, aerogel thickness, and window U-Value present
more cohesive results, while geometric variables are more dispersed. Therefore, it can be
seen that concerning the physical properties, the values remain within a narrow range.
On the other hand, the variables related to the building shape and form welcomed more
alternatives, presenting a wider variance. As a result, during the early design stages, the
variables associated with the physical properties could be restricted to a known range,
focusing the search for optimized solutions on the geometric aspects.

With considerable discrepancies, the four WWRs (x02, x03, x04, and x05) vary sig-
nificantly in all runs, where Run 1 presents the closest values to the base case, which is
reflected in the objective function’s outputs. Similarly, bigger WWRs lead to a higher NVE
and TCL, which is the Run 3 case. On the other hand, the same Run also presents the lowest
heating consumption (THL). That is because the Window U-values (x06) remained within
small values, allowing solar entry with low thermal losses in periods without radiation. In
high Window U-values, oversized windows would negatively impact heating loads since
the opaque/isolated surfaces would decrease, and the losses due to a low-performance
glass could surpass solar gains.

Moreover, concerning the insulating thickness (x08), its value in Run 3 was not the
largest one found, at 11 cm, while Run 1 remains with the maximum range, 12 cm, and still
had a greater THL. In this sense, the aerogel layer’s optimized values were left between
10 and 12 cm, more than double compared to the base case. When converting the corre-
sponding thickness values (cm) to Wall U-values (W/m2K), the wall thermal transmittance
varies from 0.71–0.26 W/m2K, for an aerogel thickness of 4–12 cm, respectively. The Wall
U-Value found in Run 2 and 3 correspond to 0.31 W/m2K and 0.28 W/m2K. Therefore,
when relating the Walls and Windows U-values for the three solutions, a inversely pro-
portional relationship is perceived in Run 1, where the transparent surface presents the
worst performance and the opaque surface the best. However, this is not the case for Run
2 or 3, although both values are close. Nonetheless, a relationship between the different
envelope systems (opaque vs. translucid) is observed, which seeks to compensate each
other to achieve the desired building performance.

No clear relationship was observed between the SHGC (x07) and Window U-value
(x06) variables. The Window U-value shows a slight variance while SHGC presents a
broader range. Run 3 has both the best Window U-value and the worst SHGC, which
might indicate compensation, but it is not the case with the other two solutions.

Furthermore, Table 6 results show that the setpoint temperatures are at their limit
and that the minimum (x13) and maximal (x14) optimized air temperatures for natural
ventilation represent their respective lowest and highest possible values. Likewise, the
heating setpoint (x15) stays within its lower limit. This low variance and even constancy are
also observed in Figure 10, showing that the temperature range for the window’s operation
resulted in a good NV performance (20–28 ◦C). On the other hand, setting a higher upper
limit, bis 31 ◦C for instance, might also be acceptable and could be considered, as exposed
in studies in hot and humid climates [96–98].
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Concerning the shading control setpoint (x12), a stochastic relationship is also found
when analyzing the optimization variables and the objectives outputs. Nonetheless, the
variables interval among the solutions remains within a smaller dimension (490–590 W/m2)
than the initial range (400–600 W/m2). Thus, the search space is limited, easing local
parameter improvement.

As a final comment, the optimized configurations of Figure 11 could be replicable
in similar buildings under the same climatic conditions or used as a starting point when
performing analogous studies. In this way, local improvements can be implemented by
restricting the variables number with reference values, thus preoptimizing the solutions.

Lastly, designing on a parametric platform makes it easier to handle the numerous
geometric variables of a project, which is one of the challenges when proposing high-
performance solutions. Therefore, the approach is an uncomplicated way to deal mainly
with the building shape and experiment with various alternatives to find the one that best
fits the proposed objectives.

7. Conclusions

This study uses parameterization, simulation, sensitivity analyses, and optimization
tools applied to a residential building, set as a reference case. An optimization framework
is introduced, employing a parametric 3D modeling platform and a radial-based algorithm.
Moreover, the paper presents a brief review of performance-based design combined with
building simulation and optimization. It evidenced the use of the same program in
project development as a user-friendly alternative to integrate the concept of Multiobjective
Optimization (MOO) into the design process.

Sensitivity Analysis (SA) was performed before the optimization step in an addendum
to the one-software approach, given the variables under investigation. Thus, the algorithm
performance could be improved, enhancing the search for the optimal solutions to build.

Among the main conclusions concerning the SA and optimization outcomes, it is
highlighted that:

• The influential variables identified in SA analyses depended on the objective consid-
ered, showing different ranks among the three established metrics: Natural Ventilation
Effectiveness (NVE), Total Heating Loads (THL), and Total Coaling Loads (TCL). How-
ever, an overall perspective identified those with the most impact as the setpoint
temperatures that regulated natural ventilation or mechanical systems activation. On
the other hand, although considered relevant for openings design, the parameter
about the ventilation area provided smaller contributions. Therefore, together with
the less influential variables, it was locally improved;

• MOO results showed a direct relationship between the size of the windows, NVE, and
TCL, which does not apply to THL. The building envelope’s thermal transmittance
showed a more significant impact for the heating loads (THL), and all optimized
solutions had low U-values for both opaque and transparent surfaces. Given these dif-
ferences, the complexity of multiobjective problems is evidenced, and the optimization
stage can be considered an ally when developing high-performance buildings;

• The model-based algorithm (RBFMOpt) used at the optimization step showed per-
formance consistent with that presented in the benchmark studies, converging with
a low number of interactions. Therefore, its application in time-intense simulation
investigations is endorsed;

• Findings concerning the physical and geometric variables range could be applied in
similar studies, limiting the parameters related to material properties and increasing
those about geometry. The optimization results showed that the geometric aspects
provided a greater solution diversity among the variables investigated in this work.

• Regarding the framework adopted in this research, the following aspects can be stressed.
• Modeling through a 3D parametric platform allows for the manipulating of numerous

variables, being especially effective when dealing with geometric parameters;
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• Performing all processes through a single software reduces uncertainties and provides
a more straightforward workflow, which facilitates control and implementation;

• The approach is suitable for early project stages because architects and designers
would be more receptive and better instrumented to apply MOO, encouraging passive
strategies implementation when using such tools.

Finally, future research could include testing different algorithms to evaluate their
performance and differences between the optimized solutions. Such investigations can sup-
port studies and applications related to performance-based design, helping to consolidate
the approach.
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