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Abstract: Sustainable manufacturing plays a role in ensuring products’ economic characteristics
and reducing energy and resource consumption by improving the well-being of human workers
and communities and maintaining safety. Using robots is one way for manufacturers to increase
their sustainable manufacturing practices. Nevertheless, there are limitations to directly replacing
humans with robots due to work characteristics and practical conditions. Collaboration between
robots and humans should accommodate human capabilities while reducing loads and ineffective
human motions to prevent human fatigue and maximize overall performance. Moreover, there is
a need to establish early and fast communication between humans and machines in human–robot
collaboration to know the status of the human in the activity and make immediate adjustments for
maximum performance. This study used a deep learning algorithm to classify muscular signals of
human motions with accuracy of 88%. It indicates that the signal could be used as information for
the robot to determine the human motion’s intention during the initial stage of the entire motion.
This approach can increase not only the communication and efficiency of human–robot collaboration
but also reduce human fatigue by the early detection of human motion patterns. To enhance human
well-being, it is suggested that a human–robot collaboration assembly line adopt similar technologies
for a sustainable human–robot collaboration workplace.

Keywords: sustainable manufacturing; human intention; EMG; Therbligs; human–robot collabora-
tions; ergonomics

1. Introduction
1.1. Human–Robot Collaboration Aspect for Sustainable Manufacturing

Sustainability is a primary objective for a company to improve its manufacturing
system. Some support for this change is related to economic value and minimizing the
use of resources in product manufacturing. For measuring the impact on operational
initiatives, sustainable manufacturing has three indicators: economic, environmental, and
social sustainability indicators [1]. There are several aspects of the economic indicator for
the implementation of sustainable manufacturing; namely, innovation, responsibility for
taxes, job creation, sales and profit achievement, infrastructure investment, anti-corruption
measures, and local economy contribution [2]. Automation advantages from industrial
robotics actually perform a quantitative role in enhancing the productivity of human
workers, which may potentially have a disruptive effect on the economy [3]. However,
the use of robots in manufacturing systems faces several obstacles due to the target of
increasing productivity through setting up collaboration scenarios with humans.

High productivity is a primary objective of any company in establishing their produc-
tion system. In its production system, a company generally has many elements related
to humans, machines/robots, environments, and objects. The setting for this production
system is still a challenge because of the dynamic characteristics of humans. In many com-
panies, humans are still widely used in the assembly system because they have adaptability
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and cognitive processability [4]. A higher proportion of human use in the system will
increase the dynamic conditions due to uncertain circumstances. Humans tend to have
high variability in behavior after being exhausted during the production process [5]. Some
analyses have noted that human error is affected by human stress, repetition, fatigue, and
conditions in the work environment [6]. Therefore, limitations exist when the human factor
is considered in the assembly system.

A robot has many advantages in solving humans’ inconsistency. For example, they
have less fatigue, make fewer errors, and are more consistent. However, the shift from
humans to robots is not easy due to capital limitations. For more sophisticated robots that
can accomplish processes requiring higher accuracy with objects of small dimensions, more
capital is needed. Moreover, robots need to work in a static and structured environment
because their movements and actions are programmed based on specific conditions in
such an environment. The robots need to recognize the conditions of their surroundings
related to obstacles, human motions, and object positions [7]. Due to this consideration,
collaboration between humans and robots is a preferable option.

Precisely setting up a scenario is necessary for solving the disadvantages of humans
working with robots. In addition, collaboration with robots helps to reduce fatigue and
supports the safety factor for humans [8]. This setting will be a solution for companies
when facing problems related to the human factor while also allocating affordable capital
for robots. The collaboration system will offer the separation of jobs that are detailed and
allocate them to humans and robots, which will mitigate human fatigue. This is supported
by the collaboration’s main target, which is to give robots the ability to adapt and a greater
capability for understanding human conditions [9]. This adaptive characteristic for robots
allows them to identify the status of humans throughout the working process [10]. Addi-
tionally, for robots to understand the human status, we need to know each characteristic
of the activities carried out by humans. A harmonious human–robot collaboration not
only achieves the productivity aspect of sustainability, but also increases the well-being of
workers, an important indicator of social sustainability with manufacturing systems.

There are some challenges on the human–robot task planning regarding providing
low-cost and easy-to-use tools for the scenario to achieve an affordable production cost, an
optimal combination between human and robot, increased efficiency and productivity, and
minimize the stress and workload for the human [11]. Productivity can be achieved easily
and rapidly by setting up a human–robot collaboration scenario in the workplace [12].
Alternatively, the safety aspect is important in the collaboration because of the necessary
protection of the human factor from accidents. Some approaches using virtual commission-
ing, such as augmented reality, are used to support the safety aspect in the assembly task,
which is required to perform the loading of a 30 kg object in the hybrid cells [13]. In sup-
porting the advancements of technology in sensing and communication, augmented reality
becomes one option to control the robot in the scenario [14]. Moreover, augmented reality
could also be combined with other approaches, such as force sensors to manually guide
robots in the assembly task [15]. Another consideration is to use an electroencephalogram
to understand how the human brain adapts to different tasks [16]. However, using virtual
commission and the electroencephalograph dictates us to fully control and manage the
condition in the workplace and it will be another defiance in the developing scenario.

Human–robot collaboration (HRC) is the study of collaborative processes in human
and robot agents working together to achieve shared goals. HRC is believed and expected to
become widely adopted by industries in the near future. Currently, there are many research
issues in HRC, which have mostly focused on safety concerns with human operators
working with robots in the workplace. A review of the approaches that provide smooth
interaction between humans and robots show that multimodal communication frameworks
are of potential advantages either by visual guidance and imitation, voice commands, or
haptic interaction [11]. Augmented reality glasses and smartwatches have also been
used to build close communication and awareness between operators and robots under a
fenceless environment by visualizing information [13,15]. This is carried out by identifying
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the pattern of human brain signals to determine the proper command to the robot [16].
Additionally, the process configures easy and fast set-up for the human–robot collaboration
workplace layout and task generation based on certain criteria [12]. From these results,
it shows that a smooth and socially friendly collaboration between humans and robots
becomes a promising opportunity to improve workplace productivity with sustainable
advantages. Collaborations become the best solution in this optimization era by still
considering human contribution in the workplace. Up until today, little attention has
been given to the sustainability potential of the human robot collaboration paradigm in
the manufacturing area. It is therefore important to raise awareness for a sustainable
HRC research focusing on better human intention prediction and communication with the
collaborative robots. This paper describes a study that attempts to fulfill the goal of smooth
collaboration by sensing human muscle signals during movement and use this information
for a safer and more efficient robot work plan.

1.2. Motion Study for Human–Robot Collaboration

Humans perform many types of motions during assembly activities. Making sure
that the robots understand all human motions in the activity is challenging due to the
complex computational process. Another limitation is related to the difficulties in manually
programming the whole-body motions of robots with numerous degrees of freedom [17].
Due to this limitation, the computation process must make some selections to characterize
human motions and send them to the robots to perform recognition. The analysis of the
human motions frequently performed during the assembly activity will prove useful for
the human recognition process due to predictability. This condition implies a clear need for
manufacturing scenarios with synergy of the skills from both humans and robots working
together in the same area to maintain the sustainability of the working conditions and the
environment, health and safety [18].

Work study is carried out to understand the characteristics of activities that have an
impact on fatigue and can be allocated to robots. Methods–time measurement (MTM) can
be used as the foundation for determining improvements in the operator’s work activities
so that the movements used are efficient. Factors such as efficiency, quality, and safety
must also be considered in designing collaborations between humans and machines [19,20].
Motion analysis can improve productivity by observing the stop locations of motions and
detailing the motions in machine–human works [21]. Supporting the MTM analysis is
another consideration from Gilbreth related to the identification of 18 movements of the
human body, named Therbligs. Motion analysis based on Therbligs is efficient because
of its cost-effective tool characteristics [22]. Other benefits of using Therbligs analysis are
minimizing human error, achieving flexibility, and improving adaptability [23]. Therbligs
can be applied broadly not only in the service industry but also in manufacturing. Therbligs
can be complemented with other methods, such as value-stream mapping and energy
supply modelling [24,25]. The results of motion analysis can provide information about
the human status and thus inform the robot.

1.3. Fundamental Aspects of Human–Robot Collaboration

The various methods for connecting humans and robots are based on the specific
characteristics of each party. Considering the reality in industry, concerns in the analysis are
related to the human, object (product), and environment. Mostly, these concerns involve
adjusting the robots to the human, object, and environmental conditions. Following these
concerns, many types of research have been conducted to modify robots because of the
characteristics of other parties (human, object, and environment). To accomplish this
purpose, information on the characteristics, habits, or special features of the other parties is
needed. An object in the production process can be depicted as the products assembled by
the operator. The condition of objects’ affordance will inform the system about the kind
of future activity that will be carried out by the operator [26]. This means that the object
condition will follow the value-added and the sequential process in the workstation. It
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can be categorized as having a static condition and being predictable. Thus, it is more
controllable by the process. The environment is related to the conditions around the humans
while they are completing the production process. The environment can be managed to
monitor some changes in the conditions under which humans perform their activities
and generate data [27]. The environmental condition depends on the situational setting
in the workplace. It can be easily controlled by the company to support the production
process. Throughout the collaboration, the environment needs to be set in a structured
condition to make it easier to distribute the sensors. As a result, the robots can steadily
perform the task [7]. Another party is the human, where inconsistency still exists despite
a good environment. This inconsistency is related to maintaining performance during
tasks. Humans face difficulties in maintaining their performance in long-duration shifts. In
many applications, humans must constantly repeat a task for 8 h, and sometimes longer
if overtime is required. Thus, the company needs to solve this problem by collaborating
with robots to improve the consistency of human performance. With this purpose, some
objectives are related to fathoming better human characteristics in performing their tasks.

An understanding of the human characteristics during task performance can be
attained from biofeedback from the human body. The human body provides much biofeed-
back, such as blood pressure, heart rate, skin conductance, and muscle activity [28]. Muscle
activity analysis is adequate for depicting the human state in the characteristics of activities
used in the collaboration. Muscle feedback will inform the system on how much humans
use their muscles to carry out an activity. Muscle feedback provides signal patterns and
intensity information about activities, which benefit the recognition process [29]. One
device that is useful for analyzing human muscle activities is the electromyograph. A
recognition process using electromyography (EMG) can predict the human intention in the
collaboration and consider it as an indicator that can be sent to the robot. Based on this
information, the robot can respond with a specific activity in the collaboration.

1.4. Electromyograph as a Communication Device

The first application of EMG in human–robot collaboration is for controlling robotic
arm functions to perform an activity such as lifting based on the human hand activity [30].
Human hands are also used to control a wrist exoskeleton based on flexion, extension, ulnar
deviation, and radial deviation [31]. Another application in the human–robot collaboration
for lifting any object is based on human vertical directions (up, down, none) in movement
gestures [32]. Attaching an EMG sensor to human muscles during a specific activity will
provide information about any patterns. Information received from the EMG can be used
to develop insights related to the kinds of human motions. The numerous hand activities
that can be analyzed using EMG include closing, extension, flexion, finger straightening,
grasping, pinching, and any pose [24,33–35]. For analyzing hand motions, two to six sensor
channels are attached to the human hand. More channels attached to the human muscles
will generate more muscle signals and will likely increase the accuracy of classification.
However, the data collection process for analysis based on EMG, which requires attaching
sensors, should not disturb the human or cause discomfort during the activity. Attaching
as few sensors as possible to the human body is highly advisable to avoid interference with
the human activity.

Attaching sensors to the human body to achieve collaboration with robots is still
challenging. However, in applications with many uses of cameras, predictions are still
based on an object’s position, rather than the human intention detected from biosignals.
For example, a camera can detect or capture gestures from the human hand to provide
instructions or commands to the robot [36]. Another study related to human gesture
recognition for dynamic and static actions involved capturing images with the Kinect
camera to interact with the robot [37]. On the other hand, using EMG for muscle detection
will collect muscle signals related to the kinds of motions performed by a human during
an activity. The electromyograph is a device which has the ability to predict movements
in a simple and very efficient way [38]. Another consideration is that using EMG can
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solve problems related to light limitations and camera occlusion [39]. Considering the
precision of movements in a limited area, it would be better to use sensors for recognizing
human gestures than to use an optical-based approach [40]. Area limitations also make it
difficult to place cameras for capturing human activities. This highlights one advantage of
sensor-based human gesture detection in limited spaces or places with numerous objects in
the collaboration area, which have a blocking effect. Using sensor-based methods such as
EMG to detect human activities provides two important advantages: fast responses and a
wide sensing area.

Supporting sustainable manufacturing in the innovation and social aspects, this paper
proposes a human–robot collaboration (HRC) scenario using the electromyograph as a
communication device. Another recommendation for better human–robot intention com-
munication emphasizes sustainable manufacturing practices. One advantage of this study
is that it demonstrates an HRC scenario which can improve the sustainable environment
with higher productivity and maintain ergonomic work conditions by ensuring less fatigue,
better understanding of human intentions by a robot, and smooth collaborations. The EMG
built in this paper is low in cost, consisting of only a single-channel EMG sensor and an
Arduino MKR1000 board. The rest of this paper follows the methodology for building a
new scenario using motion analysis, characterizing each motion in the EMG signals, and
classifying them into six basic human motions. In Section 4, the results of the scenario
based on motion study, signal processing, and classification are presented as fundamental
in the collaboration. The paper ends with the conclusion and the possibility of future works
which could be implemented in the scenario.

2. Materials and Methods
2.1. Human–Robot Collaboration Framework for Sustainable Manufacturing

A paradigm shift within modern automated manufacturing system practices has
allowed the dominant use of robots. However, this change is in contrast to the principle
of sustainability concerns, as stipulated by the manufacturing companies. Sustainable
manufacturing focuses on human well-being, which entails various objectives and respon-
sibilities in social aspects of work [41]. In this case, humans have the dominant role in
manufacturing due to their advantages, such as flexibility in their cognitive processes [4].
Sustainable manufacturing practices conceivably engage with human empowerment in
social aspects. In this case, human workers play a pivotal role in manufacturing practices
based on the provided advantages. Thus far, it is believed that the adjustment process is
significant in maintaining the sustainable application of a modern manufacturing system.
Consequently, the collaboration between humans and robots provides an effective attempt
to achieve sustainable manufacturing practices. The framework in Figure 1 illustrates the
proposed concept of this study, which is related to a collaborative scenario between humans
and robots to support sustainable manufacturing practices. The proposed concept in this
framework combines two approaches; namely, an ergonomic perspective and artificial
intelligence. The ergonomic approach focuses on determining the activities which generate
exhaustion in human activities and further support the utilization of robots. The artificial
intelligence approach is thus employed to craft the expected collaboration between humans
and robots through the classification of human intentions. Henceforth, it is expected that
such collaboration could achieve sustainable manufacturing practices by regarding social
aspects, such as the human role. This approach is pursued to provide job opportunities
for human workers despite the paradigm shift towards automation. Accordingly, this
approach is expected to mitigate the exhaustion effect of human activities owing to robot
allocation. The proposed approach is additionally expected to achieve work performance
efficiency. Since robots are involved to mitigate the exhaustion of human workers, collabo-
ration between the two is predicted to be achieved by applying artificial intelligence based
on human muscle signals.
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2.2. The Human–Robot Collaboration Task Scenario

The analysis of the basic motions of an assembly system is the first step of the proposed
method for determining the tasks to be allocated to humans and robots. The MTM analysis
procedure breaks an activity into basic motions and estimates the standard predetermined
time for each motion [42]. Gilbreth used 18 types of motions in the MTM analysis for
classifying human activities. Gilbreth classified the 18 basic movements into effective and
ineffective motions based on the motion characteristics, as shown in Table 1 [43]. The 18
different motions were generated from the analysis of human body movements during
the performance of various kinds of work [44]. The results of this basic motion analysis
will provide a new standard operating procedure in human–robot collaboration scenarios.
In evaluating which task is to be allocated to the robot, one can consider many factors
collected from previous experiences related to the characteristics of motions performed by
humans. Figure 2 depicts the flow for evaluating the tasks to determine which are suitable
for collaboration with the robot. Other considerations for the allocation might include the
task characteristics in the assembly process and the robot characteristics.

Table 1. Therbligs basic motion classification.

Effective Ineffective

Reach Hold
Move Rest
Grasp Position

Release load Search
Use Select

Assemble Plan
Disassemble Unavoidable delay
Pre-position Avoidable delay

Inspect
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2.3. Method

This section describes the method used for analyzing the human motion by the
EMG signal and the method used as the human–robot interface. The human provides
information about his/her intention in the collaboration and his/her hand activity to the
robot, as shown by the EMG result. The EMG detects the human muscle activity with the
path attached to the human hand. The data augmentation is used to increase the range of
data without removing the data characteristics. Afterward, the continuous wavelet is used
to transform the time domain to time–frequency domain and shows the power distribution
for each signal. Finally, the result from the feature extraction is used as an input for the
classification with a convolutional neural network (CNN) and the classification result
directs the robot to perform specific actions. Figure 3 shows the scheme of the proposed
method for analyzing the EMG data so that it may be used to inform the robot.
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2.3.1. EMG Data Acquisition

A low-cost electromyograph, which combined a Groove EMG sensor and an Arduino
MKR1000 for data acquisition, was used to collect the EMG data. The Groove EMG has
two amplifiers and a high-pass filter. The electromyograph utilized the Arduino 12-bit
resolution ADC. The two amplifiers were an instrumental amplifier and an operational
amplifier with regulated gain. The high-pass filter removed the DC offset at 0.16 Hz. The
sampling rate used in this device was 1000 Hz, and the EMG device captured muscle
activity signals, as illustrated in Figure 4.
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Humans dominantly use their hands and fingers to perform assembly processes,
from which the locations for sensor placement were determined. Research was conducted
to evaluate the human hand activity by considering the muscles in the forearm. One
of the muscles with a connection to the human finger and wrist is the flexor digitorum
profundus (FDP). Past researchers have analyzed finger and wrist manipulation from the
FDP [45–47]. The FDP is one of the human forearm muscles which produces any kind of
hand movement [48,49]. Figure 5 shows the position of the sensor placement for receiving
signals from the FDP.
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Eight volunteers (5 males and 3 females) participated in this analysis. The data
collection process used a single-channel sensor to classify the human intention based on
human flexor digitorum muscle activity, as shown in Figure 5. The data were obtained
from six types of basic motions performed by the participants (Figure 6). The participants
were asked to perform each motion for 2 s and to repeat each 40 times to simulate the
tasks performed in a repetitive assembly job. From this data acquisition, 1920 data were
collected, which resulted from 8 participants × 6 basic motions × 40 times replications.
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2.3.2. Data Pre-Processing with Augmentation

A convolutional neural network (CNN) is a method belonging to the deep neural
network used to process the data that has two-dimensional characteristics. The CNN
has various layers that are generally categorized into feature learning and classification.
The classification made by the CNN is based on probabilities for each class from the fully
connected layer. However, there are conditions related to the poor performance of the
result in applying this method due to the limited amount of data. The CNN needs a
large amount of data as its input to allow good performance, which is considered one
of its drawbacks [50]. On that account, data augmentation becomes a solution to data
preprocessing for images as the input for the CNN to increase the number for training
data [51].

This experimental study employed offline data augmentation for data received from
the current participants. Data augmentation is effective for classification with a limited
number of biological signals [52]. Data augmentation is able to increase the accuracy and
optimize the results of any kind of feature extraction in the classification [53,54]. Data
augmentation has been proven effective in showing the prediction of small datasets [52,55].
One of the methods of augmenting data is to add uniform random noise up to 40%, which
can increase accuracy by approximately 9% [56]. The current data here were augmented
using Gaussian noise—a very common approach in the application. Although there are
other methods for augmenting the data, using Gaussian noise to augment data presents
the benefits of increasing the data range without changing the local characteristics of the
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data [57]. Amplifying all-time data was used in this scenario with 0.5% standard deviation.
Amplifying all-time data is one of the ways of data augmentation, which multiplies all
sample data with a certain value [52]. The purpose of using data augmentation in this
analysis is to increase the number of samples. From this data acquisition, a total of 1920
data were collected; 3096 resulted from data augmentation as an input for the model.

2.3.3. Continuous Wavelet Data Feature Extraction

A signal generated by the human body is influenced by electrical activity, such as that
from the brain [58]. Similar to brain signals, muscles also provide human biofeedback that
can be analyzed by its electrical activity. In one form of the non-stationary characteristics
of EMG signals, the properties may vary over time [59]. Some conditions related to instan-
taneous changes in the signal pattern, which manifest as upward and downward spikes,
are also present in the electrical muscle activity. Many types of spectral analysis, such as
Fourier transform, short-time Fourier transform, and wavelet transform, are employed to
analyze signal patterns [60–62].

Continuous wavelet transform is used to produce the scalogram, which is used
for short- and long-time localization and for low- and high-frequency localization [63,64].
Using the scalogram with the Morse feature as an input for a convolutional neural network’s
training process can improve the validation accuracy [65]. The scalogram shows the square
magnitude of the continuous wavelet transform, which is defined in Equation (1) [66].

|Wx(b, a)|2 =

∣∣∣∣∣∣|a| 12
∞∫
−∞

x(t)ψ ∗
(

t− b
a

)
dt

∣∣∣∣∣∣
2

(1)

The scalogram provides information about the magnitudes of signals with different color
plots between time and frequency [58]. Equation (2) is the continuous wavelet transform,

|Wx(b, a)|2 =

∞∫
−∞

x(t)ψ∗b,a(t)dt (2)

where x(t) represents the original signal and ψ(t) is the mother wavelet function [66].
The variable a describes the scale factors for function ψ(t), while b is a shifting factor for
translating the function ψ(t). Muscle signals have characteristics of varying amplitude,
frequency, and discontinued localization on data over a period of time [67].

In this study, the continuous wavelet transform was used to convert the EMG signal for
each basic motion to a scalogram. The Morse wavelet was adopted because it is useful for
analyzing time-varying amplitude and frequency signal characteristics. Another advantage
of the Morse wavelet is that it is helpful for localized discontinuities and extraction of the
features into time and frequency domains [68]. Some parameters for converting the signals
are as follows: a sampling frequency of 1000 Hz, signal length of 2048, and voice per octave
of 48. The result of the scalogram for each basic motion signal is shown in Figure 6.

Figure 7 shows the different results from the 6 basic motions. Each figure shows the
difference related to the magnitude of each motion, which represents the original human
muscle EMG data, plotted in the frequency relative to the time. The scalogram result
from Figure 6 shows the unique sudden shift in the EMG signal by the change in color.
Additionally, the EMG signal, which has 1D characteristics, is transformed into a 2D signal
matrix. By performing frequency–time analysis, this provides us with the distribution of
the signal relative to the frequency and phase. This is used as an input for deep learning
with the CNN model. Using input from the scalogram depicted by the signal energy for
each motion, this study has the potential to produce better performance in the classification.
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2.3.4. Classification with a Convolutional Neural Network

Many studies have utilized artificial neural networks (ANNs) to classify feature
extraction, especially for analyzing a single-channel sensor to produce classifications. Some
research has noted that it is difficult to consider only one sensor datum in producing
classifications [69]. Using machine learning to analyze a single-channel sensor, some
researchers have chosen to use a small number of classes [69–71].

An extension of the ANN, named deep learning, can reduce the learning cost. A
convolutional neural network (CNN) is an algorithm in deep learning that is able to
process images as the input and determine the characteristics used in the learning process
for differentiating motions from one another. Here, the CNN was used to learn the
characteristics of motion signals produced by the human in the scenario. The CNN is
a famous architecture in deep learning and is used to classify images with remarkable
results [72]. The CNN consists of a step for the extraction of characteristics, followed
by a typical feedforward neural network (NN), which is used to perform discrimination.
Generally, the CNN architecture consists of three layers: a convolutional layer with a
finite number of filters for data input, a pooling layer to reduce the dimensions, and fully
connected layers [73]. A CNN works with image input, which passes through many deep
layers within the architecture to find the best characteristics of the images with a large scale
of data [74]. Erözen employed a CNN to classify 6 hand gestures using spectrograms from
STFT as input images with 8 channel sensors and achieved 83.97% accuracy [75].

The Alex Net architecture in deep learning was utilized to classify the scalograms
from the EMG signals. The input image resolution in this analysis was set to 227 × 227.
Figure 8 shows the architecture of the Alex Net. The Alex Net consists of 5 convolutional
layers, which consist of convolutional filters and 6 ReLU (rectified linear unit) activations
with nonlinear activation characteristics. ReLU uses deep learning to speed up the con-
vergence result from the training process [76]. Three max-pooling layers are used for the
pooling layer.
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3. Results
3.1. The Product

The evaluation was performed in the assembly station of a GPU company. The GPU
produced is shown in Figure 9. It had dimensions of 24 cm × 13.2 cm and weighed 1185
g. The process of assembly involved combining three components, as shown in Figure 9:
a base, a main board, and a fan. Five activities were needed to assemble the three parts
shown in Figure 10, as follows:

1. Workstation 1: Putting the rings into the main board;
2. Workstation 2: A screwing process to assemble the main board with the side part;
3. Workstation 3: A screwing process to assemble the GPU with the base;
4. Workstation 4: Gluing the fan and combining it with the GPU;
5. Workstation 5: A screwing process for connecting the GPU and the fan.
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3.2. The Workstations
3.2.1. Workstation 1

At Workstation 1, the rings were inserted into the main board. The task was carried
out by one operator without any tools. The operator inserted each ring by hand by selecting
the area in which the seal ring was to be placed and applying some pressure to the main
board. Figure 11 shows the operator inserting a ring into the main board. In total, six seal
rings needed to be placed by the operator. The total time needed for this operation was
1525 TMU (54.9 s). The output rate for this operation was two GPUs. The output of Table 2
for this operation showed that nine motions were used to complete the task. Analysis of the
proportion of basic motions showed the hold position to be dominant. A deeper analysis of
these basic motions involved a classification of effective and non-effective motions. Based
on Table 2, we were able to calculate that 32% were effective motions, while the rest were
ineffective motions. The hold motion dominated the ineffective motions of the operator,
with a percentage of 22%.
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Table 2. Left- and right-hand chart for putting the seal ring operations (second).

Type of Motion Left Right

Turn 5.4 1.3
Reach 1.3 4.8
Grasp 1.0 5.5
Move 4.7 8.7
Hold 22.3 2.0

Position 4.1 9.3
Release 0.8 1.4

Disengage 3.4 3.4
Reading 9.5 9.5

Idle 2.5 8.8
Total 54.9 54.9

The object load presented the possibility of assigning the task to the robot. In contrast,
the need for accuracy during the placement of the ring seals into the main board did not
allow a robot to complete the task. Regarding the classification of human basic motions,
it was possible to assign certain motions to a robot. The purpose here was to analyze the
ineffective motions of the human and assign them to the robot. Since the proportion of
hold was higher than the others, a scenario could be established for HRC based on this
basic motion. Hold can also be applied to the robot with other operations, such as move,
reach, and grasp.

3.2.2. Workstation 2

At Workstation 2, the main board was assembled with the side part of the GPU. This
operation was performed by one operator using an automatic screwdriver. The assembly
of the main board required four bolts. Figure 12 shows the operator applying a screw to
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assemble the main board with the side part of the GPU. The cycle time for this operation
was 974.37 TMU (35 s) with one product output.
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Table 3 shows that to finish this task, nine motions were needed. The proportion
of ineffective motions was around 60%, and the hold position also made up the highest
proportion of all motions performed by the operator. This position had a relatively high
proportion compared to the others because the use of an automatic screwdriver required
the operator to position some objects and tools. Despite the attachment to the main board,
the object load here was still acceptable for a robot because the weight was less than 1 kg.
Assigning this process to a robot would be possible because of the uniform conditions for
screwing the bolt into the side part of the GPU. However, the position for attaching the
part was on the side of the GPU. Hence, it would be difficult to set up the position due
to complications in positioning the main board to support the screwing process (vertical
position). Positioning the main board horizontally was possible, but it was difficult to
change the automatic screwing position to the side position. For this reason, a human is
better suited for the task. Regarding the motions performed by the operator to complete the
task, the hold position could be assigned to the robot. The robot could hold the object while
the operator completed the screwing process, and a chuck would be needed to establish a
tight hold on the main board.

Table 3. Left- and right-hand chart for assembly of the main board with the side of the GPU (second).

Type of Motion Left Right

Turn 0.3 0.3
Reach 2.7 0.9
Grasp 2.5 0.4
Move 2.1 5.4
Hold 16.3 4.5

Position 2.4 8.4
Release 1.0 0.8

Press 0 12.0
Reading 3.96 2.0

Idle 3.8 0.3
Total 35.1 35.1

3.2.3. Workstation 3

At Workstation 3, the worker used an automatic screwdriver to assemble the main
board with the base. Assembling this part required eight bolts, a cable attachment, and
nine basic motions with 1326.6 TMU (47.76 s). Figure 13 shows the assembly process for
the main board and side part of the GPU. The output of this process was one for each cycle.
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The comparison of the effective and ineffective motions of this task in Table 4 with
those at other workstations did not present a significant difference; the results were ap-
proximately 39% and 61%, respectively. In the whole task, the hold position was more
dominant than others, at 27%. In addition, the movement activity had a higher percentage
than those of the other types of motion, at 12%. Based on the main process activity, the
process of screwing to assemble the object presented the possibility of not assigning the
task to a human. The activity’s purpose of assembling two parts with horizontal positions
provides a chance to assign this activity to a machine/robot.

Table 4. Left- and right-hand chart for assembly of the main board with the base of the GPU (second).

Type of Motion Left Right

Turn 0 0.5
Reach 2.5 1.7
Grasp 3.5 0.6
Move 4.7 6.6
Hold 24.1 2.1

Position 3.9 7.8
Release 1.0 1.2

Press 0.0 16.0
Pull 0.0 6.0
Idle 8.0 5.3
Total 47.8 47.8

3.2.4. Workstation 4

At Workstation 4, the main board was glued together with the GPU fan by one operator.
The main purpose of this task was to apply glue and tape to attach the main board to the
GPU fan. Figure 14 depicts an operator performing the gluing process of the main board
before attaching the GPU fan to it. Based on Table 5, the total time for this operation was
897.56 TMU (32.31 s). The operator used tools to apply glue to the object.
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Table 5. Left- and right-hand chart for gluing the main board and GPU fan (second).

Type of Motion Left Right

Turn 1.2 0.9
Reach 2.9 3.9
Grasp 1.6 1.2
Move 2.7 7.6
Hold 10.8 1.3

Position 1.7 11.1
Release 0.6 1.9

Press 0.0 2.0
Reading 0.0 0.0

Idle 10.8 2.4
Total 32.3 32.3

Of the total 897.56 TMU, 37% were effective motions and 63% were ineffective motions.
The idle time was greater than that of the other workstations because of the tendency of
humans to use the right hand and the characteristics of the task. The position of motions
was the next highest proportion due to the need for the operator to place an attachment
on the object. The need for accuracy and pressure to attach the glue and tape make this
operation difficult to assign to a robot. Up to nine pieces of tape needed to be placed onto
the main board.

3.2.5. Workstation 5

Finally, at Workstation 5, the screwing process was used to assemble the main board
with the GPU fan. The operator used a screwdriver and six bolts to perform the assembly.
Referring to Table 6, the cycle time needed to complete this task was 1269.7 TMU (45.71 s),
with an output rate of one product for each cycle. Figure 15 depicts the assembly process
for this workstation. For this task, ineffective motions dominated, comprising up to 80% of
the total. Further analysis of the ineffective motions revealed that the hold position had
the highest portion, 35%. As previously shown, this task could be assigned to a robot. It
would then be possible to assign the hold position to the robot while the human completed
the screwing process.

Table 6. Left- and right-hand chart for screwing the main board and the GPU fan together (second).

Type of Motion Left Right

Turn 1.5 2.3
Reach 2.2 1.2
Grasp 3.1 0.3
Move 2.2 5.9
Hold 14.7 18.0

Position 4.3 9.7
Release 0.7 0.7

Disengage 0.0 0.0
Reading 5.0 5.0

Idle 12.0 2.6
Total 45.7 45.7

The evaluation of all of these workstations in building a new scenario of HRC showed
the need to consider the kinds of activities performed by the operator. This section compares
the five workstations and the basic motions used by operators at each. The results of
this comparison present possibilities for developing new collaborations between humans
and robots. Another benefit is the possibility of reducing the human load related to
the ineffective motions, such as hold and idle. Minimizing holding by humans is one
purpose of Therbligs, in addition to eliminating ineffectiveness and performing multiple
motions in combination [43]. Figure 16 shows that two workstations had higher hold times
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(Workstations 3 and 5). Another consideration is that the idle time was higher at these
two workstations than at the others. This indicates that Workstations 3 and 5 present the
possibility of HRC, based on MTM analysis.
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3.3. Implementing Human–Robot Collaboration
3.3.1. The EMG-Based Communication for Human–Robot Collaboration

Supporting the application of motion study analysis, this study aimed to utilize a
low-cost electromyograph, which was built with only one sensor channel. One reason for
choosing a single-channel sensor is that such a design can minimize operator discomfort
and subjective perceived interference, although in theory, more channels of muscular
information would provide more accurate prediction of the motion intention. One study
also found that low-cost EMG proved to be useful for human biofeedback application and
clinical analysis [77]. The classification results for the EMG signals of six basic motions are
shown in Figure 17, which presents the training process for the classification, with accuracy
of up to 100% and 88% for validation. Its confusion matrix is shown in Figure 18. Another
study considered using fewer classes (four gestures) while utilizing a single-channel EMG,
and the accuracy reached around 90% [71].

Supporting this scenario is a preference to consider the high accuracy of the classifi-
cation result in the confusion matrix in Figure 18, such as move, hold, idle, and release.
For the scenario in Figure 16, detecting movement motions from classification will direct
the robot to move the GPU to the holding position for tshe screwing process. After the
human finishes the screwing activity, the human’s idle information will direct the robot to
move the GPU to the conveyor. These two basic motions are chosen because the accuracy
is higher than those of the other classes. This information could minimize the error infor-
mation related to misclassification of the human motion intention. Figure 18 shows some
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misclassification conditions for reach, grasp, and release because of similar characteristics
of the signal magnitudes relative to the time and frequency within these three classes.
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3.3.2. Scenario Description

Previous analysis indicated the possibility combining tasks for HRC at Workstations
3 and 5. Workstation 3 entails the assembly of the main board with the base, while
Workstation 5 involves screwing the main board onto the GPU fan. The first step is the
identification of the time needed to complete the tasks at Workstations 3 and 5. A total
of 94 s was needed for the completion of both workstation tasks. The next step is to set
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up the scenario of collaborating with the robot. Here, three elements, namely, a human, a
robot, and an automatic screwdriver, were used. The set-up scenario is based on Figure 19.
Figure 19 illustrates that, at the first workstation, the human performs the loading and
unloading of the main board and the base to the automatic screwdriver. While the human
performs the loading and unloading, the robot grasps, moves, and holds the GPU fan in
the collaboration area. After the automatic screwdriver finishes the process, the human
attaches the main board to the GPU fan and proceeds to the Workstation 5 scenario (the
screwing process). Finally, after the human finishes the screwing process, the robot moves
the object to the conveyor.

Sustainability 2021, 13, x FOR PEER REVIEW 20 of 27 
 

performs the loading and unloading, the robot grasps, moves, and holds the GPU fan in 
the collaboration area. After the automatic screwdriver finishes the process, the human 
attaches the main board to the GPU fan and proceeds to the Workstation 5 scenario (the 
screwing process). Finally, after the human finishes the screwing process, the robot moves 
the object to the conveyor. 

Start

Reach the base part

True?

Human Robot

Robot reach the 
fan partYesNo

Fan part 
loacation

Move the base part 
to screw machine

Move the GPU part 
to screw machine

EMG data of 
reach the base 

part classification

Fan part 
location

Finish

Screw Machine

Robot grasp 
the fan part

Robot move 
the fan part

Base part and 
GPU at 
location

True?

Screw the bolt Yes

No

No

The bolt assembly 
the base part and 

GPU

True?

No

Move the GPU 
to the fan partYes Hold the fan 

part

Put the GPU 
to the fan part

Screw the 
GPU and 
fan part

Hold the 
fan part

True?

All the bolt 
screwed

Move the bolt to 
conveyorYes

No

 
Figure 19. Set up scenario for human, robot, and machine collaboration. 

To accomplish this scenario, there is also a re-layout in the experiment. The re-layout 
serves to achieve simultaneous collaboration for each party. The re-layout separates the 
area into three areas: a human area, a robot area, and a collaboration area. The collabora-
tion area is provided to accommodate the robot when it is holding the GPU fan of a certain 
weight for a given amount of time while the human carries out the operation. Using mo-
tion analysis for human–robot collaboration, unproductive characteristics of jobs carried 
out by a human can be minimized [78]. The motions performed by a human in the task-
related movement and holding are unproductive and cause fatigue. Thus, hold and move 
should be assigned to the robot. The HRC considers the hold and some movements as 
shared tasks. This means that the scenario uses a shared workspace for a shared task with 
physical interaction [79]. The scenario of motions performed by the human, robot, and 
machine in the collaboration is arranged in Figure 20. Figure 21 shows the layout model 
of collaboration between a human, a robot, and the screwdriver. Figure 19 shows a sce-
nario of the robot performing the move and hold motions. Reducing the hold motion from 
the human will reduce the fatigue that might result from repetition. Consideration of the 
biomechanical load in effective motion will help the designer to balance operational per-
formance and human safety [80]. 

  

Figure 19. Set up scenario for human, robot, and machine collaboration.

To accomplish this scenario, there is also a re-layout in the experiment. The re-layout
serves to achieve simultaneous collaboration for each party. The re-layout separates the
area into three areas: a human area, a robot area, and a collaboration area. The collaboration
area is provided to accommodate the robot when it is holding the GPU fan of a certain
weight for a given amount of time while the human carries out the operation. Using



Sustainability 2021, 13, 5990 20 of 26

motion analysis for human–robot collaboration, unproductive characteristics of jobs carried
out by a human can be minimized [78]. The motions performed by a human in the task-
related movement and holding are unproductive and cause fatigue. Thus, hold and move
should be assigned to the robot. The HRC considers the hold and some movements as
shared tasks. This means that the scenario uses a shared workspace for a shared task
with physical interaction [79]. The scenario of motions performed by the human, robot,
and machine in the collaboration is arranged in Figure 20. Figure 21 shows the layout
model of collaboration between a human, a robot, and the screwdriver. Figure 19 shows a
scenario of the robot performing the move and hold motions. Reducing the hold motion
from the human will reduce the fatigue that might result from repetition. Consideration of
the biomechanical load in effective motion will help the designer to balance operational
performance and human safety [80].
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This will impact the sustainability condition because the human workload and suit-
able physical effort are a few of the important factors to support human well-being in the
workplace [81]. It is increase synergy among areas/departments and provide a healthy,
meaningful, and pleasurable work atmosphere for developing sustainable work [82]. This
is in line with the main purpose of developing sustainable manufacturing operations with
safety protection [83]. Although this framework has limitations in the human intention by
only considering human motion, this gives promising insights for the sustainable devel-
opment in the workplace for increasing human well-being. Furthermore, the reduction in
lead time resulting from the HRC scenario would meet sustainable manufacturing goals.
Lead-time reduction would increase productivity, which is very important for maintaining
sustainable working conditions and environments. The lead time is one of the key metrics
in sustainable manufacturing, along with energy consumption, carbon emissions, and
production costs [84].
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4. Discussion

Human–robot collaboration (HRC) is the study of collaborative processes in human
and robot agents working together to achieve shared goals. There are numerous ways to
build human–robot collaboration (HRC). One is to develop HRC based on human motion
data. This paper presents an approach based on motion analysis to evaluate the current
scenario in the company and construct an HRC scheme to reduce the robot’s uncertainty
about human movements in the production line. As a robot has higher productivity over
a prolonged duration of work than a human does [5], allocating different tasks to the
human and the robot requires some information on the capability of the human in the task
procedure because of possible changes in his/her physiological conditions [85].

Applying HRC in this scenario would provide an improvement over the current
assembly condition. Several benefits of this proposed scenario would be as follows:

1. Combining Workstations 3 and 5 would reduce the total cycle time needed to finish
the operations. Previous analysis showed the total cycle time for Workstations 3 and
5 to be 93.47 s. The new scenario proposed for HRC would be 81.85 s, as shown in
Figure 20. This reduction in time would yield higher throughput.

2. Human fatigue would be reduced in this scenario because the move and hold motions
were assigned to the robot. The human worker could focus on the screwing process,
which adds value to the product (see Table 7).

Table 7. Comparison of types of activities performed by humans, robots, and machines.

Type
Human Robot Screwdriver

Left Right % Time % Time %

Process 650.2 1758.7 71% 1944.98 85.6% 555.2 24.4%

Idle 1609.68 515.2 20.8% 328.9 14.5% 1718.68 75.6%

Hold 14 195.2 7.9%

Total 2273.88 2469.1 2273.88 2273.88

This work shows that human–robot intention communication is achievable for a
more socially friendly and sustainable HRC workplace for the assembly process in the
manufacturing. Although the actual industry assembly line requires higher accuracy for
uncertain human dynamics, the idea with a low-cost single-channel device is promising to
demonstrate better HRC through movement intention capture. This is in line with EMG,
with the ergonomics approach being one of the devices with the widest and most successful
application in the industry environment without affecting the worker [86].

This scenario also supports sustainability, an important societal factor. In industrial
robotics, societal factors focus on reducing the human load in work with heavy loads, high
repetition, and unsanitary job conditions [87]. The proposed scenario supports the social
aspect with respect to human rights in work and provides good conditions. Moreover,
reducing the human load would also provide environmental and economic benefits by
using resources efficiently and providing innovation in HRC. Combining robots with
AI techniques in the scenario would help to increase effectiveness by considering the
knowledge arrangement and practice [3]. The collaboration scenario with a focus on
human intention would increase positive aspects, such as social connections, well-being,
and interaction engagement [88]. Using a robot would support social relationships due to
a high level of social interaction [89].

Social sustainability can be achieved by improving the workplace conditions and en-
vironment in the manufacturing industry [90]. However, with the dynamic characteristics
illustrated by the human–robot collaboration, the human performance in the working area
is influenced by environmental conditions and may have an impact on the safety aspect
due to stressful conditions [91]. Focusing on human intention will bring forth a solution to
the safety aspect issue. The human intention in the collaboration will be understood by the
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robot by means of muscle signals generated from EMG. The robots will perform a particular
action when there are muscle signals that represent the human intention to support the
safety aspect for social sustainability. This is in line with the main purpose of developing
sustainable manufacturing operations with safety protection [83]. Additionally, this sce-
nario only considers EMG data to obtain muscular level activity; data cannot be traced
back to any personal identity. The EMG data depict the characteristics of any motions and
is not related to any personal identity in the social perspective. Furthermore, the reduction
in lead time resulting from the HRC scenario would meet sustainable manufacturing goals.
Lead-time reduction would increase productivity, which is very important for maintaining
sustainable working conditions and environments. The lead time is one of the key metrics
in sustainable manufacturing, along with energy consumption, carbon emissions, and
production costs [84].

The future improvement of the method may include integration with other types
of sensors, such as vision-based sensors, to cross check the EMG classification. Another
possibility is to add more EMG sensors to detect the human’s muscle activity. This would
be challenging because, for low-cost DAQ (data acquisition), there is a tradeoff for compu-
tational process capability.

5. Conclusions

Building HRC is one option for supporting sustainable manufacturing due to the
advancement of technology. Ergonomic analysis also supports collaboration using mo-
tion study to enhance worker well-being by reducing highly repetitive task loads. The
combination of an ergonomic perspective and HRC would be useful for innovation and
social aspects of sustainability. The ergonomic approach through motion study involves
evaluating the company’s current scenario and constructing a human–robot collaboration.
Ineffective motions will impact human performance over an 8-h work shift. In this case,
holding can be shared with a robot. Based on the evaluation of the left- and right-hand
charts, the operations at Workstations 3 and 5 had the highest hold times. A scenario was
built to combine these two scenarios and assign the hold position to the robot and the
human while the human screws in the bolts. The resulting percentage of human processing
time is 72%. The robot provides 90% utilization to take an object, hold it, and release it to
the conveyor. The screwdriver is less utilized, with only 47.22% utilization.

Low-cost EMG provides the possibility of using a device to communicate between
humans and robots. Low-cost EMG could detect some characteristics of magnitudes in
frequency and time domains for basic human motions. Based on the classification results,
there is a possibility of communication between humans and robots. The result of the
training accuracy was 100%, and the validation was 88%. From this information, some
classes with a high accuracy of validation can be considered as information for the robot to
convey the human’s status in the collaborations.

Finally, supported by the low-cost EMG, the proposed scenario developed from an
ergonomic perspective would result in greater coordination between the human and the
robot, which supports sustainable manufacturing practices. A further benefit of this result
is the demonstration of HRC scenarios that can enhance a healthy environment with higher
efficiency and cause less human fatigue, greater understanding of human intentions in
robotics, and seamless collaborations.
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