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Abstract: This paper presents an efficient neural network-based method for fault diagnosis in
photovoltaic arrays. The proposed method was elaborated on three main steps: the data-feeding
step, the fault-modeling step, and the decision step. The first step consists of feeding the real
meteorological and electrical data to the neural networks, namely solar irradiance, panel temperature,
photovoltaic-current, and photovoltaic-voltage. The second step consists of modeling a healthy mode
of operation and five additional faulty operational modes; the modeling process is carried out using
two networks of artificial neural networks. From this step, six classes are obtained, where each class
corresponds to a predefined model, namely, the faultless scenario and five faulty scenarios. The
third step involves the diagnosis decision about the system’s state. Based on the results from the
above step, two probabilistic neural networks will classify each generated data according to the six
classes. The obtained results show that the developed method can effectively detect different types of
faults and classify them. Besides, this method still achieves high performances even in the presence
of noises. It provides a diagnosis even in the presence of data injected at reduced real-time, which
proves its robustness.

Keywords: photovoltaic array; fault detection; automatic monitoring; diagnosis; artificial intelligence;
neural networks; classification

1. Introduction

In the last few years, there has been a growing interest in developing alternative
energies, which are inexhaustible and environment friendly compared to energies derived
from fossil deposits (oil, petroleum, and natural gas). Alternate energy encompasses all
those renewable resources that do not involve fossil fuels, such as solar, wind, geothermal,
hydroelectric, and biomass. Solar energy, both thermal and photovoltaic, shows the
greatest growth rate globally. The installed photovoltaic (PV) power increased by over
25% yearly for the last five years. The PV production price dropped significantly during
the same period allowing this type of energy to compete freely with alternative sources.
With this increased capacity, the fault diagnostic and maintenance of solar PV plants
become critical to maintaining the competitiveness of this energy sector [1,2]. The proper
diagnosis is crucial to avoid any loss of efficiency, safeguard the system, and guarantee
service continuity. The failures detected in a PV system are classified into three categories
according to the source of the default (Figure 1): internal, external, and ageing effects [1,3,4].
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Numerous recent studies addressed the faults occurring specifically in the PV arrays 

due to their impact on energy production and levelized cost [12]. These faults can be 

classified into physical, environmental, and electrical faults (Figure 2) [13]. 
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Figure 1. Causes of failures in PV systems.

Internal PV faults originate from the PV system and include all component failures
(PV arrays, cables, converters, protections, batteries, inverters) [4]. External PV faults are
due to external inappropriate operating conditions, such as the shading effect [5], high
temperature [6] or high humidity, suboptimal tilt or orientation, corrosion [7], and the
accumulation of soil [8], which lead to several degradations and annual power losses [9–11].

Numerous recent studies addressed the faults occurring specifically in the PV arrays
due to their impact on energy production and levelized cost [12]. These faults can be
classified into physical, environmental, and electrical faults (Figure 2) [13].
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Physical faults are caused by internal (damage to PV panel or to blocking and bypass-
ing diode (BBD)) or external (cracks in PV panels or degradation) failures [14]. Environ-
mental faults are caused by soiling (dirt, snow, dust) [15], permanent shade (hot-spot) [16],



Sustainability 2021, 13, 6194 3 of 27

or temporary shade [17]. Electrical faults are open circuit (OC), short circuit (SC), ground
fault (GF), line-to-line (LLF), and arc fault (AF) [2], with their potentially dangerous conse-
quences (fire risks and electrical shock) [12].

Faults in a photovoltaic array can occur due to severe degradations such as discol-
oration, corrosion, delamination, broken glass, bubbles, disconnection, encapsulation,
leakage currents, wiring mistakes, installations faults, and manufacturing defects. All
of these may lead to short circuit within a panel or between panels [12,14,18,19]. There-
fore, fault detection and diagnosis (FDD) methods for PV arrays are needed to detect and
identify abnormal conditions at early stages to reduce the risks associated with long-term
operation. FDD methods can be categorized into two main categories:

• Visual methods using infrared (IR) cameras, drones and thermal imaging analy-
sis [19–21].

• Electrical methods are based on supervised algorithms to be implemented through
offline/online adaptation in a PV plant [22,23].

In the scientific literature, several electrical-based FDD methods have been devel-
oped [12,23,24]. Various artificial intelligence (AI) approaches are considered for moni-
toring and diagnosing PV plants [25]. Particularly, artificial neural network (ANN) has
proved best performances and has been largely used by different researchers [26–29] to
diagnose different kinds of PV faults. They are using several ANN model types such as
multi-layer perceptron (MLP), radial basis network (RBN), feed-forward (FF), and recur-
rent neural network (RNN). It is possible to change the ANN’s architecture, precisely the
number of hidden layers and neurons in the layer. The learning process can be supervised
or unsupervised.

The detection of various types of faults in a photovoltaic array requires more efficient
diagnosis methods. In this work, an efficient neural network (NN) electrical-based method
is proposed to detect all short circuit (SC) failures along with the faulty PV array, using
actual data. Three major steps (feeding of real data, faults modeling, and decision) are
elaborated to achieve this objective. The three steps are as follows:

• The data feeding (first step) uses the real measured data: array’s temperature, solar
irradiance, PV voltage, and PV current at the maximum power point (MPP).

• The second step consists of modeling the healthy system and fault detection. Accord-
ing to input data, two networks of artificial neural networks (NANNs), NANN1 and
NANN2, are used to predict the current and voltage output values for healthy or
default operation.

• The third step provides PV system diagnosis by combining the outputs from two
PNNs. The respective output values (currents and voltages) from NANNs are used as
input for two probabilistic neural networks (PNNs), called PNN1 and PNN2. PNN1
and PNN2 classify the current and voltage values from the NANN1 and NANN2
models by comparing them with actual measured values. PNN1 classifies the existing
data into two classes (healthy and faulty), while PNN2 classifies the voltage data into
five categories (one healthy and four default alternatives).

In this paper, the development of an efficient and highly accurate method to diagnose
solar photovoltaic faults has been achieved through an innovative application of artificial
intelligence (AI) techniques. Two separate networks of artificial neural networks (NANNs)
model the time variation of current and voltage output of an array of solar panels both
for healthy and default operations. One current and four voltage short-circuit defaults are
modeled and detected when compared with real operation outputs. The novelty is that
we do not use the traditional current-voltage characteristics but the individual variation
of current and voltage with time. Another originality is that two separate PNNs identify
healthy or default operations by comparing real current and voltage data with previously
classified simulations by NANNs. As ANNs methods are inherently statistical, they require
a large number of observations, which are not always available, and above all, they need a
significant number of iterations. In [30], this problem is addressed using a probabilistic
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neural network model (PNN), allowing instant learning and running even with a small
number of observations [31,32].

The developed method is robust and less affected by noises (for example, presence of
perturbations from inverter) and notices the presence or absence of perturbation factors. It
does not require the entire current–voltage (I–V) curve to detect a fault. Only reduced time
variation of current and voltage from real collected data is sufficient for fault diagnostic.
The contributions of this paper can be summarized as follows:

• Modeling healthy system operation and separate detection of one current and four volt-
age short-circuit defaults using two networks of artificial neural networks (NANNs).

• Diagnosis of one healthy and five faulty short-circuits operation conditions using
real current and voltage data variation in time. The classification and decision use
probabilistic neural networks (PNNs) fueled by NANNs simulations.

• The robustness of the proposed method is tested in the presence of noise from the inverter.

The paper is organized as follows; Section 2 presents the three steps for the modeling
and fault diagnosis in the PV array using neural networks. Section 3 presents the details
about the elaboration of the NNs and the implementation of the methods. The robustness
against noises is discussed in Section 4, showing the effect of reduced time of injected data.
Finally, Section 5 gives a conclusion and perspective for future work.

2. Modeling and Diagnosis of PV Faults

The proposed PV monitoring plant is depicted in Figure 3. The overall block diagram
shows the intelligent global monitoring and fault diagnosis structure for the PV plant.
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The PV plant under study is located at the Renewable Energies Development Centre
(CDER) of Algiers, Algeria [33,34]. It is organized according to three subarrays, where each
subarray is connected to a single-phase inverter. Each subarray consists of 30 PV Isofoton
panels (106 W–12 V). Table 1 summarizes the specifications of the used Isofoton PV panel.
The panels in a subarray are arranged in two parallel strings with 15 series-connected
panels for each string. This PV plant is endowed with a monitoring system using an Agilent
34970A card data acquisition system. A pyranometer (Kipp and Zonen CM11) measures
the irradiance (G) in the horizontal plane. The temperature (T) is measured with a set of
k-type thermocouples. The measurements were carried out for 11 months in the year 2018.
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Table 1. The Isofoton 106-12 specifications.

Parameters Values

Maximum power (Pmpp) 106 W

Short circuit current (Isc) 6.54 A

Open circuit voltage (Voc) 21.6 V

Coefficient of temperature at Isc (α) 0.060 %/◦C

Coefficient of temperature at Voc (β) −0.36 %/◦C

Maximum current (Impp) 6.1 A

Maximum voltage (Vmpp) 17.4 V

In PV plants, faults usually occur from the electrical grid (instability) or from the
storage system. Most widespread are from inverters and/or from the photovoltaic array.
This work concentrates on the array’s short-circuit failure types, which are common in PV
plants. The names of these PV faults and their symbols are summarized in Table 2.

Table 2. Type of faults and their symbols in the PV array.

Name of Faults Symbols

Healthy model C1

Fault detection due to voltage of one short-circuited panel C2

Fault detection due to voltage of two short-circuited panels C3

Fault detection due to voltage of four short-circuited panels C4

Fault detection due to voltage of six short-circuited panels C5

Fault detection due to current of short-circuited string C6

Two operational modes are considered to detect these PV faults. The first mode
refers to a healthy PV array (Class 1), while the second mode refers to the faulty PV array
(Classes 2–6). The fault diagnosis process for the above PV plant can be explained through
two organigrams, as mentioned below:

• The first organigram (Figure 4): for exploitation of the developed method.
• The second organigram (Figure 5): for the developed method.

The exploitation process of the developed diagnosis method follows three main steps:
real data feeding, faults modeling, and decision about fault classification, as depicted in
Figure 4.

It can be seen from Figure 4 that the exploitation process follows these major steps:

n Collection of real meteorological data (G and T) with sensors, and their injection
to NANNs.

n Production of classes from NANNs.
n Acquisition of real data from the PV array (Impp and Vmpp) and their injection to PNNs.
n Classification of the later measured data to their convenient classes by PNNs.
n Decision about the health state of the PV array.
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The method algorithm, illustrated by the chart in Figure 5, describes the working
principle of the PV diagnosis process in detail.

The following subsections provide additional details about PV diagnostic steps.

2.1. Feeding with Real Data

In the first step, real experimental data, namely, array’s temperature, solar irradiance,
PV current, and PV voltage at their maximum values (T, G, Impp, Vmpp), are fed to the created
NANNs and PNNs for learning. The time variation of these parameters is summarized
in Figure 6. The experimental setup of the PV plant, located at the Renewable Energies
Development Centre (CDER) of Algiers, Algeria [33,34], is detailed at the beginning of this
section. The measurements in Figure 6 were taken in March 2018 with a sampling period
of one minute, equivalent to 220 data points for each parameter.
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Figure 6. Real data of (a) array’s temperature; (b) solar irradiance; (c) PV current; (d) PV voltage.

For the meteorological data, the temperature varies between 36 and 48 ◦C while the
irradiance reaches 1000 W/m2. For the electrical parameters, the PV current varies in the
range (6–12 A), while the PV voltage varies in the range (20–30 V).

2.2. Modeling and Detection of Faults Using NANNs

The primary process of modeling, fault detection and classification is presented in
Figure 7 and is described in detail in [35]. As illustrated in Figure 7, we used multiple neural
networks (NNs) for the healthy operation and multiple-fault modeling stage. Therefore, ev-
ery fault is modeled by a neural network. The output of every model is compared with the
real (healthy or faulty) state, which will be classified using a probabilistic neural network.

Sustainability 2021, 13, 6194 8 of 27 
 

System

NN Health Model 0

NN Fault Model 1

NN Fault Model 2

NN Fault Model L

  

  

  

  

C
la

s
s
if

ic
a
tio

n

U(t)

Faults

Y(t)

Fault Info

 Isolation

   Decision MakingNN-based multiple Model Residual Generation

Yo(t)

Y1(t)

Y2(t)

YL(t)

ro

r1

r2

rL

.

.

.

.

.

.

.

.

.

 

Figure 7. A generic neural network-based multiple-model fault detection and isolation scheme [36]. 

In this work, two networks of artificial neural networks (NANN1, NANN2) are 

modeling the PV current and PV voltage at their maximum values (Impp and Vmpp). The 

approach consists of modeling a healthy mode and five defective modes. The first NANN 

is used to model current outputs, while the second NANN is used to model voltage 

outputs under variable operating conditions, as shown in Figures 8 and 9. 

G (W/m2)

Impp_healthy

...

Impp_String

...

Input layer Hidden layer Output layer

T(°C)

 

Figure 8. The current modeling structure by a network of artificial neural networks (NANN1). 

Figure 7. A generic neural network-based multiple-model fault detection and isolation scheme [36].



Sustainability 2021, 13, 6194 8 of 27

In this work, two networks of artificial neural networks (NANN1, NANN2) are
modeling the PV current and PV voltage at their maximum values (Impp and Vmpp). The
approach consists of modeling a healthy mode and five defective modes. The first NANN
is used to model current outputs, while the second NANN is used to model voltage outputs
under variable operating conditions, as shown in Figures 8 and 9.

Sustainability 2021, 13, 6194 8 of 27 
 

System

NN Health Model 0

NN Fault Model 1

NN Fault Model 2

NN Fault Model L

  

  

  

  

C
la

s
s
if

ic
a
tio

n

U(t)

Faults

Y(t)

Fault Info

 Isolation

   Decision MakingNN-based multiple Model Residual Generation

Yo(t)

Y1(t)

Y2(t)

YL(t)

ro

r1

r2

rL

.

.

.

.

.

.

.

.

.

 

Figure 7. A generic neural network-based multiple-model fault detection and isolation scheme [36]. 

In this work, two networks of artificial neural networks (NANN1, NANN2) are 

modeling the PV current and PV voltage at their maximum values (Impp and Vmpp). The 

approach consists of modeling a healthy mode and five defective modes. The first NANN 

is used to model current outputs, while the second NANN is used to model voltage 

outputs under variable operating conditions, as shown in Figures 8 and 9. 

G (W/m2)

Impp_healthy

...

Impp_String

...

Input layer Hidden layer Output layer

T(°C)

 

Figure 8. The current modeling structure by a network of artificial neural networks (NANN1). Figure 8. The current modeling structure by a network of artificial neural networks (NANN1).

Each proposed NANN contains ANNs of three layers: the input layer, hidden layer,
and output layer. Temperature and irradiance are introduced in the input layer for each
mode. The NANNs outputs are current and voltage at the MPP. The networks are trained
by providing inputs and outputs to match the different models (healthy and faulty). More
details on the elaboration of ANNs will be provided in Section 3. The architectures of each
NANNs are summarized in Tables 3 and 4.

Table 3. The architecture of the two ANNs developed in NANN1.

Numbers ANNs of NANN1 Input Layer Hidden Layer Output Layer

ANN1 Healthy current 2 40 1 (Impp_healthy)

ANN2 Fault in the current of string short circuited 2 40 1 (Impp_string)

Table 4. The architecture of the five ANNs developed in NANN2.

Numbers ANNs of NANN2 Input Layer Hidden Layer Output Layer

ANN1 Healthy voltage model 2 40 1 (Vmpp_healthy)

ANN2 Fault in voltage of one panel SC 2 40 1 (Vmpp_1SC)

ANN3 Fault in voltage of two panels SC 2 40 1 (Vmpp_2SC)

ANN4 Fault in voltage of four panels SC 2 40 1 (Vmpp_4SC)

ANN5 Fault in voltage of six panels SC 2 40 1 (Vmpp_6SC)
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The NANN1 contains two ANNs; each ANN has two nodes in the input layer, one for
temperature and one for irradiance. The hidden layer contains 40 neurons, and the output
layer contains one neuron to get the current vector at the maximum power point (healthy
and faulty mode, Figure 7).

The NANN2 contains five ANNs; each ANN has two nodes in the input layer, one
for temperature and one for the irradiance. The hidden layer contains 40 neurons, and the
output layer contains one neuron to get the voltage vector at the maximum power point
(for healthy and the four faulty modes, Figure 8).

Both the healthy and defective modes were modeled by artificial neural networks
using temperature and irradiance data inputs, as shown in Figures 7 and 8. For each
introduced data, the NANNs are developed to give seven outputs according to seven
estimates states shown in Table 5 below.

Table 5. Type of parameters with symbols and classes.

Symbols Parameters Classes

Impp_h Healthy current at the maximal power point Class 1

Vmpp_h Healthy voltage at the maximal power point Class 1

Vmpp1sc Voltage at maximum power point of one short-circuited panel Class 2

Vmpp2sc Voltage at maximum power point of two short-circuited panels Class 3

Vmpp4sc Voltage at maximum power point of four short-circuited panels Class 4

Vmpp6sc Voltage at maximum power point of six short-circuited panels Class 5
Impp_s Current at maximal power point of string fault Class 6

• Obtained classes from ANNs:

The different classes for healthy and faulty operation are built using a Matlab/Simulink
model for the PV array (Figure 10) [26]. The healthy case uses real data as inputs (temper-
ature and irradiance) and determines the corresponding outputs (“healthy” current and
“healthy” voltage). After that, we introduce the desired fault, one for the current with a
string fault and four for the voltage with a different number of short-circuited panels, into
this Simulink model [26]. With the same input data, we obtain the faulty outputs. Finally,
all the results are recorded (one healthy and five faulty cases) and used as a dataset for
learning the neural networks (NNs). Using the Matlab/Simulink model is preferable as it
would be impossible to reproduce experimentally the same meteorological conditions for
all healthy and faulty operation scenarios.
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Figure 10. Classes obtained for the current/voltage modeled at MPP.

The two classes obtained from the NANN1 are shown in Figure 11. The classes are
represented by graphs of the current values modeled at the maximum power point. These
two classes for the MPP current are obtained from the NANN1 described in Figure 8.
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Figure 11. Classes obtained for the current modeled at MPP.

- The first graph (in blue line) represents Class 1, which models the MPP current at the
healthy state.

- The second graph (in black line) represents Class 6, which models the MPP current at
a faulty state with a short-circuited string.

- Figure 12 gives the graphs representing the values of the different voltages modeled
at the MPP using the NANN2 described in Figure 9 with a period of 220 data points.

- The first graph (in green line) represents Class 1, which stands for the healthy voltage
model at MPP.

- The second graph (in blue line) represents Class 2, which stands for the faulty voltage
model at MPP for one short-circuited panel.

- The third graph (in magenta line) represents Class 3, which stands for the faulty
voltage model at MPP for two short-circuited panels.

- The fourth graph (in cyan line) represents Class 4, which stands for the faulty voltage
model at MPP for four short-circuited panels.

- The fifth graph (in black line) represents Class 5, which stands for the faulty voltage
at MPP for six short-circuited panels.

Therefore, by combining the results from the two above figures, the following mod-
els occur:

- The healthy model (Figure 11 Impph with blue, Vmpph with green Figure 12).
- The faulty string model (Figure 11 Impp_string with black, Vmpph with green Figure 12).
- The faulty model one short-circuited panel (Vmpp1sc with blue Figure 12).
- The faulty model two short-circuited panels (Vmpp2sc with magenta Figure 12).
- The faulty model four short-circuited panels (Vmpp4sc with cyan Figure 12).
- The faulty model six short-circuited panels (Vmpp6sc with black Figure 12).

From this second step, six classes are defined, as presented in Table 5.
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2.3. Diagnosis, Classification and Decision Using PNNs

The third step is diagnostic. It consists of injecting the outputs from the NANNs
together with measured time variation of current and voltage from the solar panel array
into two probabilistic neural networks, PNN1 and PNN2. The data to be injected are:

• The output data from NANN1 (Impp_h, Impp_string) shown in Figure 11.
• The output data from NANN2 (Vmpp_h, Vmpp_1SC, Vmpp_2SC, Vmpp_4SC, Vmpp_6SC) shown

in Figure 12.
• The real data from the PV plant to be diagnosed (Impp, Vmpp) shown in Figure 6c,d.

The fault detection algorithm compares the real measured data with output modeled
from the NANNs. PNNs are used to diagnose healthy or faulty operation of solar PV
panels. The main role of these PNNs is to classify, in real-time, the real measured currents
and voltages according to models from NANN1 and NANN2. The analysis of the main
characteristics of Impp and Vmpp of each output, along with measured data in real operating
conditions, leads to the identification and isolation of failures.

The PNN is a monitored neural network widely used in pattern recognition; it has
the potential for fault diagnosis and distributed parallel processing, self-organization, and
self-learning. The following characteristics distinguish PNN from the other networks in
the learning process [30]:

n A PNN uses the probabilistic model, Bayesian classifiers.
n A PNN is guaranteed to converge to a Bayesian classifier when enough training data

are provided.
n No learning process is required in PNNs.
n No need to initialize the weights of the PNN.
n There is no relationship between the learning and recall process.
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The PNNs receive nine data points at a time (Figure 4), three for the PNN1 and six for
the PNN2. The PNN1 will classify the current data into two classes, while the PNN2 will
classify the voltage data into five classes. For each data vector, the PNN will work over a
range of at least 220 data points by using data in memory. The final decision will be taken
in the last step as explained in the following Table 6.

Table 6. Diagnosis and decision of the PV system.

Impp Vmpp Decision about PV System

Impph Vmpph 2Healthy system

Impph Vmpp1sc Fault detection due to one short-circuited panel

Impph Vmpp2sc Fault detection due to two short-circuited panels

Impph Vmpp4sc Fault detection due to four short-circuited panels

Impph Vmpp6sc Fault detection due to six short-circuited panels

Imppstring Vmpph Fault detection due to string

• Obtained classification

We consider one healthy operation and five types of faults, one for the current and four
for the voltage. First, the outputs from PNN1 illustrated in Figure 13 show the classification
for current fault (Class 6) at Impp. It shows that a string fault directly impacts the output
current of the PV array.
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Then, the outputs from the PNN2 illustrated in Figure 14 show the classification for
the four voltage faults (Classes 2–5) in Vmpp.
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Figure 14. Classification of voltage faults at the maximum power point.

The PNNs classifies the real current and voltage data input using the Classes shown
in Figures 13 and 14.

In Figure 13, we present a graph, in red, representing the current at MPP classified
as Class 6 (see also Table 5). Additionally, in Figure 14, the red color graph represents the
voltage at MPP classified as Class 5 (Table 5).

In this third diagnosis stage, a routine collects decisions from both PNNs following
Table 6 and thus calculates the probability density function (PDF) [36].

Unlike multi-layer perceptron (MLP) networks, radial basis (RBF) functions (including
PNNs) use radial functions instead of sigmoidal activation functions. They build a local
decision function centered at a subset of the input space [37]. The global decision function
is the sum of all local functions [30,38].

In the context of pattern classification, every observed vector x (x is a d -dimensional
vector) is placed inside one of the predefined cluster classes:

Ci, i = 1, 2, . . . , m

where m is the number of possible classes that x can belong to (m = six in this study).
The classifier’s efficiency is limited by the length of the input vector x and the number

of possible classes m.
The Bayes classifier uses the Bayes conditional probability rule that is the probability

P(Ci/x) for x to belong to a class Ci.
This probability is given by:

P(Ci/x) =
P(x/Ci)·P(Ci)

∑m
j=1 P(x/Cj)·P(Cj)

(1)

where:

• P(Ci/x) is the conditional probability density function of x given Ci.
• P(Cj) is the probability of choosing a sample from the class Cj.

An input vector x is classified to belong to the class, if:

P(Ci/x) � P(Cj/x) : ∀j = 1, 2, . . . , m; j 6= i (2)
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The estimation process of the later probabilities from a learning set uses Parzen’s
windowing technique to determine the PDF [30,36]. Therefore, the estimator used for the
PNN networks, fA(x), is given by:

fA(x) =
1

2πP/2σP
1
m

m

∑
i=1

exp
[
− (x− xai)′ − (x− xai)

2σ2

]
(3)

where xai represents the ith sample belonging to the class CA and σ is a smoothing parameter.
When the diagnosis algorithm is executed, it will display the errors and decide about

the state of the system, as shown in Figure 15.
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All three steps (data feeding, faults modeling, and decision about diagnosis) should
be reiterated at each classification.

3. Details about the Elaboration of NANNS

This section presents more details for modeling the ANNs used in NANNs. The ap-
proach given may work well for a whole life cycle of the PV system but requires substantial
prior work, which includes:

- The collection of real measured data (T, G, Impp, Vmpp), reserved for learning and
validating NANNs.

- The choice of the type of ANNs (multi-layer perceptron (MLP)) and their architectures.
- The choice of the learning type (supervised learning).
- The validation of NANNs.
- The exploitation of the results.

In what follows, we provide more details about each of these steps.

3.1. Collection of Real Measured Data

The data from the station at the CDER, including panels’ temperature, solar irradiance,
PV current, and PV voltage, were collected on 20 March 2018, for a period of about 460 data
points, as presented in Figure 16.

3.2. Choice of Type of ANNs and Their Architectures

The developed ANNs are based on a multi-layer perceptron (MLP). Several sim-
ulations were carried out, varying the number of hidden layers and neurons in each
hidden layer to find the optimal network architecture. Tables 3 and 4 summarize the final
architectures of each ANN.

The inputs to the ANNs are the temperature and irradiance. Simultaneously, the
outputs are Impp (supervised following real healthy and real faulty) and Vmpp (supervised
following real healthy and real faulty) as described in Figure 17. Besides, faults are intro-
duced in the real PV system to obtain real current and voltage data for each faulty mode.
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Figure 17. Process of supervising and weight adjustments in ANN1 for a healthy system.

These real electrical data are matched using ANNs to generate the modeled electrical
outputs. In Figures 18 and 19, we present the data for ANN1 of NANN1 and ANN1 of
NANN2 and the respective outputs.

3.3. Choice of Learning Type

The weights adjustment uses the Levenberg–Marquardt (LM) [39] backpropagation
algorithm available in Matlab 2015a Software environment. Results after learning from a
healthy ANN are summarized in Figure 20 below, which shows good training performance.
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The appropriate neural structure is characterized by the transfer function of a hyper-
bolic tangent in the first hidden layer (for ANNS) and a linear transfer function in the
second hidden layer (for PNNs).

Regression of complex training process of NNs based controllers is shown in the
following Figure 21.
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Figure 21. Generated regression of training process.

Figure 21 illustrates that the major scatter (Target output) points are regrouped around
the right (Y = T), which demonstrates the good efficiency of the approach.

Figures 20 and 21 clearly show that the network’s weights are well adjusted, and the
model could reproduce the output data with good accuracy.

3.4. Validation of ANNs

The remaining data points out of 460 from Figure 16 are used for validation. In what
follow, some cases for healthy and faulty scenarios are presented.

• Healthy system validation
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(a) Validation of model from ANN1 of NANN1 (Impp of the healthy system, Figure 22):

The following Figure 23 shows the error between real and modeled currents data. The
following equation gives the error:

Error = IMPP−Real − IMPP−Model (4)

(b) Validation of model from ANN1 of NANN2 (Vmpp of the healthy system, Figure 24).
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Modeling by ANNs, as shown in Figures 22 and 24, shows a high fitting between
the real data (current and voltage) and the ones estimated by the modeled ANNs in a
healthy system.

The error between real and modeled voltage data for a healthy system is depicted in
Figure 25 below.
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Figure 25. The error between Vmpp-Real and Vmpp-modelled.

It can be seen from the reduced values of errors in Figures 23 and 25 that there is a
good agreement between modeled and real data, which indicates the good performance of
the developed NANN1-model and NANN2-model. Therefore, the network weights and
bias of the network are well adjusted, and the model can reproduce the output data with
good accuracy.

• Faulty system validation

(a) Validation of model from ANN2 of NANN1 (Impp faulty string, Figure 26).
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(b) Validation of model from ANN2 of NANN2 (Vmpp of one short-circuited panel,
Figure 27).
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3.5. Exploitation of Results

The diagnosis step of the PV plant, using the classification method, consists of using
the root mean square error (RMSE) and the mean relative error (MRE) methods to display
the state of the PV array. For example, for a faulty PV plant, Figures 28 and 29 show the
state of faulty current and voltage, respectively.
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The expression of root mean squared error (RMSE) is:
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where:

• N: number of data points.

The equation of the relative mean error (MRE) is as follows:
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1
N
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)× 100 (6)

where:

• DataMean: Mean of real data points.

The relative mean error has no unit; it tells us the quality (accuracy) of the results of
obtained voltage. It is usually expressed in percentage (%).

Additional results of obtained errors (RMSE, MRE) for each class of the real PV array
are presented in Table 7 below.

Table 7. RMSE (root mean square error) and MRE (mean relative error (%)).

Current Healthy
System

Current String
Fault

Voltage Healthy
System

Voltage
1 Panel SC

Voltage
2 Panels SC

Voltage
4 Panels SC

Voltage
6 Panels SC

RMSE 0.5737 0.8264 2.4928 2.4493 1.1601 1.7280 0.8201

MRE (%) 3.21 1.62 1.78 1.02 1.51 1.54 1.67

4. Test of Robustness

The robustness of the ANNs based fault diagnosis method is assessed by introducing
noises in the PV plant and showing the effect on injected data. Moreover, noise can be
perceived as an error, a statistical uncertainty or an undesired random disturbance of a
useful modeled response of the PV array. Several different effects can cause such noise,
such as thermal noise, device type, or manufacturing quality.

4.1. Presence of Noise from the Inverter

In PV plants, faults usually occur from the electrical grid (instability) or the storage
system. Most widespread are from inverters or the photovoltaic array. Therefore, the
inverter can cause major perturbations if damaged or faulted. In this subsection, the PV
plant is connected to the grid through an inverter. We artificially added inverter-generated
noise in the current and voltage vectors to be classified. Figures 30 and 31 show the
classification of the overall system (current and voltage) along with the results from the
faulty string model in the presence of noise from the inverter. In Figure 30, we observe that
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the inputs are noised by the large space between the real current (Class 1) in blue and the
classified one in red.
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Figure 30 illustrates that the classification of current (in red) is closer to the healthy
current (in blue) than the defective current (in black). The most important data belong to
class 1 (for a healthy system).

Figure 31 shows that the classification of the voltage (in red) is closer to the healthy
voltage (in green) than the other defective voltages (in blue, magenta, cyan, and black).
Besides, even though the data to be classified is corrupted by noise from the inverter, the
proposed approach was able to classify it correctly (Figures 30 and 31), which shows the
effectiveness of PNNs classification.
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4.2. Effect of Detection Time

It is worth mentioning that the classification can be carried out in a reduced time
interval, such as 10 data points chosen as shown in Figures 32 and 33.
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Figures 32 and 33 show that even though the detection time is reduced, the data is
well classified, and the diagnosis-based method gives correct results.

5. Conclusions

Automatic monitoring, detection, and diagnosis of faults that occur in photovoltaic
plants/arrays have recently become a very important research topic. In this paper, an
efficient neural network-based method was developed to diagnose several failure scenarios
that may occur in a photovoltaic array at short circuits. The model used for the simulation
of healthy and defectives conditions was experimentally validated by real data from a
photovoltaic array installed at the CDER station in Algiers, Algeria. The developed method
was elaborated in three main steps: feeding experimental data to the neural networks,
modeling faults using NANNs and decision about diagnosis using PNNs. Each fault was
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detected and classified. The obtained results confirm the effectiveness of the developed
models to locate and identify different types of failures even with noises. The proposed fault
diagnosis method can easily be generalized and applied to large-scale PV plants. Besides,
the developed method is straightforward and requires only the following parameters: the
array’s temperature, solar irradiance, PV voltage, and PV current of the PV array (time
variation). In the proposed study, seven ANNs and two PNNs were required, necessitating
a different treatment for currents and voltages because rough estimation is slightly different.
In perspective, we plan to carry on the work considering only a single parameter such as
power through online adaptation. Besides, the decision on the system’s quality is made at
every single data point, and it is possible to use previous data scrolling in real-time.
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Nomenclature

PV Photovoltaic
BBD Blocking and bypassing diode
OC Open circuit
SC Short circuit
GF Ground fault
LLF Line-to-line
AF Arc fault
FDD Fault detection and diagnosis
IR Infrared
AI Artificial intelligence
ANN Artificial neural network
MLP Multi-layer perceptron
RBN Radial basis network
FF Feed-forward
RNN Recurrent neural network
NN Neural network
MPP Maximum power point
ANNs Artificial neural networks
NANNs Networks of artificial neural networks
NANN1 Network of artificial neural network 1
NANN2 Network of artificial neural network 2
PNNs Probabilistic neural networks
I-V Current–voltage curve
CDER Renewable Energies Development Centre
G Solar irradiance
T Panel’s temperature
Pmpp Maximum power
Isc Short circuit current
Voc Open circuit voltage
α Coefficient of temperature at Isc
β Coefficient of temperature at Voc
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Impp Maximum current
Vmpp Maximum voltage
Impp_h Healthy current at the maximal power point
Vmpp_h Healthy voltage at the maximal power point
Vmpp1sc Voltage at maximum power point of one short-circuited panel
Vmpp2sc Voltage at maximum power point of two short-circuited panels
Vmpp4sc Voltage at maximum power point of four short-circuited panels
Vmpp6sc Voltage at maximum power point of six short-circuited panels
Impp_s Current at maximal power point of string fault
PDF Probability density function
RBF Radial basis functions
LM Levenberg–Marquardt
RMSE Root mean square error
MRE Mean relative error

References
1. Hu, Y.; Cao, W. Theoretical Analysis and Implementation of Photovoltaic Fault Diagnosis. In Renewable Energy—Utilisation and

System Integration; IntechOpen: London, UK, 2016.
2. Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and

Mitigation Techniques. IEEE J. Photovolt. 2015, 5, 982–997.
3. Branco, G.; Costa, A. Tailored Algorithms for Anomaly Detection in Photovoltaic Systems. Energies 2020, 13, 225. [CrossRef]
4. Quintana, M.A.; King, D.L.; McMahon, T.J.; Osterwald, C.R. Commonly observed degradation in field-aged photovoltaic modules.

In Proceedings of the Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA,
19–24 May 2002; pp. 1436–1439.

5. Deline, C. Partially shaded operation of multi-string photovoltaic systems. In Proceedings of the 35th IEEE Photovoltaic Specialists
Conference, Honolulu, HI, USA, 20–25 June 2010; pp. 394–399.

6. Silverman, T.J.; Deceglie, M.G.; Subedi, I.; Podraza, N.J.; Slauch, I.M.; Ferry, V.E. Reducing Operating Temperature in Photovoltaic
Modules. IEEE J. Photovolt. 2018, 8, 532–540. [CrossRef]

7. Koentges, M.; Kurtz, S.; Packard, C.E.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Van Iseghem, M.; Wohlgemuth, J.; et al.
Review of Failures of Photovoltaic Modules. 2014. Available online: https://www.researchgate.net/publication/274717701_
Review_of_Failures_of_Photovoltaic_Modules (accessed on 20 April 2021).

8. Coello, M.; Boyle, L. Simple Model for Predicting Time Series Soiling of Photovoltaic Panels. IEEE J. Photovolt. 2019, 9, 1382–1387.
[CrossRef]

9. Lindig, S.; Kaaya, I.; Weiss, K.; Moser, D.; Topic, M. Review of Statistical and Analytical Degradation Models for Photovoltaic
Modules and Systems as Well as Related Improvements. IEEE J. Photovolt. 2018, 8, 1773–1786. [CrossRef]

10. Laukamp, H.; Schoen, T.; Ruoss, D. Reliability Study of Grid Connected PV Systems. Field Exp. Recomm. Des. Pract. 2002, 31.
Available online: https://iea-pvps.org/wp-content/uploads/2020/01/rep7_08.pdf (accessed on 20 April 2021).

11. Heinrich Haeberlin, J.D.; Berner Fachhochschule, G. Gradual Reduction of PV Generator Yield due to Pollution. In Proceedings
of the 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria, 6–10 July 1998.

12. Mellit, A.; Tina, G.M.; Kalogirou, S.A. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain.
Energy Rev. 2018, 91, 1–17. [CrossRef]

13. Pillai, D.S.; Rajasekar, N. A comprehensive review on protection challenges and fault diagnosis in PV systems. Renew. Sustain.
Energy Rev. 2018, 91, 18–40. [CrossRef]

14. Meyer, E.L.; Dyk, E.E. Assessing the reliability and degradation of photovoltaic module performance parameters. IEEE Trans.
Reliab. 2004, 53, 83–92. [CrossRef]

15. Jones, R.K.; Baras, A.; Saeeri, A.; Qahtani, A.A.; Amoudi AO, A.; Shaya, Y.A. Optimized Cleaning Cost and Schedule Based on
Observed Soiling Conditions for Photovoltaic Plants in Central Saudi Arabia. IEEE J. Photovolt. 2016, 6, 730–738. [CrossRef]

16. Guerriero, P.; Daliento, S. Toward a Hot Spot Free PV Module. IEEE J. Photovolt. 2019, 9, 796–802. [CrossRef]
17. Woyte, A.; Nijs, J.; Belmans, R. Partial shadowing of photovoltaic arrays with different system configurations: Literature review

and field-test results. Sol. Energy 2003, 74, 217–233. [CrossRef]
18. King, D.; Quintana, M.; Kratochvil, J.; Ellibee, D.; Hansen, B. Photovoltaic module performance and durability following

long-term field exposure. Prog. Photovolt. Res. Appl. 2000, 8, 241–256. [CrossRef]
19. Munoz, M.A.; Alonso-García, M.C.; Vela, N.; Chenlo, F. Early degradation of silicon PV modules and guaranty conditions. Sol.

Energy 2011, 85, 2264–2274. [CrossRef]
20. Pierdicca, R.; Malinverni, E.; Piccinini, F.; Paolanti, M.; Felicetti, A.; Zingaretti, P. Deep convolutional neural network for automatic

detection of damaged photovoltaic cells. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII-2, 893–900. [CrossRef]
21. Haque, A.; Kurukuru VS, B.; Khan, M.; Khan, I.; Jaffery, Z. Fault diagnosis of Photovoltaic Modules. Energy Sci. Eng. 2019, 7,

622–644. [CrossRef]

http://doi.org/10.3390/en13010225
http://doi.org/10.1109/JPHOTOV.2017.2779842
https://www.researchgate.net/publication/274717701_Review_of_Failures_of_Photovoltaic_Modules
https://www.researchgate.net/publication/274717701_Review_of_Failures_of_Photovoltaic_Modules
http://doi.org/10.1109/JPHOTOV.2019.2919628
http://doi.org/10.1109/JPHOTOV.2018.2870532
https://iea-pvps.org/wp-content/uploads/2020/01/rep7_08.pdf
http://doi.org/10.1016/j.rser.2018.03.062
http://doi.org/10.1016/j.rser.2018.03.082
http://doi.org/10.1109/TR.2004.824831
http://doi.org/10.1109/JPHOTOV.2016.2535308
http://doi.org/10.1109/JPHOTOV.2019.2894912
http://doi.org/10.1016/S0038-092X(03)00155-5
http://doi.org/10.1002/(SICI)1099-159X(200003/04)8:2&lt;241::AID-PIP290&gt;3.0.CO;2-D
http://doi.org/10.1016/j.solener.2011.06.011
http://doi.org/10.5194/isprs-archives-XLII-2-893-2018
http://doi.org/10.1002/ese3.255


Sustainability 2021, 13, 6194 27 of 27

22. Platon, R.; Martel, J.; Woodruff, N.; Chau, T.Y. Online Fault Detection in PV Systems. IEEE Trans. Sustain. Energy 2015, 6,
1200–1207. [CrossRef]

23. Appiah, A.Y.; Zhang, X.; Ayawli BB, K.; Kyeremeh, F. Review and Performance Evaluation of Photovoltaic Array Fault Detection
and Diagnosis Techniques. Int. J. Photoenergy 2019, 2019, 19. [CrossRef]

24. Chouder, A. Analysis, Diagnosis and Fault Detection in Photovoltaic Systems. Ph.D. Thesis, Universitat Politècnica de Catalunya,
Barcelona, Spain, 2010.

25. Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci.
2008, 34, 574–632. [CrossRef]

26. Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Massi Pavan, A. A novel fault diagnosis technique for photovoltaic
systems based on artificial neural networks. Renew. Energy 2016, 90, 501–512. [CrossRef]

27. Yuchuan, W.; Qinli, L.; Yaqin, S. Application of BP neural network fault diagnosis in solar photovoltaic system. In Proceedings of
the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 2581–2585.

28. Hwang, H.-R.; Kim, B.-S.; Cho, T.-H.; Lee, I.-S. Implementation of a Fault Diagnosis System Using Neural Networks for Solar
Panel. Int. J. ControlAutom. Syst. 2019, 17, 1050–1058. [CrossRef]

29. Syafaruddin Karatepe, E.; Hiyama, T. Controlling of artificial neural network for fault diagnosis of photovoltaic array. In
Proceedings of the 2011 16th International Conference on Intelligent System Applications to Power Systems, Hersonissos, Greece,
25–28 September 2011; pp. 1–6.

30. Specht, D.F. Probabilistic neural networks. Neural Netw. 1990, 3, 109–118. [CrossRef]
31. Yu, Y.; Sheng, D.; Chen, J. A novel sensor fault diagnosis method based on Modified Ensemble Empirical Mode Decomposition

and Probabilistic Neural Network. Measurement 2015, 68, 328–336. [CrossRef]
32. Lin, F.J.; Lu, S.Y.; Chao, J.Y.; Chang, J.K. Intelligent PV Power Smoothing Control Using Probabilistic Fuzzy Neural Network with

Asymmetric Membership Function. Int. J. Photo Energy 2017, 2017, 15. [CrossRef]
33. Chouder, A.; Silvestre, S. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy

Convers. Manag. 2010, 51, 1929–1937. [CrossRef]
34. Chouder, A.; Silvestre, S.; Taghezouit, B.; Karatepe, E. Monitoring, modelling and simulation of PV systems using LabVIEW. Solar

Energy 2013, 91, 337–349. [CrossRef]
35. Sobhani-Tehrani, E.; Khorasani, K. Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach; Springer: Berlin/Heidelberg,

Germany, 2009.
36. Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
37. Burrascano, P. Learning vector quantization for the probabilistic neural network. IEEE Trans. Neural Netw. 1991, 2, 458–461.

[CrossRef] [PubMed]
38. Kim, M.W.; Arozullah, M. Generalized probabilistic neural network based classifiers. In Proceedings of the IJCNN International

Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992; Volume 3, pp. 648–653.
39. Dkhichi, F.; Oukarfi, B.; Fakkar, A.; Belbounaguia, N. Parameter identification of solar cell model using Levenberg–Marquardt

algorithm combined with simulated annealing. Sol. Energy 2014, 110, 781–788. [CrossRef]

http://doi.org/10.1109/TSTE.2015.2421447
http://doi.org/10.1155/2019/6953530
http://doi.org/10.1016/j.pecs.2008.01.001
http://doi.org/10.1016/j.renene.2016.01.036
http://doi.org/10.1007/s12555-018-0153-3
http://doi.org/10.1016/0893-6080(90)90049-Q
http://doi.org/10.1016/j.measurement.2015.03.003
http://doi.org/10.1155/2017/8387909
http://doi.org/10.1016/j.enconman.2010.02.025
http://doi.org/10.1016/j.solener.2012.09.016
http://doi.org/10.1214/aoms/1177704472
http://doi.org/10.1109/72.88165
http://www.ncbi.nlm.nih.gov/pubmed/18276396
http://doi.org/10.1016/j.solener.2014.09.033

	Introduction 
	Modeling and Diagnosis of PV Faults 
	Feeding with Real Data 
	Modeling and Detection of Faults Using NANNs 
	Diagnosis, Classification and Decision Using PNNs 

	Details about the Elaboration of NANNS 
	Collection of Real Measured Data 
	Choice of Type of ANNs and Their Architectures 
	Choice of Learning Type 
	Validation of ANNs 
	Exploitation of Results 

	Test of Robustness 
	Presence of Noise from the Inverter 
	Effect of Detection Time 

	Conclusions 
	References

