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Abstract: The enhancement of photovoltaic (PV) energy systems relies on an accurate PV model.
Researchers have made significant efforts to extract PV parameters due to their nonlinear charac-
teristics of the PV system, and the lake information from the manufactures’ PV system datasheet.
PV parameters estimation using optimization algorithms is a challenging problem in which a wide
range of research has been conducted. The idea behind this challenge is the selection of a proper
PV model and algorithm to estimate the accurate parameters of this model. In this paper, a new
application of the improved gray wolf optimizer (I-GWO) is proposed to estimate the parameters’
values that achieve an accurate PV three diode model (TDM) in a perfect and robust manner. The PV
TDM is developed to represent the effect of grain boundaries and large leakage current in the PV
system. I-GWO is developed with the aim of improving population, exploration and exploitation
balance and convergence of the original GWO. The performance of I-GWO is compared with other
well-known optimization algorithms. I-GWO is evaluated through two different applications. In the
first application, the real data from RTC furnace is applied and in the second one, the real data of PTW
polycrystalline PV panel is applied. The results are compared with different evaluation factors (root
mean square error (RMSE), current absolute error and statistical analysis for multiple independent
runs). I-GWO achieved the lowest RMSE values in comparison with other algorithms. The RMSE
values for the two applications are 0.00098331 and 0.0024276, respectively. Based on quantitative and
qualitative performance evaluation, it can be concluded that the estimated parameters of TDM by
I-GWO are more accurate than those obtained by other studied optimization algorithms.

Keywords: solar photovoltaic; three diode model; parameters; optimization; improved gray wolf
optimizer; RMSE; polycrystalline; statistical analysis

1. Introduction

Solar energy plays a large role in saving the environment, helping people socially and
economically, and creating jobs and research. Solar energy has many advantages and it is a
clean energy source that has many different uses [1–3]. In contrast, fossil fuel resources are
decreased and have a negative environmental impact; hence, solar energy is considered
one of the most promising alternative energy sources [4,5].

Nowadays, solar energy has many applications. One of these applications is installing
solar cells in residential units and connecting them to the main electrical network. Con-
necting residential solar energy systems to the main network requires an accurate model
to analyze and describe the voltage and current changes to these systems [6]. There are
also many other applications of solar energy, which also require for its development to
an accurate mathematical model for the solar system, such as solar water heating, solar
heating of buildings, solar-distillation, solar-pumping, solar drying of agricultural and
animal products, and solar furnaces [7–9].
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One of the biggest challenges limiting the usage of solar energy is the huge cost of man-
ufacturing and installation. PV cell has nonlinear current-voltage characteristics and non-
linear power-voltage characteristics. Due to these nonlinear properties, the actual operation
of the solar cells varies with different operating conditions such as irradiance/temperature
conditions, which change over the day and over the seasons. These changes make it
difficult to get the best efficiency of the solar cell by relying on the operating conditions of
the factory [10].

Modeling of PV systems is considered one of the important stages in the design and
manufacturing of PV systems, because of the important information collected from the PV
model that helps to predict the PV characteristics under different operating conditions, and
thus increase the operating efficiency of these cells [11].

Different models have been proposed in the literature for the PV systems. Single
diode model (SDM) and double diode model (DDM) are considered the most popular
models in literature. PV cell is a semiconductor PN junction that converts sunlight to an
electrical current. The ideal model of the solar cell can be represented by an ideal current
source, but the real model of a solar cell should take into consideration the losses in light
and current that can be represented electrically by diodes. The model that has a greater
number of diodes represents more losses. SDM has one diode that represents the loss in
the quasi-neutral zone. A SDM has five estimated parameters [11–14]. DDM is developed
to represent the loss in recombination at lower irradiance by adding a second diode to the
model. The total estimated parameters in DDM are seven parameters [15–17].

The triple diode model (TDM) is developed to represent the leakage in grain bound-
aries in PV system by adding a third diode to the model. The total estimated parameters
in TDM are nine parameters [18–26]. Although the accuracy of the model increased by
increasing the number of diodes, the complexity of the model also increased.

The challenge of parameters estimation of these models using optimization algorithms
has been discussed in many previous works. A review about the application of evolutionary
algorithms (EA) on PV parameters estimation has been presented in a previous study [27].
Different types of evolutionary algorithms (EA) have been discussed in [27], such as EA
based on swarm intelligence, EA based on physical theory and EA based on hybridization
between different types. They concluded that hybridized techniques have a better accuracy
for PV parameters estimation, but with less convergence speed. A new method that
combines harries hawk optimization (HHO) with computation method to extract the
parameters of the PV TDM has been presented in [28]. Four parameters are extracted
by equations and the other five parameters are estimated though HHO. An improved
equilibrium optimizer was presented in [29], to estimate the PV parameters of SDM and
DDM. The enhancement is achieved using linear reduction diversity technique to improve
the diversity of the population until getting the best estimated model parameters that
achieve the least RMSE between real measure data and the model which is considered as
the best solution. Another improvement for moth-flam optimizer was presented in [30],
to estimate the PV parameters of SDM and DDM. The improvement is based on double
flame generation. Grasshopper Optimization Algorithm was presented to estimate the PV
parameters of TDM in [31]. An intelligent grey wolf optimizer was presented in [32], to
estimate the PV panel parameters of SDM and DDM. The idea behind intelligent gray wolf
optimizer is the incorporation of opposition based learning to the conventional gray wolf
optimizer (GWO) to enhance the exploration and exploitation phases.

This paper is considered a completion in this track, but here the study considers an
application of another improvement for GWO which was presented in [33] and discusses
the effect of this improvement on PV parameters estimation of TDM. The improved GWO
algorithm is called I-GWO. I-GWO is developed with the aim of improving population,
exploration and exploitation balance and convergence of the original GWO. The I-GWO
is applied to estimate the parameters of TDM for 57 mm diameter commercial silicon
R.T.C France solar cell (1000 W/m2 at 33 ◦C). For more comprehensive results, the I-
GWO is applied to estimate the parameters of TDM for Photowatt-PWP201 PV module.
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This module contains 36 polycrystalline silicon cells connected in series and operating
at an irradiance of 1000 W/m2 and temperature of 45 ◦C. The obtained results in the
two applications from I-GWO are compared with the original GWO and other recent
optimization algorithms. The obtained results in the two applications are evaluated using
different evaluation methods. The accuracy of the studied algorithms are evaluated using
root mean square error (RMSE) and absolute error between the real output current and
the estimated current by TDM. The speed of the algorithms is compared through the
convergence curves. The robustness of the algorithms is compared through the statistical
analysis for different independent runs. Minimum, maximum, average and standard
deviation statistical values are calculated for all runs. The behaviors of the current-voltage
characteristics and power-voltage characteristics at different operating temperatures are
discussed for the optimized TDM in the two applications.

2. Mathematical Mode and Optimization Problem

This section discusses the main components of TDM and PV panel as well as the main
objective functions of the studied optimization problem.

2.1. Model of TDM and PV Panel

The TDM consists of an ideal current source to represent the ideal solar cell, three
diodes to represent different current loses, series and shunt resistance [34,35]. The TDM
equivalent circuit is shown in Figure 1. Each component is discussed as:
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Figure 1. PV TDM.

Current source represents the photo-generated current (Iph).

• First diode represents the effect of diffusion current (Is1).
• First diode represents the effect of diffusion current (Is1).
• Second diode represents the effect of recombination current (Is2).
• Third diode represents the effect of grain boundaries and large leakage current (Is3).
• Series resistance represents the semiconductor material resistance at neutral regions

(Rs).
• Shunt resistance represents the current leakage resistance across the P-N junction of

PV system (Rsh).

Equations (1) and (2) describe the total output current (I) of the mathematical model
of TDM.

I = Iph − Is1 − Is2 − Is3 − Ish (1)

I = Iph − Is1

[
exp( q(V+Rs∗I)

η1∗K∗T )− 1
]
− Is2

[
exp( q(V+Rs∗I)

η2∗K∗T )− 1
]
− Is3

[
exp( q(V+Rs∗I)

η3∗K∗T )− 1
]
− (V+Rs∗I)

Rsh
(2)
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A combination between series solar cells represents a PV module and a combination
between parallel modules represents a PV array as shown in Figure 2. The total output
current (I) of the mathematical model of TDM for PV module is described by Equation (3).

I/Np = Iph − Is1

[
exp( q(V/Ns+Rs∗I/Np)

η1∗K∗T )− 1
]
− Is2

[
exp( q(V/Ns+Rs∗I/Ns)

η2∗K∗T )− 1
]
−

Is3

[
exp( q(V/Ns+Rs∗I/Np)

η3∗K∗T )− 1
]
− (V/Ns+Rs∗I/Np)

Rsh

(3)
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Figure 2. PV module.

2.2. Objective Function

In TDM, nine estimated parameters are considered
[
Rs, Rsh, Iph, Is1, Is2, Is3,η1,η2, η3

]
and they can be represented in one vector x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]. The optimiza-
tion problem in this work is to estimate the best values of TDM parameters to reduce the
error between experimental and estimated output current; hence the objective function
of the current optimization problem is described by Equation (4). The best estimated
parameters are those that achieve the lowest RMSE for the objective function, as shown
by Equation (5) [36,37]. The objective function of the TDM for PV module is described by
Equation (6) [10]. The main steps of the optimization process are summarized in Figure 3.

fTDM(V, I, X) = I − X3 + X4

[
exp( q(V+Rs∗I)

X7∗K∗T )− 1
]
+ X5

[
exp( q(V+Rs∗I)

X8∗K∗T )− 1
]
+

X6

[
exp( q(V+Rs∗I)

X9∗K∗T )− 1
]
+ (V+X1∗I)

X2

(4)

RMSE =

√√√√ 1
N

N

∑
K=1

f 2(Vtm, Itm, X) (5)

where, Vtm and Itm are the measured voltage and current, X is the estimated parameters, N
is the maximum number of the measured data.

fTDM(V, I, X) = I − X3 + X4

[
exp( q(V/Ns+Rs∗I/Np)

X7∗K∗T )− 1
]
+ X5

[
exp( q(V/Ns+Rs∗I/Np)

X8∗K∗T )− 1
]
+

X6

[
exp( q(V/Ns+Rs∗I/Np)

X9∗K∗T )− 1
]
+

(V/Ns+X1∗I/Np)
X2

(6)
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3. Grey Wolf Optimizers

In this section, both original GWO and I-GWO are discussed.

3.1. Grey Wolf Optimizer (GWO)

GWO is inspired by the grey wolf’s manner in attacking their prey [38–42]. GWO
determines the way to the best solution based on the first three best solutions inspired from
three wolf leaders. The main steps of GWO are described as follows:

The wolf XP(t) detects the prey position XP(t) to surround it, as shown by Equation (7).

D = |C× XP(t)− X(t)| (7)
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Movement towards the prey Equation (8).

X(t + 1) = XP(t)− A× D (8)

where, A and C are given by Equations (9) and (10), respectively.

A = 2× A− r1 − a(t) (9)

C = 2× r2 (10)

where, a(t) is a factor decreased depending on the maximum number of iterations as
described in (11).

a(t) = 2− (2× t)/MaxIter (11)

Tracking the prey considering the best three positions for the three wolf leaders α, β
and δ, with positions Xα, Xβ and Xδ. Each wolf updates its position depending on the three
best leaders, as given in Equation (12).

Xi1(t) = Xα(t)− Ai1 × Dα(t)

Xi2(t) = Xβ(t)− Ai2 × Dβ(t) (12)

Xi3(t) = Xδ(t)− Ai3 × Dδ(t)

where, Dα, Dβ and Dδ are calculated from Equation (13).

Dα = |C1 × Xα − Xt|

Dβ =
∣∣C2 × Xβ − Xt

∣∣ (13)

Dδ = |C3 × Xδ − Xt|

The final best position is updated depending on the three best leaders’ positions as
given in Equation (14).

X(t + 1) =
Xi1(t) + Xi2(t) + Xi3(t)

3
(14)

3.2. Improved Grey Wolf Optimizer (I-GWO)

I-GWO was developed to improve the performance of the original GWO by reduc-
ing the probability of fall in local optima [33]. The improvement is achieved by a new
search strategy that includes selecting and updating steps highlighted by a dashed line
in flowchart.

The detailed description of the enhancement is as follows:

- Increasing the initialization by random distribution for N wolfs within the search
range as described in Equation (15).

Xij = LBj + randj[0, 1]
(
UBj − LBj

)
(15)

where, i ∈ [1, N] problem dimension, j ∈ [1, D] problem dimension. LB and UB are
the search low and upper limits, respectively.

- The tracking behavior is enhanced using dimension learning-based hunting technique
(DLH). In DLH, each wolf learns from its neighbors. The construction of the neighbors
according to the calculated radius are calculated by Equations (16) and (17). The new
positions are determined using Equation (18).

The best position is determined by Equation (19) considering Xi−GWO(t + 1) that
determined is by Equation (15).

Ri(t) = ‖Xi(t)− Xi−GWO(t + 1)‖ (16)
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Ni(t) =
{

Xj(t)
∣∣ Di

(
Xi(t), Xj(t)

)
≤ Ri(t), Xj(t)εPop

}
(17)

Xi=DLH,d(t + 1) = Xi,d(t) + rand× (Xn,d(d)− Xr,d(t)) (18)

Xi(t + 1) =
{

Xi−GWO(t + 1) i f f (Xi−GWO < Xi=DLH)
Xi=DLH(t + 1) otherwise

(19)

The flowchart of I-GWO is shown in Figure 3.
The main steps of I-GWO can be described as follows:
(Initialization steps)

- Random distribution for N wolfs within the search range, as shown by (15)
- (Main steps)
- For iteration = 1 to maximum iteration
- Find three wolf leaders α, β and δ,
- Update three wolf leaders’ positions Xα, Xβ and Xδ using (12) and (13).
- Calculate the best position Xi−GWO using (14)
- (Updating improvement steps (DLH))
- Calculate radius to construction of the neighbors using (16)
- Determine the neighbors using Equation (17)
- Calculate new solution Xi=DLH,d(t + 1) using (18)
- Select the best position between Xi=DLH,d(t + 1) and Xi−GWO(t + 1) using (19)
- End for loop

4. Results

This section discusses the performance of I-GWO when it is applied to estimate the
parameters of TDM for different real PV systems. Different evaluation methods are used
for results, evaluation and analysis. Two different applications, the real data from RTC
furnace and the real data of PTW polycrystalline PV panel, are considered in the analysis.

4.1. Application #1:

In this application, the real data of 57 mm diameter commercial silicon R.T.C France
solar cell (under 1000 W/m2 at 33 ◦C) are used for parameters estimation of the TDM [43].
A comparison between the obtained root mean square error (RMSE) values of I-GWO
and other recent optimization algorithms is presented in Table 1. The parameters of each
algorithm are listed in Table 2. The convergence curve of all algorithms is shown in
Figure 4. The I-GWO has a RMSE value better than the original GWO as well as other
compared algorithms. Moreover, I-GWO has an accepted convergence speed as shown in
Figure 4. The stability of I-GWO is tested from the statistical analysis of 30 independent
runs as observed in Table 3 and the boxplot in Figure 5. A graphical display of the absolute
error between the real measured output current values and the model output value in
Equation (20) is shown in Figures 6–8 to depict the characteristic curves of the current-
voltage and the power curve for the real PV measured data and the calculated by different
algorithms. The characteristic curve of the current-voltage and the power curve for the TDM
estimated by I-GWO at different temperatures is displayed in Figures 9 and 10, respectively.

Current Absolut error = 2
√
(I − Iestimated)

2 (20)

4.2. Application #2:

In this application, the real data of Photowatt-PWP201 PV module are used [44–46].
This module contains 36 polycrystalline silicon cells connected in series and operating
at an irradiance of 1000 W/m2 and temperature of 45 ◦C. A comparison between the
obtained root mean square error (RMSE) value of I-GWO and other recent optimization
algorithms is presented in Table 4. The convergence curves of all algorithms are shown
in Figure 11. The I-GWO has a RMSE value better than the original GWO, as well as
other compared algorithms, except it is slightly better than HBO. The stability of I-GWO
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is tested from the statistical analysis of 30 independent runs as shown in Table 5 and the
boxplot in Figure 12. A graphical display of the absolute error between the real measured
output current values and the model output value is shown in Figures 13–15 show the
characteristic curves of the current-voltage and the power curve for the real PV measured
data and the calculated by different algorithms. The characteristic curves of the current-
voltage and the power curves for the TDM estimated by I-GWO at different temperatures
are shown in Figures 16 and 17, respectively.

Table 1. Estimated parameters and RMSE for I-GWO and other optimization algorithms.

IGWO GWO HBO MRFO HHO

Rs(Ω) 0.0367 0.043821 0.040 0.03634 0.018333
Rsh(Ω) 54.888 59.64 59.997 53.9246 92.25011
Iph(A) 0.7607 0.7619 0.7608 0.76078 0.764769
Isd1(A) 2.27 × 10−7 1.38 × 10−10 6.97 × 10−7 2.67 × 10−8 3.82 × 10−6

Isd2(A) 3.14 × 10−7 2.51 × 10−10 1.00 × 10−10 1.54 × 10−8 2.71 × 10−6

Isd3(A) 2.34 × 10−7 4.07 × 10−6 1.59472 3.17 × 10−7 1.28 × 10−6

N1 1.9256 1.6677 1.009 1.9076 1.882327
N2 1.9600 1.0181 1.0082 1.8674 1.891646
N3 1.4500 1.9182 1.3083 1.475 1.891677

RMSE 0.00098331 0.00191 0.001120 0.000986002 0.007721

Table 2. Parameters setting for each studied algorithm.

Algorithm Parameter Setting

I-GWO r1 = rand() r2 = rand()
GWO r1 = rand() r2 = rand()
HBO degree = 3

MRFO NP = 1000 S = 2
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Table 3. The statistical results of all algorithms.

Minimum Average Maximum STD

I-GWO 0.000983 0.000984 0.000985 6.60404 × 10−7

GWO 0.001298 0.00751 0.019319 0.010231343
HBO 0.00112 0.001606667 0.0024 0.000692917

MRFO 0.000986 0.000987 0.000989 1.25983 × 10−6

HHO 0.0077205 0.0117475 0.01917 0.006435824
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Table 4. Estimated parameters and RMSE for I-GWO and other optimization algorithms.

I-GWO GWO HBO MRFO HHO

Rs(Ω) 1.198683773 1.666138 1.199582 1.210609373 1.804672596
Rsh(Ω) 986.3365886 60 983.629 799.9841045 358.9956246
Iph(A) 1.030508846 1.153399 1.030447 1.032037975 1.025407497
Isd1(A) 1.25 × 10−6 1.48 × 10−10 3.48 × 10−7 6.20 × 10−8 6.07 × 10−10

Isd2(A) 7.77 × 10−7 1.83 × 10−10 1.00 × 10−10 1.97 × 10−6 1.24 × 10−9

Isd3(A) 1.54 × 10−6 2.35 × 10−10 3.19 × 10−6 1.09 × 10−6 4.89 × 10−10

N1 49.2667226 28.09997 48.60267 48.2266307 29.89953654
N2 48.38422661 28.13075 49.52947 48.08828143 33.55517196
N3 48.25593375 46.03489 48.56558 48.09442382 29.53540241

RMSE 0.0024276291 0.03323 0.0024281 0.0024609 0.024273
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Table 5. The statistical results of all algorithms.

Minimum Average Maximum STD

I-GWO 0.002427629 0.002432 0.002438 5.26003 × 10−6

GWO 0.03323 0.040563 0.04523 0.006429101
HBO 0.0024281 0.002465 0.002528 5.50757 × 10−5

MRFO 0.0024609 0.002554 0.002641 9.0185 × 10−5

HHO 0.024273 0.024806 0.025273 0.000503322
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5. Overall Discussion

The reliability of I-GWO algorithm has been evaluated by different comparisons with
the original GWO and three well known recent algorithms (HBO, MRFO and HHO). I-GWO
has been tested for parameters estimation of solar cell and PV panel which considered the
most popular real PV system. In the two applications, the I-GWO wins to achieve the best
RMSE compared with the four studied algorithms. In Application #1, the RMSE of I-GWO
is 0.00098331. This value is better than those obtained by different algorithms proposed in
literature such as TLABC, GOTLBO and TLBO [46]. In addition, the accuracy of I-GWO is
clear from the current absolute error figure as it has the least error over different measured
data. The convergence speed of I-GWO is better than the other algorithms as observed in
Figures 4 and 11. The statistical analysis for the results in the two applications prove the
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robustness of I-GWO. In Application #1, I-GWO has the lowest minimum and standard
deviation values. In Application #2, the minimum value obtained by I-GWO is very close
to those obtained by MRFO and HHO and better than others, but it has the lowest standard
deviation value. Testing the estimated TDM optimized by I-GWO at different operating
temperatures is verified by drawing current–voltage and power–voltage characteristic
curves at temperatures for the two applications as shown in Figure 9, Figure 10, Figure 16,
Figure 17, respectively.

6. Conclusions

This paper discussed the parameters estimation of TDM PV system which is con-
sidered one of important topics in the real world due to its cost-impact in PV system
manufacturing. This paper proposed an application for I-GWO algorithm to estimate more
accurate parameters of PV model. Two real examples were discussed: 57 mm diameter
commercial silicon R.T.C France solar cell and polycrystalline PV panel. Many evaluation
methods were applied, namely, a comparison of the obtained results between I-GWO and
others recent optimization algorithms as well as applying different evaluation factors such
as RMSE, absolute error and statistical analysis. The results of the two applied applications
are extended to include quantitative and qualitative results. The accuracy of algorithms is
compared through RMSE and absolute error as well as statistical analysis to cover different
quantitative results. The behavior of algorithms is compared though different qualitative
results such as algorithm convergence speed and boxplot graph for all statistical results.
This study presented a comparison and discussion of current-voltage characteristics and
power-voltage characteristics between real measured data set and PV model optimized
by different algorithms. The results show that I-GWO has a significant improvement in
accuracy than original GWO and other algorithms and this is made clear by the RMSE
for the two applications. This study is considered a starting point for research work that
focuses on studying the applicability of this improved algorithm on modeling of complex
and large PV systems.
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Nomenclature
Symbol Description
TDM Three Diode Model
RMSE Root Mean Square Error
PV Photo Voltaic
Ns number of series solar cells
I PV module output current
NP number of parallel PV modules
V Terminal voltage
XP(t) Prey current position
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Iph Photo generated current source
X(t) Gray wolf current position
ï1 First Diode Ideality factor (Diffusion current components)
ï2 Second Diode Ideality Factor (Recombination current components)
ï3 Third diode Ideality Factor(Leakage current components)
Rsh Equivalent Shunt resistance for current leakage resistance across the

P-N junction of solar cell
Rs Equivalent Series resistance for semiconductor material at neutral regions
K =1.380 × 10−23(J/Ko) Boltzmann constant
Is1 First diode current
q 1.602 × 10−19 (C) Coulombs.
Is2 Second diode current
T (Ko) Photo cell temperature (Kelvin)
Is3 Third diode current
HBO Heap-based optimizer
X(t) Current position
X(t + 1) Position in next iteration
GWO Grey Wolf Optimizer
I-GWO Improved Grey Wolf Optimizer
HHO Harries Hawk optimization
MRFO Manta Ray Foraging Optimization
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